Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-phenylacetamide

Manpreet Kaur,^a Jerry P. Jasinski,^b* Brian J. Anderson,^b H. S. Yathirajan^a and B. Narayana^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 20 October 2013; accepted 28 October 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.130; data-to-parameter ratio = 14.5.

The title compound, C19H19N3O2, crystallizes with two independent molecules (A and B) in the asymmetric unit. In molecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in *B* it is planar [r.m.s. deviation = 0.0386 (15) Å]. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8) in A and 38.2 (3)° in B. The *N*-phenyl substituent on the pyrazole ring is twisted by 46.5(2)in A and 58.6 (4)° in B while the extended phenyl ring is twisted by 82.2 (8) in A and 87.5 (9)° in B. The mean plane of the amide group forms an angle of 74.8 (3) in A and 67.7 $(1)^{\circ}$ in B with respect to the phenyl ring. In addition, the amide group is rotated by 51.4 (1) in A and 53.6 (2)° in B from the the mean plane of the pyrazole ring. In the crystal, the two molecules are linked via $N-H \cdots O$ hydrogen bonds, supported by weak $C-H \cdots O$ interactions, forming dimers enclosing an $R_2^2(10)$ ring motif. The dimers are linked via C- $H \cdot \cdot \cdot O$ interactions, forming a three-dimensional structure.

Related literature

For the structural similarity of *N*-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin *et al.* (2008). For the coordination abilities of amides, see: Wu *et al.* (2008, 2010). For the pharmaceutical, insecticidal and nonlinear properties of pyrazoles, see: Chandrakantha *et al.* (2013); Cheng *et al.* (2008); Hatton *et al.* (1993); Liu *et al.* (2010). For related structures, see: Fun *et al.* (2011*a*,*b*, 2012); Butcher *et al.* (2013*a*,*b*). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen *et al.* (1987).

 $\gamma = 116.812 \ (7)^{\circ}$ V = 1643.9 (2) Å³

Cu $K\alpha$ radiation

 $0.48 \times 0.32 \times 0.26 \text{ mm}$

10216 measured reflections

6333 independent reflections

5485 reflections with $I > 2\sigma(I)$

 $\mu = 0.69 \text{ mm}^{-3}$

T = 173 K

 $R_{\rm int}=0.037$

Z = 4

Experimental

Crystal data

 $C_{19}H_{19}N_3O_2$ $M_r = 321.37$ Triclinic, $P\overline{1}$ a = 10.1258 (7) Å b = 10.4671 (8) Å c = 17.8888 (12) Å $\alpha = 100.833 (6)^{\circ}$ $\beta = 92.527 (5)^{\circ}$

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{min} = 0.876, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ 438 parameters $wR(F^2) = 0.130$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.30$ e Å⁻³6333 reflections $\Delta \rho_{min} = -0.23$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1A \cdots O2B$	0.86	1.97	2.8292 (16)	173
$C14A - H14A \cdots O1A^{i}$	0.93	2.55	3.454 (2)	165
$N1B - H1B \cdots O2A$	0.86	1.98	2.8115 (16)	163
$C2B - H2BA \cdots O1B^{ii}$	0.97	2.55	3.4239 (19)	150
$C4B - H4B \cdot \cdot \cdot O1B^{ii}$	0.93	2.72	3.487 (2)	141
$C8B - H8B \cdots O2A$	0.93	2.57	3.404 (2)	150
$C14B - H14B \cdots O1A^{iii}$	0.93	2.70	3.398 (2)	132
Symmetry codes: (i)	-x + 1, -y +	-1, -z; (ii)	-x + 1, -y + 1,	-z + 1; (iii)

x - 1, y - 1, z.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SUPERFLIP* (Palatinus & Chapuis, 2007); program(s) used to refine structure: *SHELXL2012* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2*.

MK is grateful to CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5356).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, 046–047.
- Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, 039.
- Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arabian J. Chem. 6, 97–102.
- Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, 02926–02927.
- Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, 02941–02942.
- Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, 02677.
- Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.
- Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.
- Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945– 950.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207– 2215.
- Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.

supporting information

Acta Cryst. (2013). E69, o1726-o1727 [doi:10.1107/S1600536813029590]

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1*H*-pyrazol-4-yl)-2-phenyl-acetamide

Manpreet Kaur, Jerry P. Jasinski, Brian J. Anderson, H. S. Yathirajan and B. Narayana

S1. Comment

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin *et al.*, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu *et al.*, 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng *et al.*, 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton *et al.*, 1993), antifungal activities (Liu *et al.*, 2010) and non-linear optical properties (Chandrakantha *et al.*, 2013). Crystal structures of some related acetamide and pyrazole derivatives are : N-(4-Bromophenyl)-2-(naphthalen-1-yl) acetamide, N-(3,5-Dichlorophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2- [4-(methylsulfanyl)phenyl]acetamide, (Fun *et al.*, 2011*a,b*, 2012), 2-(2,4-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide, 2-(2,6-dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide (Butcher *et al.*, 2013*a,b*) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C₁₉H₁₉N₃O₂.

The title compound, (I), crystallizes with two independent molecules in the asymmetric unit (A and B) (Fig. 1). In molecule A, the pyrazole ring adopts a slightly disordered half-chair conformation while in B it is planar. The dihedral angle between the mean planes of the two phenyl rings is 56.2 (8)° (A) and 38.2 (3)° (B). The N-phenyl substituent on the pyrazole ring is twisted by 46.5 (2)° (A) and 58.6 (4)° (B) while the extended phenyl ring is twisted by 82.2 (8)° (A) and 87.5 (9)° (B). The mean plane of the amide group forms an angle of 74.8 (3)° (A)(C2A/C1A/O1A/N1A), 67.7 (1)° (B) (C2B/C1B/O1B/N1B) with respect to that of the phenyl rings. In addition, the amide group is rotated by 51.4 (1)° (A), 53.6 (2)° (B) from the the mean plane of the pyrazole rings. Bond lengths are in normal ranges (Allen *et al.*, 1987). N— H…O intermolecular hydrogen bonds supported by a weak C14A—H14A…O1A intermolecular interaction are observed which link the molecules into dimers forming $R_2^2(10)$ graph set motifs (Fig. 2). Also, additional weak C—H…O intermolecular interactions are also observed which interlink the dimers and influence the crystal packing.

S2. Experimental

Phenylacetic acid (0.136 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO₃ solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) and further recrystallised from ethanol by by the slow evaporation method which were used as such for X-ray studies (M.P.: 445-447 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH₂); 0.96Å (CH₃) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂, NH)and 1.5 (CH₃) times U_{eq} of the parent atom. Idealised Me refined as rotating group.

Figure 1

ORTEP drawing of (I) $(C_{19}H_{19}N_3O_2)$ showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.

Figure 2

Molecular packing for (I) viewed along the *a* axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds supported by a weak C—H···O intermolecular interactions link the molecules into dimers forming $R_2^2(10)$ graph set motifs. Also, weak C—H···O intermolecular interactions are observed which interlink the dimers and influence the crystal packing. H atoms not involved in hydrogen bonding have been removed for clarity.

Figure 3

Synthesis scheme of (I).

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenylacetamide

Z = 4

F(000) = 680

 $\theta = 4.9-72.3^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.037$

 $h = -12 \rightarrow 10$

 $k = -12 \rightarrow 12$

 $l = -17 \rightarrow 21$

 $D_{\rm x} = 1.298 {\rm Mg} {\rm m}^{-3}$

Irregular, colourless

 $0.48 \times 0.32 \times 0.26 \text{ mm}$

 $\theta_{\rm max} = 72.4^{\circ}, \ \theta_{\rm min} = 4.9^{\circ}$

10216 measured reflections

6333 independent reflections 5485 reflections with $I > 2\sigma(I)$

Cu *K* α radiation, $\lambda = 1.54184$ Å

Cell parameters from 4663 reflections

Crystal data

 $\begin{array}{l} C_{19}H_{19}N_{3}O_{2}\\ M_{r}=321.37\\ Triclinic, P\overline{1}\\ a=10.1258~(7)~\text{\AA}\\ b=10.4671~(8)~\text{\AA}\\ c=17.8888~(12)~\text{\AA}\\ a=100.833~(6)^{\circ}\\ \beta=92.527~(5)^{\circ}\\ \gamma=116.812~(7)^{\circ}\\ V=1643.9~(2)~\text{\AA}^{3} \end{array}$

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer Radiation source: Enhance (Cu) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO* and *CrysAlis RED*; Agilent, 2012) $T_{min} = 0.876, T_{max} = 1.000$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.046$ H-atom parameters constrained $wR(F^2) = 0.130$ $w = 1/[\sigma^2(F_0^2) + (0.0717P)^2 + 0.280P]$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 6333 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$ 438 parameters $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Extinction correction: SHELXL, Primary atom site location: structure-invariant $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0080 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
01A	0.53484 (12)	0.15316 (13)	0.11113 (6)	0.0325 (3)
O2A	0.18670 (13)	0.29954 (12)	0.18901 (6)	0.0295 (3)
N1A	0.30791 (13)	0.08641 (13)	0.15051 (7)	0.0224 (3)
H1A	0.2487	0.0394	0.1800	0.027*
N2A	0.16758 (14)	0.28576 (14)	0.05759 (7)	0.0241 (3)
N3A	0.21484 (14)	0.22128 (14)	-0.00455 (7)	0.0249 (3)

C1A	0.44894 (16)	0.10244 (16)	0.15614 (8)	0.0241 (3)
C2A	0.49459 (18)	0.05345 (18)	0.22348 (10)	0.0309 (3)
H2AA	0.4141	0.0214	0.2542	0.037*
H2AB	0.5138	-0.0287	0.2043	0.037*
C3A	0.63393 (18)	0.18034 (18)	0.27245 (9)	0.0291 (3)
C4A	0.62384 (19)	0.2730 (2)	0.33564 (10)	0.0346 (4)
H4A	0.5308	0.2514	0.3507	0.042*
C5A	0.7501 (2)	0.3977 (2)	0.37709 (10)	0.0399 (4)
H5A	0.7412	0.4589	0.4193	0.048*
C6A	0.8889(2)	0.4302(2)	0.35513 (10)	0.0403 (4)
H6A	0.9736	0 5140	0 3822	0.048*
C7A	0.90161 (19)	0.3379(2)	0.29293(11)	0.0398(4)
Н74	0.9951	0.3591	0.27255 (11)	0.0398 (4)
C8A	0.77540 (19)	0.3391 0.2139(2)	0.2785	0.048 (4)
	0.77540 (17)	0.1522	0.23202 (10)	0.0348 (4)
ПоА	0.7630 0.25497 (15)	0.1322 0.14276(15)	0.2104	0.042°
C9A	0.23487(13)	0.14570(15)	0.09827 (8)	0.0210(3)
CIUA	0.25652(16)	0.12695 (16)	0.02099 (8)	0.0236(3)
CIIA	0.20064 (15)	0.24/20 (15)	0.12389 (8)	0.0210 (3)
C12A	0.17598 (16)	0.42661 (16)	0.05939 (8)	0.0241 (3)
C13A	0.27423 (17)	0.52009 (18)	0.01869 (9)	0.0295 (3)
H13A	0.3338	0.4912	-0.0107	0.035*
C14A	0.2824 (2)	0.65726 (19)	0.02239 (10)	0.0374 (4)
H14A	0.3457	0.7197	-0.0057	0.045*
C15A	0.1962 (2)	0.70113 (19)	0.06787 (11)	0.0408 (4)
H15A	0.2031	0.7937	0.0710	0.049*
C16A	0.0999 (2)	0.6075 (2)	0.10855 (10)	0.0381 (4)
H16A	0.0429	0.6378	0.1394	0.046*
C17A	0.08765 (18)	0.46855 (18)	0.10377 (9)	0.0305 (3)
H17A	0.0209	0.4046	0.1301	0.037*
C18A	0.12208 (19)	0.17807 (18)	-0.07928 (8)	0.0312 (3)
H18A	0.0243	0.1003	-0.0784	0.047*
H18B	0.1675	0.1444	-0.1190	0.047*
H18C	0.1137	0.2612	-0.0894	0.047*
C19A	0.2914 (2)	0.02504(19)	-0.03425(9)	0.0345(4)
H19A	0.2002	-0.0542	-0.0638	0.052*
H19B	0.3421	-0.0140	-0.0064	0.052*
H19C	0.3545	0.0776	-0.0682	0.052*
O1B	0.31592 (13)	0.34788(13)	0.46337 (6)	0.032
02B	0.00034(12)	-0.05612(12)	0.40557 (0)	0.0300(3)
N1B	0.0777(12)	0.05012(12) 0.25406(13)	0.24333(0) 0.33811(7)	0.0233(3)
	0.21077 (13)	0.25490 (15)	0.33811 (7)	0.0233 (3)
	0.2207	0.2079	0.2322 0.22206 (7)	0.028°
N2D	-0.08803(13)	-0.10989(13)	0.32300(7)	0.0240(3)
N3B CID	-0.13148(14)	-0.02002(14)	0.37730(7)	0.0257(3)
CIB	0.31460 (16)	0.33901 (16)	0.39039 (8)	0.0243(3)
C2B	0.42//9(16)	0.49491 (16)	0.3/249 (9)	0.0268 (3)
H2BA	0.5238	0.5348	0.4044	0.032*
H2BB	0.4406	0.4673	0.3195	0.032*
C3B	0.37614 (16)	0.61150 (16)	0.38034 (9)	0.0247 (3)

~ ~ ~				
C4B	0.40330 (17)	0.70709 (18)	0.45149 (9)	0.0302 (3)
H4B	0.4505	0.6971	0.4942	0.036*
C5B	0.3608 (2)	0.8167 (2)	0.45926 (11)	0.0384 (4)
H5B	0.3791	0.8796	0.5071	0.046*
C6B	0.2910 (2)	0.8332 (2)	0.39606 (11)	0.0398 (4)
H6B	0.2640	0.9081	0.4013	0.048*
C7B	0.26169 (19)	0.7381 (2)	0.32530 (11)	0.0366 (4)
H7B	0.2141	0.7482	0.2828	0.044*
C8B	0.30353 (17)	0.62717 (17)	0.31766 (9)	0.0293 (3)
H8B	0.2827	0.5627	0.2700	0.035*
C9B	0.08712 (15)	0.12641 (16)	0.34769 (8)	0.0219 (3)
C10B	-0.01869 (16)	0.11522 (16)	0.39461 (8)	0.0239 (3)
C11B	0.04395 (15)	-0.01523 (16)	0.29956 (8)	0.0216 (3)
C12B	-0.20372 (16)	-0.23775 (16)	0.27073 (8)	0.0247 (3)
C13B	-0.17998 (19)	-0.35804 (17)	0.24651 (9)	0.0313 (3)
H13B	-0.0928	-0.3574	0.2658	0.038*
C14B	-0.2880 (2)	-0.48003 (18)	0.19304 (10)	0.0404 (4)
H14B	-0.2729	-0.5614	0.1762	0.049*
C15B	-0.4170 (2)	-0.4809 (2)	0.16501 (10)	0.0443 (5)
H15B	-0.4885	-0.5625	0.1289	0.053*
C16B	-0.44110 (19)	-0.3609 (2)	0.19021 (10)	0.0426 (5)
H16B	-0.5291	-0.3627	0.1714	0.051*
C17B	-0.33419 (18)	-0.23789 (19)	0.24349 (10)	0.0332 (4)
H17B	-0.3498	-0.1569	0.2606	0.040*
C18B	-0.2191 (2)	-0.09991 (19)	0.43300 (10)	0.0359 (4)
H18D	-0.2967	-0.1957	0.4069	0.054*
H18E	-0.2632	-0.0427	0.4584	0.054*
H18F	-0.1553	-0.1097	0.4703	0.054*
C19B	-0.02449 (19)	0.22860 (18)	0.45642 (9)	0.0327 (4)
H19D	-0.1216	0.2233	0.4501	0.049*
H19E	0.0502	0.3245	0.4534	0.049*
H19F	-0.0059	0.2112	0.5057	0.049*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1A	0.0297 (6)	0.0411 (7)	0.0298 (6)	0.0174 (5)	0.0106 (5)	0.0121 (5)
O2A	0.0455 (6)	0.0349 (6)	0.0183 (5)	0.0265 (5)	0.0104 (4)	0.0078 (4)
N1A	0.0257 (6)	0.0216 (6)	0.0227 (6)	0.0116 (5)	0.0069 (5)	0.0091 (5)
N2A	0.0318 (6)	0.0277 (6)	0.0178 (6)	0.0176 (5)	0.0064 (5)	0.0060 (5)
N3A	0.0320 (6)	0.0281 (6)	0.0161 (6)	0.0161 (5)	0.0050 (5)	0.0032 (5)
C1A	0.0270 (7)	0.0215 (7)	0.0251 (7)	0.0124 (6)	0.0051 (6)	0.0050 (5)
C2A	0.0333 (8)	0.0311 (8)	0.0355 (9)	0.0186 (7)	0.0066 (7)	0.0138 (7)
C3A	0.0333 (8)	0.0364 (8)	0.0272 (8)	0.0216 (7)	0.0060 (6)	0.0146 (6)
C4A	0.0362 (9)	0.0449 (10)	0.0313 (8)	0.0242 (8)	0.0098 (7)	0.0132 (7)
C5A	0.0509 (10)	0.0450 (10)	0.0282 (8)	0.0268 (9)	0.0049 (7)	0.0070 (7)
C6A	0.0390 (9)	0.0442 (10)	0.0334 (9)	0.0156 (8)	-0.0042 (7)	0.0118 (8)
C7A	0.0299 (8)	0.0564 (11)	0.0387 (9)	0.0223 (8)	0.0058 (7)	0.0182 (8)

C8A	0.0365 (9)	0.0486 (10)	0.0293 (8)	0.0272 (8)	0.0086 (7)	0.0116 (7)
C9A	0.0211 (6)	0.0201 (7)	0.0198 (7)	0.0082 (5)	0.0035 (5)	0.0038 (5)
C10A	0.0260 (7)	0.0208 (7)	0.0220 (7)	0.0099 (6)	0.0047 (5)	0.0032 (5)
C11A	0.0218 (6)	0.0220 (7)	0.0193 (7)	0.0094 (6)	0.0039 (5)	0.0066 (5)
C12A	0.0287 (7)	0.0255 (7)	0.0192 (7)	0.0140 (6)	-0.0006 (6)	0.0052 (5)
C13A	0.0301 (8)	0.0313 (8)	0.0253 (7)	0.0126 (7)	0.0042 (6)	0.0075 (6)
C14A	0.0424 (9)	0.0276 (8)	0.0354 (9)	0.0092 (7)	0.0026 (7)	0.0117 (7)
C15A	0.0582 (11)	0.0285 (8)	0.0371 (9)	0.0233 (8)	-0.0028 (8)	0.0047 (7)
C16A	0.0542 (11)	0.0437 (10)	0.0297 (8)	0.0353 (9)	0.0056 (8)	0.0056 (7)
C17A	0.0372 (8)	0.0364 (9)	0.0249 (7)	0.0216 (7)	0.0067 (6)	0.0108 (6)
C18A	0.0365 (8)	0.0350 (8)	0.0190 (7)	0.0146 (7)	0.0013 (6)	0.0055 (6)
C19A	0.0485 (10)	0.0343 (9)	0.0239 (8)	0.0237 (8)	0.0086 (7)	0.0018 (6)
O1B	0.0345 (6)	0.0386 (6)	0.0229 (6)	0.0053 (5)	-0.0029 (5)	0.0095 (5)
O2B	0.0286 (5)	0.0264 (5)	0.0278 (6)	0.0105 (4)	0.0117 (4)	0.0049 (4)
N1B	0.0244 (6)	0.0222 (6)	0.0190 (6)	0.0064 (5)	0.0040 (5)	0.0072 (5)
N2B	0.0220 (6)	0.0233 (6)	0.0228 (6)	0.0076 (5)	0.0066 (5)	0.0036 (5)
N3B	0.0255 (6)	0.0255 (6)	0.0236 (6)	0.0096 (5)	0.0096 (5)	0.0052 (5)
C1B	0.0239 (7)	0.0240 (7)	0.0242 (7)	0.0103 (6)	0.0039 (5)	0.0064 (6)
C2B	0.0229 (7)	0.0243 (7)	0.0291 (8)	0.0075 (6)	0.0059 (6)	0.0056 (6)
C3B	0.0194 (6)	0.0214 (7)	0.0282 (7)	0.0044 (5)	0.0088 (6)	0.0067 (6)
C4B	0.0259 (7)	0.0326 (8)	0.0269 (8)	0.0099 (6)	0.0064 (6)	0.0049 (6)
C5B	0.0379 (9)	0.0342 (9)	0.0370 (9)	0.0146 (7)	0.0117 (7)	-0.0011 (7)
C6B	0.0420 (9)	0.0337 (9)	0.0510 (11)	0.0224 (8)	0.0169 (8)	0.0113 (8)
C7B	0.0358 (9)	0.0403 (9)	0.0389 (9)	0.0193 (8)	0.0094 (7)	0.0162 (7)
C8B	0.0293 (8)	0.0281 (8)	0.0263 (8)	0.0102 (6)	0.0059 (6)	0.0052 (6)
C9B	0.0220 (7)	0.0233 (7)	0.0192 (6)	0.0093 (6)	0.0031 (5)	0.0060 (5)
C10B	0.0245 (7)	0.0240 (7)	0.0219 (7)	0.0101 (6)	0.0032 (5)	0.0061 (6)
C11B	0.0205 (6)	0.0243 (7)	0.0202 (7)	0.0097 (6)	0.0029 (5)	0.0080 (5)
C12B	0.0237 (7)	0.0229 (7)	0.0218 (7)	0.0051 (6)	0.0060 (6)	0.0071 (6)
C13B	0.0335 (8)	0.0274 (8)	0.0305 (8)	0.0109 (7)	0.0073 (6)	0.0092 (6)
C14B	0.0487 (10)	0.0235 (8)	0.0364 (9)	0.0068 (7)	0.0137 (8)	0.0032 (7)
C15B	0.0340 (9)	0.0394 (10)	0.0287 (9)	-0.0058 (8)	0.0070 (7)	-0.0010 (7)
C16B	0.0242 (8)	0.0578 (12)	0.0300 (9)	0.0078 (8)	0.0023 (7)	0.0053 (8)
C17B	0.0289 (8)	0.0372 (9)	0.0298 (8)	0.0127 (7)	0.0062 (6)	0.0065 (7)
C18B	0.0373 (9)	0.0345 (9)	0.0339 (9)	0.0125 (7)	0.0183 (7)	0.0119 (7)
C19B	0.0365 (8)	0.0315 (8)	0.0298 (8)	0.0168 (7)	0.0095 (7)	0.0031 (6)

Geometric parameters (Å, °)

O1A—C1A	1.2217 (18)	O1B—C1B	1.2219 (19)	
O2A—C11A	1.2334 (17)	O2B—C11B	1.2412 (18)	
N1A—H1A	0.8600	N1B—H1B	0.8600	
N1A—C1A	1.3574 (19)	N1B—C1B	1.3519 (19)	
N1A—C9A	1.4069 (18)	N1B—C9B	1.4118 (18)	
N2A—N3A	1.4057 (16)	N2B—N3B	1.4008 (17)	
N2A—C11A	1.3958 (18)	N2B—C11B	1.3985 (18)	
N2A—C12A	1.4320 (19)	N2B—C12B	1.4345 (18)	
N3A—C10A	1.375 (2)	N3B—C10B	1.3678 (19)	

N3A—C18A	1.4673 (19)	N3B—C18B	1.4553 (19)
C1A—C2A	1.525 (2)	C1B—C2B	1.525 (2)
C2A—H2AA	0.9700	C2B—H2BA	0.9700
C2A—H2AB	0.9700	C2B—H2BB	0.9700
C2A—C3A	1.512 (2)	C2B—C3B	1.517 (2)
C3A—C4A	1.384 (2)	C3B—C4B	1.392 (2)
C3A—C8A	1.396 (2)	C3B—C8B	1.389 (2)
C4A—H4A	0.9300	C4B—H4B	0.9300
C4A—C5A	1.391 (3)	C4B—C5B	1.383 (2)
С5А—Н5А	0.9300	C5B—H5B	0.9300
C5A—C6A	1.383 (3)	C5B—C6B	1.386 (3)
С6А—Н6А	0.9300	С6В—Н6В	0.9300
С6А—С7А	1.382 (3)	C6B—C7B	1.381 (3)
С7А—Н7А	0.9300	С7В—Н7В	0.9300
C7A—C8A	1.384 (3)	C7B—C8B	1.391 (2)
C8A—H8A	0.9300	C8B—H8B	0.9300
C9A—C10A	1.362 (2)	C9B—C10B	1.367 (2)
C9A—C11A	1.4339 (19)	C9B—C11B	1.426 (2)
C10A—C19A	1.488 (2)	C10B—C19B	1.486 (2)
C12A—C13A	1.389 (2)	C12B—C13B	1.381 (2)
C12A—C17A	1.382 (2)	C12B—C17B	1.387 (2)
С13А—Н13А	0.9300	C13B—H13B	0.9300
C13A—C14A	1.389 (2)	C13B—C14B	1.389 (2)
C14A—H14A	0.9300	C14B—H14B	0.9300
C14A—C15A	1.385 (3)	C14B—C15B	1.374 (3)
С15А—Н15А	0.9300	C15B—H15B	0.9300
C15A—C16A	1.381 (3)	C15B—C16B	1.383 (3)
C16A—H16A	0.9300	C16B—H16B	0.9300
C16A—C17A	1.389 (2)	C16B—C17B	1.389 (2)
C17A—H17A	0.9300	C17B—H17B	0.9300
C18A—H18A	0.9600	C18B—H18D	0.9600
C18A—H18B	0.9600	C18B—H18E	0.9600
C18A—H18C	0.9600	C18B—H18F	0.9600
С19А—Н19А	0.9600	C19B—H19D	0.9600
С19А—Н19В	0.9600	C19B—H19E	0.9600
С19А—Н19С	0.9600	C19B—H19F	0.9600
C1A—N1A—H1A	118.7	C1B—N1B—H1B	117.9
C1A—N1A—C9A	122.53 (12)	C1B—N1B—C9B	124.10 (12)
C9A—N1A—H1A	118.7	C9B—N1B—H1B	117.9
N3A—N2A—C12A	118.71 (12)	N3B—N2B—C12B	117.75 (11)
C11A—N2A—N3A	109.01 (11)	C11B—N2B—N3B	109.03 (11)
C11A—N2A—C12A	122.24 (12)	C11B—N2B—C12B	122.09 (12)
N2A—N3A—C18A	114.99 (12)	N2B—N3B—C18B	116.82 (12)
C10A—N3A—N2A	107.00 (11)	C10B—N3B—N2B	107.38 (11)
C10A—N3A—C18A	121.64 (12)	C10B—N3B—C18B	124.49 (13)
O1A—C1A—N1A	123.06 (14)	O1B—C1B—N1B	123.34 (14)
01A—C1A—C2A	121.64 (14)	01B—C1B—C2B	122.55 (14)
			()

N1A—C1A—C2A	115.30 (13)	N1B—C1B—C2B	114.08 (13)
C1A—C2A—H2AA	109.8	C1B—C2B—H2BA	109.5
C1A—C2A—H2AB	109.8	C1B—C2B—H2BB	109.5
H2AA—C2A—H2AB	108.2	H2BA—C2B—H2BB	108.0
C3A—C2A—C1A	109.43 (13)	C3B—C2B—C1B	110.89 (12)
СЗА—С2А—Н2АА	109.8	C3B—C2B—H2BA	109.5
C3A—C2A—H2AB	109.8	C3B—C2B—H2BB	109.5
C4A—C3A—C2A	120.74 (14)	C4B—C3B—C2B	119.81 (14)
C4A—C3A—C8A	118.09 (16)	C8B—C3B—C2B	121.54 (14)
C8A—C3A—C2A	121.00 (15)	C8B—C3B—C4B	118.65 (15)
C3A—C4A—H4A	119.3	C3B—C4B—H4B	119.7
C3A—C4A—C5A	121.35 (16)	C5B—C4B—C3B	120.61 (16)
C5A—C4A—H4A	119.3	C5B—C4B—H4B	119.7
С4А—С5А—Н5А	120.2	C4B—C5B—H5B	119.8
C6A—C5A—C4A	119.60 (17)	C4B—C5B—C6B	120.31 (16)
С6А—С5А—Н5А	120.2	C6B—C5B—H5B	119.8
С5А—С6А—Н6А	120.0	C5B—C6B—H6B	120.1
C7A-C6A-C5A	119.93 (17)	C7B-C6B-C5B	119.74 (16)
C7A - C6A - H6A	120.0	C7B—C6B—H6B	120.1
C6A - C7A - H7A	120.0	C6B-C7B-H7B	120.0
C6A - C7A - C8A	120.08 (16)	C6B-C7B-C8B	120.0 119.90(17)
C8A - C7A - H7A	120.00 (10)	C8B-C7B-H7B	120.0
C3A - C8A - H8A	119 5	C3B - C8B - C7B	120.0 120.78(15)
C7A - C8A - C3A	120.94 (16)	C3B C8B H8B	119.6
C7A - C8A - H8A	119 5	C7B-C8B-H8B	119.6
N1A - C9A - C11A	121 51 (12)	N1B-C9B-C11B	122 38 (12)
C10A - C9A - N1A	129.66 (13)	C10B-C9B-N1B	122.30(12) 128.32(13)
C10A - C9A - C11A	108 58 (13)	C10B - C9B - C11B	128.32(13) 108.85(13)
$N_{3A} = C_{10A} = C_{10A}$	100.30(13) 120.26(13)	N3B C10B C10B	100.05(13)
$C_{0A} = C_{10A} = C_{17A}$	120.20(13) 100.52(13)	COB C 10B N3B	120.30(13) 100.22(13)
$C_{0A} = C_{10A} = C_{10A}$	130.20(14)	$C^{0}B$ $C^{1}0B$ $C^{1}0B$	109.22(13) 130.28(14)
$O_{2A} = C_{10A} = C_{13A}$	130.20(14) 123.05(13)	$O^{2}B$ $C^{11}B$ $N^{2}B$	130.28(14) 123.28(13)
$O_{2A} = C_{11A} = N_{2A}$	123.93(13) 130.81(13)	$O_{2B} = C_{11B} = C_{12B}$	123.26(13) 131.65(13)
N2A = C11A = C9A	100.01(13) 105.21(12)	$N_{2} P = C_{11} P = C_{2} P$	131.03(13) 105.02(12)
$N_{2A} = C_{11A} = C_{9A}$	103.21(12) 120.22(12)	$\begin{array}{c} \mathbf{N}2\mathbf{D} \\ \mathbf{C}12\mathbf{D} \\ \mathbf{C}12\mathbf{D} \\ \mathbf{C}12\mathbf{D} \\ \mathbf{C}12\mathbf{D} \\ \mathbf{N}2\mathbf{D} \\ \mathbf{N}2\mathbf{D} \\ \mathbf{N}2\mathbf{D} \\ \mathbf{C}1\mathbf{C}1\mathbf{D} \\ \mathbf{C}1\mathbf{C}\mathbf{D} \\ \mathbf{C}1\mathbf{C}\mathbf{D} \\ \mathbf{C}1\mathbf{C}\mathbf{D} \\ \mathbf{C}1\mathbf{C}\mathbf{D} \\ \mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}\mathbf{C}$	103.02(12)
C17A = C12A = N2A	120.25(13) 118.71(13)	C13D - C12D - N2B $C13D - C12D - C17D$	116.32(14)
C17A = C12A = N2A	110.71(13) 121.04(14)	C17P $C12P$ $N2P$	121.12(14) 120.24(14)
C12A = C12A = C13A	121.04 (14)	C12D $C12D$ $U12D$	120.34 (14)
C12A = C13A = C13A	120.4	С12Б—С13Б—П13Б	120.4
C14A = C13A = C12A	119.21 (15)	C12B— $C13B$ — $C14B$	119.18 (10)
C12A = C12A = H12A	120.4	С14Б—С13Б—П13Б	120.4
C13A - C14A - H14A	120.0	C13B— $C14B$ — $H14B$	119.9
C15A - C14A - C15A	120.06 (16)	C15B - C14B - C15B	120.24 (17)
C13A - C14A - H14A	120.0	C13B - C14B - H14B	119.9
CI4A—CI5A—HI5A	120.0	CI4B-CI5B-HI5B	119.8
C16A—C15A—C14A	120.08 (16)	C14B—C15B—C16B	120.34 (16)
CI6A—CI5A—H15A	120.0	C16B—C15B—H15B	119.8
CI5A—CI6A—HI6A	119.8	CI5B—CI6B—HI6B	119.9
C15A—C16A—C17A	120.48 (16)	C15B—C16B—C17B	120.20 (17)

C17A—C16A—H16A	119.8	C17B—C16B—H16B	119.9
C12A—C17A—C16A	119.08 (15)	C12B—C17B—C16B	118.91 (17)
C12A—C17A—H17A	120.5	C12B—C17B—H17B	120.5
С16А—С17А—Н17А	120.5	C16B—C17B—H17B	120.5
N3A—C18A—H18A	109.5	N3B—C18B—H18D	109.5
N3A—C18A—H18B	109.5	N3B—C18B—H18E	109.5
N3A—C18A—H18C	109.5	N3B—C18B—H18F	109.5
H18A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
H18A - C18A - H18C	109.5	H18D—C18B—H18F	109.5
H18B— $C18A$ — $H18C$	109.5	H18E—C18B—H18F	109.5
C10A - C19A - H19A	109.5	C10B— $C19B$ — $H19D$	109.5
C10A - C19A - H19B	109.5	C10B $C19B$ $H19E$	109.5
C10A - C19A - H19C	109.5	C10B $C19B$ $H19E$	109.5
H19A - C19A - H19B	109.5	$H_{19}D_{-}C_{19}B_{-}H_{19}F$	109.5
H19A - C19A - H19C	109.5	H19D $C19B$ $H19E$	109.5
HIPR CIPA HIPC	109.5	HIOF CIOR HIOF	109.5
1119 D —C19A—1119C	109.5	1119E-C19B-1119F	109.5
014 - C14 - C24 - C34	56 40 (19)	O1B $C1B$ $C2B$ $C3B$	-86.23(18)
N1A C1A C2A C3A	-123 10 (14)	NIB CIB C2B C3B	00.23 (10) 01.80 (15)
N1A = C1A = C2A = C3A $N1A = C9A = C10A = N3A$	-17040(14)	NIB COB CIOB N3B	91.80(13) 170.33(14)
N1A C9A C10A C19A	1/0.40(14)	N1B C9B C10B C10B	-0.8(3)
NIA = C9A = C10A = C19A	-1.8(2)	N1B = C0B = C11B = C2B	9.8(3)
NIA = C0A = C11A = N2A	1.0(2) 17626(12)	N1D = C0D = C11D = 02D	1.7(2)
NIA-C9A-CIIA-NZA	7 50 (12)	NIB-C9B-CIIB-N2B	-173.40(12)
N2A = N3A = C10A = C9A	-7.30(10)	N2D = N3D = C10D = C10D	3.73(10)
N2A = N3A = C10A = C19A	1/1.13(13) 179.97(14)	N2B - N3B - C10B - C19B	-1/4.13(13)
N2A = C12A = C17A = C14A	-1/8.8/(14)	N2B = C12B = C13B = C14B	-1/0.98(14)
N2A = C12A = C17A = C10A	1//.18 (14)	N2B = C12B = C17B = C10B	171.57(12)
N3A—N2A—CIIA—O2A	1/2.11 (13)	N3B—N2B—CIIB—O2B	-1/1.5/(13)
N3A—N2A—CIIA—C9A	-6.14 (15)	N3B—N2B—CIIB—C9B	6.02 (15)
N3A—N2A—C12A—C13A	-22.75 (19)	N3B—N2B—C12B—C13B	-146.60 (14)
N3A—N2A—C12A—C17A	158.89 (13)	N3B—N2B—C12B—C17B	35.38 (19)
CIA—NIA—C9A—C10A	52.2 (2)	CIB—NIB—C9B—C10B	53.7 (2)
CIA—NIA—C9A—C1IA	-121.29 (15)	CIB—NIB—C9B—CIIB	-134.85 (15)
C1A—C2A—C3A—C4A	93.50 (17)	C1B—C2B—C3B—C4B	83.37 (16)
C1A—C2A—C3A—C8A	-81.70 (18)	C1B—C2B—C3B—C8B	-97.55 (16)
C2A—C3A—C4A—C5A	-174.17 (15)	C2B—C3B—C4B—C5B	178.16 (14)
C2A—C3A—C8A—C7A	174.12 (16)	C2B—C3B—C8B—C7B	-177.67 (14)
C3A—C4A—C5A—C6A	-0.2 (3)	C3B—C4B—C5B—C6B	-0.3(3)
C4A—C3A—C8A—C7A	-1.2 (2)	C4B—C3B—C8B—C7B	1.4 (2)
C4A—C5A—C6A—C7A	-0.8(3)	C4B—C5B—C6B—C7B	1.1 (3)
C5A—C6A—C7A—C8A	0.8 (3)	C5B—C6B—C7B—C8B	-0.6(3)
C6A—C7A—C8A—C3A	0.3 (3)	C6B—C7B—C8B—C3B	-0.7 (2)
C8A—C3A—C4A—C5A	1.2 (2)	C8B—C3B—C4B—C5B	-1.0 (2)
C9A—N1A—C1A—O1A	-8.2 (2)	C9B—N1B—C1B—O1B	4.1 (2)
C9A—N1A—C1A—C2A	171.37 (13)	C9B—N1B—C1B—C2B	-173.89 (13)
C10A—C9A—C11A—O2A	-176.54 (15)	C10B—C9B—C11B—O2B	174.80 (15)
C10A—C9A—C11A—N2A	1.55 (15)	C10B—C9B—C11B—N2B	-2.50 (16)
C11A—N2A—N3A—C10A	8.50 (15)	C11B—N2B—N3B—C10B	-7.40(16)

C11A—N2A—N3A—C18A	146.89 (13)	C11B—N2B—N3B—C18B	-152.81 (13)
C11A—N2A—C12A—C13A	118.93 (16)	C11B—N2B—C12B—C13B	73.50 (18)
C11A—N2A—C12A—C17A	-59.42 (19)	C11B—N2B—C12B—C17B	-104.52 (17)
C11A—C9A—C10A—N3A	3.74 (16)	C11B—C9B—C10B—N3B	-2.02 (17)
C11A—C9A—C10A—C19A	-174.72 (15)	C11B—C9B—C10B—C19B	177.85 (15)
C12A—N2A—N3A—C10A	154.81 (12)	C12B—N2B—N3B—C10B	-152.14 (13)
C12A—N2A—N3A—C18A	-66.80 (17)	C12B—N2B—N3B—C18B	62.45 (18)
C12A—N2A—C11A—O2A	27.2 (2)	C12B—N2B—C11B—O2B	-28.7 (2)
C12A—N2A—C11A—C9A	-151.03 (13)	C12B—N2B—C11B—C9B	148.94 (13)
C12A—C13A—C14A—C15A	1.7 (2)	C12B—C13B—C14B—C15B	-0.3 (2)
C13A—C12A—C17A—C16A	-1.2 (2)	C13B—C12B—C17B—C16B	-0.9 (2)
C13A—C14A—C15A—C16A	-1.2 (3)	C13B—C14B—C15B—C16B	-0.5 (3)
C14A—C15A—C16A—C17A	-0.6 (3)	C14B—C15B—C16B—C17B	0.7 (3)
C15A—C16A—C17A—C12A	1.7 (3)	C15B—C16B—C17B—C12B	0.0 (3)
C17A—C12A—C13A—C14A	-0.6 (2)	C17B—C12B—C13B—C14B	1.0 (2)
C18A—N3A—C10A—C9A	-142.51 (14)	C18B—N3B—C10B—C9B	147.82 (15)
C18A—N3A—C10A—C19A	36.1 (2)	C18B-N3B-C10B-C19B	-32.1 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···· A	D—H··· A
N1 <i>A</i> —H1 <i>A</i> ···O2 <i>B</i>	0.86	1.97	2.8292 (16)	173
$C14A$ — $H14A$ ···O1 A^{i}	0.93	2.55	3.454 (2)	165
N1 <i>B</i> —H1 <i>B</i> ···O2 <i>A</i>	0.86	1.98	2.8115 (16)	163
C2 <i>B</i> —H2 <i>BA</i> ···O1 <i>B</i> ⁱⁱ	0.97	2.55	3.4239 (19)	150
$C4B$ — $H4B$ ···· $O1B^{ii}$	0.93	2.72	3.487 (2)	141
C8 <i>B</i> —H8 <i>B</i> ···O2 <i>A</i>	0.93	2.57	3.404 (2)	150
C14 <i>B</i> —H14 <i>B</i> ····O1 <i>A</i> ⁱⁱⁱ	0.93	2.70	3.398 (2)	132

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*-1, *y*-1, *z*.