metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II)

Julia A. Rusanova,^a Olesia V. Kozachuk,^a* Valentyna V. Semenaka^a and Viktoriya V. Dyakonenko^b

^aNational Taras Shevchenko University, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, and ^bInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine

Correspondence e-mail: kozachuk_o@yahoo.com

Received 5 November 2013; accepted 21 November 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.050; wR factor = 0.109; data-to-parameter ratio = 13.6.

The asymmetric unit of the title complex $[Cu(C_{14}H_{12}N_2)_2]_2$ $[Fe(CN)_5(NO)]$, consists of a $[Cu(dmp)_2]^+$ cation (dmp is 2,9dimethyl-1,10-phenanthroline) and half an $[Fe(CN)_5(NO)]^{2-}$ anion. The anion is disordered across an inversion center with the Fe^{II} ion slightly offset (*ca* 0.205Å) from the inversion center in the direction of the disordered *trans*-coordinating CN/NO ligands. The anion has a distorted octahedral coordination geometry. The Cu^I ion is coordinated by two phenanthroline ligands in a distorted tetrahedral geometry. The dihedral angle between the phenanthroline ligands is 77.16 (4) Å. In the crystal, the cations are connected to the anions by weak C-H···N hydrogen bonds. In addition, weak π - π stacking interactions are observed, with centroidcentroid distances in the range 3.512 (3)–3.859 (3) Å.

Related literature

For background to the direct synthesis of coordination compounds, see: Kokozay & Vassilyeva (2002); Nesterova *et al.* (2008). For the direct synthesis of heterometallic Cucontaining complexes, see: Buvaylo *et al.* (2005); Nesterova *et al.* (2004, 2005); Pryma *et al.* (2003). For the application of anionic complexes in the preparation of heterometallic compounds, see: Nikitina *et al.* (2008, 2009). For the structures of related complexes, see: Blake *et al.* (1998); Chen *et al.* (2002); Morpurgo *et al.* (1984); Cuttell *et al.* (2002); King *et al.* (2005); Soria *et al.* (2002); Shevyakova *et al.* (2002); Peresypkina & Vostrikova (2012).

 $\gamma = 101.323 \ (4)^{\circ}$

Z = 1

V = 1325.9 (7) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.40 \times 0.20$ mm

8613 measured reflections

5112 independent reflections

3100 reflections with $I > 2\sigma(I)$

 $\mu = 1.12 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.048$

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{14}H_{12}N_{2})_{2}]_{2}[Fe(CN)_{5}(NO)] \\ M_{r} = 1176.06 \\ Triclinic, P\overline{1} \\ a = 7.371 (3) Å \\ b = 13.741 (3) Å \\ c = 15.065 (4) Å \\ \alpha = 115.269 (4)^{\circ} \\ \beta = 95.327 (3)^{\circ} \end{bmatrix}$

Data collection

Oxford Diffraction Xcalibur3 diffractometer Absorption correction: numerical (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{\rm min} = 0.604, T_{\rm max} = 0.807$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 377 parameters $wR(F^2) = 0.109$ H-atom parameters constrainedS = 0.93 $\Delta \rho_{max} = 0.38$ e Å $^{-3}$ 5112 reflections $\Delta \rho_{min} = -0.31$ e Å $^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$

 C17-H17\cdots N6ⁱ
 0.93
 2.55
 3.393 (6)
 151

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5667).

References

Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). *Chem. Commun.* pp. 4976–4978.

Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W. S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–915.

- Chen, L. X., Jenning, G., Liu, T., Gosztola, D. J., Hessler, J. P., Scaltrito, D. V. & Meyers, G. J. (2002). J. Am. Chem. Soc. 124, 10861–10867.
- Cuttell, D. G., Kuang, S. M., Fanwick, P. E., McMillin, D. R. & Walton, R. A. (2002). J. Am. Chem. Soc. 124, 6–7.
- King, G., Gembicky, M. & Coppens, P. (2005). Acta Cryst. C61, m329-m332.
- Kokozay, V. N. & Vassilyeva, O. Yu. (2002). Transition Met. Chem. 27, 693–699.
 Morpurgo, G., Dessy, G. & Fares, V. (1984). J. Chem. Soc. Dalton Trans. pp. 785–791.
- Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). *Polyhedron*, 24, 1425–1434.
- Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). *Dalton Trans.* pp. 1431–1436.
- Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
- Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V. & Jezierska, J. (2009). Inorg. Chem. Commun. 12, 101–104.

- Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). *Polyhedron*, **27**, 2426–2430.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Peresypkina, E. V. & Vostrikova, K. E. (2012). Dalton Trans. 41, 4100-4106.
- Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). *Eur. J. Inorg. Chem.* pp. 1426–1432.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shevyakova, I. Yu., Buravov, L. I., Kushch, L. A., Yagubskii, E. B., Khasanov, S. S., Zorina, L. V., Shibaeva, R. P., Drichko, N. V. & Olejniczak, I. (2002). *Russ. J. Coord. Chem.* 28, 520–529.
- Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, m684-m685 [doi:10.1107/S1600536813031760]

Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II)

Julia A. Rusanova, Olesia V. Kozachuk, Valentyna V. Semenaka and Viktoriya V. Dyakonenko

S1. Comment

The title compound was obtained as part of our research in the field of direct synthesis of coordination compounds (Buvaylo *et al.*, 2005; Kokozay *et al.*, 2002; Nikitina *et al.*, 2008, 2009; Nesterova *et al.*, 2004, 2005, 2008; Pryma *et al.*, 2003). Complexes of copper chelated with phenanthroline (in particular 2,9-dimethyl-1,10-phenanthroline) have attracted attention due to their longlived excited states and potential use in solar energy conversion (Blake *et al.*, 1998; Chen *et al.*, 2002; Morpurgo *et al.*, 1984; Cuttell *et al.*, 2002; King *et al.*, 2005).

In this paper we present a novel Cu/Fe heterometallic ionic complex $[Cu(dmp)_2]_2[Fe(CN)_5NO]$ which consists of discrete $[Cu(dmp)_2]^+$ and $[Fe(CN)_5NO]^{2^-}$ ions (Fig. 1). The Cu¹ ion adopts a distorted tetrahedral environment by coordinating with four nitrogen atoms from two dmp ligands. The dihedral angle between the two dmp ligands (77.16 (4) Å) as well as the range of Cu—N bond distances of 2.034 (3) - 2.079 (3) Å is in good agreement with the previously reported values for analagous complexes (King *et al.*, 2005 and references therein). The nitroprusside anion lies on an inversion centre and disordered over two positions so that iron atom occupies two very close positions (Fe…Fe distance is 0.410 (15) Å) corresponding to the coordination of two disordered CN and NO groups in the axial sites with very close positions. However, geometric parameters (average Fe—CN and Fe—NO bond distances of 1.96 Å and 1.63 Å respectively) are in a good agreement with literature values (Soria *et al.* (2002); Shevyakova *et al.* (2002); Peresypkina *et al.* (2012).

In the crystal, cations are connected to the anions by weak C—H···N hydrogen bonds. In addition weak π - π stacking interactions with centroid–centroid distances in the range 3.512 (3)–3.859 (3)° are observed (Fig. 2).

S2. Experimental

Copper powder (0.04 g, 0.63 mmol), NH₄Br (0.123 g, 1.25 mmol), Na₂[Fe(CN)₅(NO)]·2H₂O (0.188 g, 0.63 mmol) and dmp (0.262 g, 1.26 mmol) in DMF (30 ml) were heated to 333–343 K and stirred magnetically until total dissolution of copper was observed (2.5 h). Red needle-shaped crystals suitable for X-ray crystallography was isolated from the resulting dark-red solution with addition of 2-propanol and diethyl ether in a few days. The crystals (0.1 g, yield 30%) were filtered off, washed with dry methanol, and finally dried *in vacuo* at room temperature.

S3. Refinement

All non-hydrogen atoms were refined isotropically. All hydrogen atoms were placed at calculated position and refined in a riding-model approximation. The symmetry realted Fe atoms are offset from an inversion centre by 0.214 Å and were refined with multiplicity 0.5. Atoms of disordered CN and NO groups occupy close positions and also were refined with multiplicity 0.5.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code (A); 2 -x, 1-y, -z. The disorder is not shown.

Figure 2

Part of the crystal structure with weak hydrogen bonds shown as dashed lines.

Bis(2,9-dimethyl-1,10-phenanthroline)copper(I) pentacyanidonitrosoferrate(II)

Crystal data	
$[Cu(C_{14}H_{12}N_2)_2]_2[Fe(CN)_5(NO)]$	$\alpha = 115.269 \ (4)^{\circ}$
$M_r = 1176.06$	$\beta = 95.327 \ (3)^{\circ}$
Triclinic, P1	$\gamma = 101.323 \ (4)^{\circ}$
Hall symbol: -P 1	$V = 1325.9 (7) Å^3$
a = 7.371 (3) Å	Z = 1
b = 13.741 (3) Å	F(000) = 604
c = 15.065 (4) Å	$D_{\rm x} = 1.473 {\rm ~Mg~m^{-3}}$

Mo <i>Ka</i> radiation, $\lambda = 0.71073$ Å Cell parameters from 4215 reflections $\theta = 2.7-24.8^{\circ}$ $\mu = 1.12 \text{ mm}^{-1}$	T = 293 K Needle-shaped, red $0.50 \times 0.40 \times 0.20$ mm
Data collection	
Oxford Diffraction Xcalibur3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1827 pixels mm ⁻¹ ω -scans Absorption correction: numerical (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2010) $T_{min} = 0.604, T_{max} = 0.807$	8613 measured reflections 5112 independent reflections 3100 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -8 \rightarrow 9$ $k = -16 \rightarrow 16$ $l = -18 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F ²) = 0.109	Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 0.93	H-atom parameters constrained
5112 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$
377 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{A}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Cul 0.24477 (7) 0.18237 (4) 0.30785 (3) 0.04709 (18 Fe1 0.9747 (13) 0.5030 (13) 0.0033 (11) 0.0423 (14) N1 0.3564 (4) 0.2540 (2) 0.2232 (2) 0.0377 (7) N2 0.1731 (4) 0.0423 (2) 0.1741 (2) 0.0369 (7) N3 0.3933 (4) 0.1682 (2) 0.4241 (2) 0.0379 (7) N4 0.1040 (4) 0.2617 (2) 0.4159 (2) 0.0377 (7)	Occ. (<1)
Cur0.24477 (7)0.18237 (4)0.30733 (3)0.04709 (18Fe10.9747 (13)0.5030 (13)0.0033 (11)0.0423 (14)N10.3564 (4)0.2540 (2)0.2232 (2)0.0377 (7)N20.1731 (4)0.0423 (2)0.1741 (2)0.0369 (7)N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7)	2)
Fe10.9747 (13)0.5030 (13)0.0033 (11)0.0423 (14)N10.3564 (4)0.2540 (2)0.2232 (2)0.0377 (7)N20.1731 (4)0.0423 (2)0.1741 (2)0.0369 (7)N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7))) 0.50
N10.3564 (4)0.2540 (2)0.2232 (2)0.0377 (7)N20.1731 (4)0.0423 (2)0.1741 (2)0.0369 (7)N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7)	0.50
N20.1731 (4)0.0423 (2)0.1741 (2)0.0369 (7)N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7)	
N30.3933 (4)0.1682 (2)0.4241 (2)0.0379 (7)N40.1040 (4)0.2617 (2)0.4159 (2)0.0377 (7)	
N4 0.1040 (4) 0.2617 (2) 0.4159 (2) 0.0377 (7)	
C1 0.4355 (5) 0.3608 (3) 0.2474 (3) 0.0464 (10))
C2 0.5081 (5) 0.3909 (3) 0.1771 (3) 0.0551 (11)	1
H2 0.5610 0.4656 0.1954 0.066*	
C3 0.5025 (5) 0.3129 (4) 0.0833 (3) 0.0542 (11))
H3 0.5561 0.3335 0.0383 0.065*	
C4 0.4148 (5) 0.2001 (3) 0.0542 (3) 0.0407 (9)	

C5	0.3423 (4)	0.1751 (3)	0.1269 (3)	0.0345 (8)
C6	0.2450 (4)	0.0621 (3)	0.1008 (3)	0.0336 (8)
C7	0.2248 (5)	-0.0217 (3)	0.0027 (3)	0.0381 (9)
C8	0.3039 (5)	0.0072 (4)	-0.0683(3)	0.0481 (10)
H8	0.2923	-0.0483	-0.1331	0.058*
C9	0.3950 (5)	0.1129 (4)	-0.0439(3)	0.0492 (10)
H9	0.4457	0.1292	-0.0918	0.059*
C10	0 1271 (5)	-0.1296(3)	-0.0187(3)	0.0458 (10)
H10	0.1092	-0.1876	-0.0829	0.055*
C11	0.0583(5)	-0.1498(3)	0.0029	0.035
H11	-0.0052	-0.2220	0.0394	0.055*
C12	0.0032	-0.0622(3)	0.0574 0.1510 (3)	0.0333 (9)
C12	0.0824(5)	0.0022(3)	0.1510(3)	0.0383(9)
	0.4433 (0)	0.4400 (3)	0.3321 (3)	0.0034 (12)
	0.3090	0.4934	0.3804	0.098*
ПІЗБ	0.4081	0.4091	0.3919	0.098
HI3C	0.3580	0.4902	0.3512	0.098*
C14	0.0096 (6)	-0.0831 (3)	0.2332 (3)	0.0559 (11)
H14A	0.0870	-0.1209	0.2545	0.084*
H14B	-0.1182	-0.1286	0.2086	0.084*
H14C	0.0137	-0.0133	0.2888	0.084*
C15	0.5321 (5)	0.1207 (3)	0.4270 (3)	0.0454 (10)
C16	0.6193 (6)	0.1264 (3)	0.5157 (3)	0.0547 (11)
H16	0.7197	0.0947	0.5157	0.066*
C17	0.5581 (6)	0.1786 (3)	0.6032 (3)	0.0549 (11)
H17	0.6176	0.1830	0.6625	0.066*
C18	0.4051 (5)	0.2251 (3)	0.6023 (3)	0.0451 (10)
C19	0.3273 (5)	0.2190 (3)	0.5108 (3)	0.0394 (9)
C20	0.1730 (5)	0.2687 (3)	0.5074 (3)	0.0358 (9)
C21	0.1046 (5)	0.3217 (3)	0.5935 (3)	0.0420 (9)
C22	0.1808 (6)	0.3230 (3)	0.6840 (3)	0.0528 (11)
H22	0.1298	0.3551	0.7405	0.063*
C23	0.3275 (6)	0.2779 (3)	0.6893 (3)	0.0548 (11)
H23	0.3780	0.2813	0.7498	0.066*
C24	-0.0412(6)	0.3721 (3)	0.5857 (3)	0.0516 (11)
H24	-0.0922	0.4082	0.6412	0.062*
C25	-0.1066(6)	0.3674(3)	0.4963(3)	0.0516(10)
H25	-0.2005	0.4022	0 4912	0.062*
C26	-0.0338(5)	0.3106 (3)	0.1912 0.4117(3)	0.002
C27	0.5909 (6)	0.0609(4)	0.3308(3)	0.0619(12)
H27A	0.5252	-0.0168	0.3005	0.0019 (12)
1127A 1127P	0.5252	0.0108	0.3003	0.093
	0.7245	0.0090	0.3432	0.093*
П2/С С28	0.3011	0.0917	0.2800	0.095°
	-0.1005 (0)	0.3030 (4)	0.3120(3)	0.0344 (11)
н28А Ц29Р	-0.0458	0.2001	0.2027	0.082*
H28B	-0.0/98	0.3/88	0.3182	0.082*
H28C	-0.2404	0.2723	0.2937	0.082*
C29	1.0149 (5)	0.4533 (3)	0.1060 (3)	0.0446 (9)
N5	1.0271 (5)	0.4286 (3)	0.1677 (3)	0.0631 (10)

C30	1.1809 (6)	0.6397 (3)	0.0926 (3)	0.0440 (9)	
N6	1.2879 (5)	0.7213 (3)	0.1470 (3)	0.0626 (10)	
C31	0.812 (5)	0.559 (2)	0.036 (2)	0.070 (5)	0.50
N7	0.681 (4)	0.603 (2)	0.0546 (17)	0.070 (5)	0.50
N8	0.805 (3)	0.5579 (11)	0.0446 (12)	0.026 (3)	0.50
O1	0.688 (3)	0.5921 (16)	0.0752 (11)	0.055 (3)	0.50

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0659 (3)	0.0491 (3)	0.0278 (3)	0.0167 (2)	0.0157 (2)	0.0169 (2)
Fe1	0.057 (4)	0.0453 (14)	0.0274 (15)	0.012 (3)	0.009 (3)	0.0199 (12)
N1	0.0449 (17)	0.0362 (18)	0.0314 (17)	0.0069 (14)	0.0073 (14)	0.0166 (14)
N2	0.0400 (16)	0.0401 (18)	0.0323 (17)	0.0114 (14)	0.0067 (14)	0.0176 (14)
N3	0.0423 (16)	0.0398 (18)	0.0323 (17)	0.0120 (15)	0.0089 (15)	0.0162 (14)
N4	0.0433 (17)	0.0362 (17)	0.0302 (17)	0.0064 (14)	0.0041 (15)	0.0143 (14)
C1	0.047 (2)	0.045 (2)	0.045 (2)	0.0067 (19)	0.006 (2)	0.0210 (19)
C2	0.059 (2)	0.046 (3)	0.064 (3)	0.005 (2)	0.015 (2)	0.032 (2)
C3	0.056 (2)	0.065 (3)	0.053 (3)	0.009 (2)	0.019 (2)	0.038 (2)
C4	0.0384 (19)	0.057 (3)	0.034 (2)	0.0162 (19)	0.0086 (18)	0.0255 (19)
C5	0.0341 (18)	0.043 (2)	0.0300 (19)	0.0145 (17)	0.0068 (16)	0.0184 (17)
C6	0.0358 (18)	0.040 (2)	0.0295 (19)	0.0158 (17)	0.0084 (17)	0.0175 (16)
C7	0.0377 (19)	0.048 (2)	0.030 (2)	0.0209 (18)	0.0048 (17)	0.0153 (17)
C8	0.050 (2)	0.063 (3)	0.027 (2)	0.017 (2)	0.0100 (19)	0.0155 (19)
C9	0.046 (2)	0.080 (3)	0.031 (2)	0.022 (2)	0.0159 (19)	0.030 (2)
C10	0.047 (2)	0.048 (3)	0.036 (2)	0.020 (2)	0.0036 (19)	0.0117 (19)
C11	0.045 (2)	0.037 (2)	0.053 (3)	0.0118 (18)	0.004 (2)	0.017 (2)
C12	0.042 (2)	0.039 (2)	0.039 (2)	0.0130 (18)	0.0068 (18)	0.0210 (18)
C13	0.081 (3)	0.043 (3)	0.058 (3)	0.010 (2)	0.013 (3)	0.013 (2)
C14	0.067 (3)	0.048 (3)	0.061 (3)	0.015 (2)	0.022 (2)	0.031 (2)
C15	0.049 (2)	0.045 (2)	0.042 (2)	0.005 (2)	0.001 (2)	0.024 (2)
C16	0.054 (2)	0.055 (3)	0.058 (3)	0.017 (2)	0.003 (2)	0.029 (2)
C17	0.067 (3)	0.055 (3)	0.041 (3)	0.008 (2)	-0.005 (2)	0.027 (2)
C18	0.058 (2)	0.041 (2)	0.033 (2)	0.006 (2)	0.004 (2)	0.0179 (18)
C19	0.052 (2)	0.034 (2)	0.029 (2)	0.0044 (18)	0.0058 (18)	0.0152 (16)
C20	0.047 (2)	0.033 (2)	0.0260 (19)	0.0058 (17)	0.0075 (18)	0.0142 (16)
C21	0.053 (2)	0.039 (2)	0.031 (2)	0.0065 (19)	0.0102 (19)	0.0147 (17)
C22	0.072 (3)	0.054 (3)	0.026 (2)	0.009 (2)	0.014 (2)	0.0142 (19)
C23	0.080 (3)	0.053 (3)	0.026 (2)	0.009 (2)	0.006 (2)	0.0180 (19)
C24	0.064 (3)	0.050 (3)	0.035 (2)	0.013 (2)	0.022 (2)	0.0115 (19)
C25	0.058 (2)	0.050 (3)	0.050 (3)	0.023 (2)	0.017 (2)	0.020 (2)
C26	0.046 (2)	0.040 (2)	0.039 (2)	0.0096 (19)	0.0086 (19)	0.0193 (18)
C27	0.067 (3)	0.070 (3)	0.060 (3)	0.031 (2)	0.027 (2)	0.032 (2)
C28	0.062 (2)	0.065 (3)	0.041 (2)	0.024 (2)	0.009 (2)	0.026 (2)
C29	0.055 (2)	0.045 (2)	0.037 (2)	0.0171 (19)	0.015 (2)	0.0185 (19)
N5	0.093 (3)	0.067 (3)	0.044 (2)	0.028 (2)	0.020 (2)	0.0347 (19)
C30	0.058 (2)	0.048 (3)	0.033 (2)	0.021 (2)	0.009 (2)	0.0222 (19)
N6	0.069 (2)	0.062 (3)	0.052 (2)	0.016 (2)	-0.003(2)	0.025 (2)

supporting information

C31	0.087 (9)	0.109 (9)	0.050 (8)	0.044 (7)	0.017 (7)	0.061 (7)
N7	0.087 (9)	0.109 (9)	0.050 (8)	0.044 (7)	0.017 (7)	0.061 (7)
N8	0.039 (5)	0.022 (4)	0.011 (5)	0.012 (4)	0.009 (4)	-0.001 (4)
01	0.082 (6)	0.087 (7)	0.027 (5)	0.057 (5)	0.026 (5)	0.036 (5)

Geometric parameters (Å, °)

Cu1—N2	2.034 (3)	C13—H13A	0.9600
Cu1—N4	2.039 (3)	C13—H13B	0.9600
Cu1—N1	2.053 (3)	C13—H13C	0.9600
Cu1—N3	2.079 (3)	C14—H14A	0.9600
Fe1—Fe1 ⁱ	0.410 (15)	C14—H14B	0.9600
Fe1—C31	1.56 (4)	C14—H14C	0.9600
Fe1—N8	1.625 (19)	C15—C16	1.392 (5)
Fe1—C30 ⁱ	1.908 (15)	C15—C27	1.484 (5)
Fe1—C31 ⁱ	1.96 (4)	C16—C17	1.373 (6)
Fe1—C29	1.961 (16)	C16—H16	0.9300
Fe1—C29 ⁱ	1.981 (16)	C17—C18	1.403 (5)
Fe1—C30	1.998 (15)	C17—H17	0.9300
Fe1—N8 ⁱ	2.03 (2)	C18—C19	1.404 (5)
N1-C1	1.341 (4)	C18—C23	1.435 (5)
N1C5	1.370 (4)	C19—C20	1.446 (5)
N2-C12	1.334 (4)	C20—C21	1.388 (5)
N2—C6	1.372 (4)	C21—C24	1.410 (5)
N3—C15	1.324 (5)	C21—C22	1.416 (5)
N3—C19	1.379 (4)	C22—C23	1.360 (6)
N4—C26	1.334 (4)	C22—H22	0.9300
N4—C20	1.380 (4)	С23—Н23	0.9300
C1—C2	1.404 (5)	C24—C25	1.358 (5)
C1-C13	1.497 (5)	C24—H24	0.9300
C2—C3	1.351 (5)	C25—C26	1.401 (5)
C2—H2	0.9300	C25—H25	0.9300
C3—C4	1.409 (5)	C26—C28	1.502 (5)
С3—Н3	0.9300	С27—Н27А	0.9600
C4—C5	1.399 (5)	С27—Н27В	0.9600
C4—C9	1.421 (5)	С27—Н27С	0.9600
C5—C6	1.439 (5)	C28—H28A	0.9600
C6—C7	1.403 (5)	C28—H28B	0.9600
C7—C10	1.397 (5)	C28—H28C	0.9600
С7—С8	1.425 (5)	C29—N5	1.120 (4)
C8—C9	1.346 (5)	C29—Fe1 ⁱ	1.981 (16)
С8—Н8	0.9300	C30—N6	1.140 (5)
С9—Н9	0.9300	C30—Fe1 ⁱ	1.908 (15)
C10—C11	1.354 (5)	C31—N7	1.23 (5)
C10—H10	0.9300	C31—Fe1 ⁱ	1.96 (4)
C11—C12	1.410 (5)	N8—O1	1.11 (3)
C11—H11	0.9300	N8—Fe1 ⁱ	2.03 (2)
C12—C14	1.507 (5)		

N2—Cu1—N4	135.31 (11)	С8—С9—Н9	119.6
N2—Cu1—N1	82.52 (12)	С4—С9—Н9	119.6
N4—Cu1—N1	121.22 (12)	C11—C10—C7	120.1 (4)
N2—Cu1—N3	114.85 (12)	C11—C10—H10	120.0
N4—Cu1—N3	82.49 (12)	C7—C10—H10	120.0
N1—Cu1—N3	126.67 (11)	C10-C11-C12	120.4 (4)
Fe1 ⁱ —Fe1—C31	165 (5)	C10—C11—H11	119.8
Fe1 ⁱ —Fe1—N8	166 (5)	C12—C11—H11	119.8
C31—Fe1—N8	4.6 (19)	N2—C12—C11	121.3 (3)
Fe1 ⁱ —Fe1—C30 ⁱ	97 (4)	N2—C12—C14	117.4 (3)
C31—Fe1—C30 ⁱ	96.8 (11)	C11—C12—C14	121.3 (3)
N8—Fe1—C30 ⁱ	96.8 (7)	C1—C13—H13A	109.5
Fe1 ⁱ —Fe1—C31 ⁱ	12 (4)	C1—C13—H13B	109.5
C31—Fe1—C31 ⁱ	176.8 (10)	H13A—C13—H13B	109.5
N8—Fe1—C31 ⁱ	175.8 (18)	C1—C13—H13C	109.5
$C30^{i}$ —Fe1—C31 ⁱ	86.0 (10)	H13A—C13—H13C	109.5
Fe1 ⁱ —Fe1—C29	87 (4)	H13B—C13—H13C	109.5
C31—Fe1—C29	99.8 (13)	C12—C14—H14A	109.5
N8—Fe1—C29	95.2 (10)	C12—C14—H14B	109.5
C30 ⁱ —Fe1—C29	93.0 (7)	H14A—C14—H14B	109.5
C31 ⁱ —Fe1—C29	81.6 (11)	C12—C14—H14C	109.5
Fe1 ⁱ —Fe1—C29 ⁱ	81 (4)	H14A—C14—H14C	109.5
C31—Fe1—C29 ⁱ	91.8 (14)	H14B—C14—H14C	109.5
N8—Fe1—C29 ⁱ	96.4 (10)	N3—C15—C16	121.8 (4)
C30 ⁱ —Fe1—C29 ⁱ	88.4 (6)	N3—C15—C27	116.8 (3)
C31 ⁱ —Fe1—C29 ⁱ	86.7 (11)	C16—C15—C27	121.3 (4)
C29—Fe1—C29 ⁱ	168.1 (5)	C17—C16—C15	120.5 (4)
Fe1 ⁱ —Fe1—C30	72 (4)	C17—C16—H16	119.8
C31—Fe1—C30	94.9 (12)	C15—C16—H16	119.8
N8—Fe1—C30	94.9 (9)	C16—C17—C18	119.5 (4)
C30 ⁱ —Fe1—C30	168.2 (5)	С16—С17—Н17	120.3
C31 ⁱ —Fe1—C30	82.3 (9)	C18—C17—H17	120.3
C29—Fe1—C30	86.5 (6)	C17—C18—C19	117.0 (3)
C29 ⁱ —Fe1—C30	89.7 (6)	C17—C18—C23	123.4 (4)
Fe1 ⁱ —Fe1—N8 ⁱ	11 (4)	C19—C18—C23	119.6 (4)
C31—Fe1—N8 ⁱ	174.2 (19)	N3—C19—C18	122.7 (3)
N8—Fe1—N8 ⁱ	177.2 (10)	N3—C19—C20	118.5 (3)
C30 ⁱ —Fe1—N8 ⁱ	85.9 (6)	C18—C19—C20	118.8 (3)
C31 ⁱ —Fe1—N8 ⁱ	3.6 (15)	N4—C20—C21	123.7 (3)
C29—Fe1—N8 ⁱ	85.2 (8)	N4—C20—C19	116.3 (3)
C29 ⁱ —Fe1—N8 ⁱ	83.1 (7)	C21—C20—C19	120.1 (3)
C30—Fe1—N8 ⁱ	82.4 (5)	C20—C21—C24	117.1 (4)
C1—N1—C5	118.1 (3)	C20—C21—C22	120.0 (4)
C1—N1—Cu1	130.8 (2)	C24—C21—C22	122.9 (4)
C5—N1—Cu1	111.1 (2)	C23—C22—C21	120.9 (4)
C12—N2—C6	118.1 (3)	C23—C22—H22	119.6
C12—N2—Cu1	130.3 (2)	C21—C22—H22	119.6

C6—N2—Cu1	111.5 (2)	C22—C23—C18	120.6 (4)
C15—N3—C19	118.5 (3)	С22—С23—Н23	119.7
C15—N3—Cu1	131.4 (3)	C18—C23—H23	119.7
C19—N3—Cu1	110.1 (2)	C25—C24—C21	119.4 (4)
C26—N4—C20	117.4 (3)	C25—C24—H24	120.3
C26—N4—Cu1	130.0 (2)	C21—C24—H24	120.3
C20—N4—Cu1	112.6 (2)	C24—C25—C26	120.5 (4)
N1—C1—C2	121.0 (4)	C24—C25—H25	119.7
N1—C1—C13	117.3 (3)	C26—C25—H25	119.7
C2-C1-C13	121.7 (4)	N4—C26—C25	121.9 (4)
C3—C2—C1	121.1 (4)	N4—C26—C28	117.5 (3)
С3—С2—Н2	119.5	C25—C26—C28	120.6 (4)
C1—C2—H2	119.5	С15—С27—Н27А	109.5
C2—C3—C4	119.4 (4)	С15—С27—Н27В	109.5
С2—С3—Н3	120.3	H27A—C27—H27B	109.5
С4—С3—Н3	120.3	С15—С27—Н27С	109.5
C5—C4—C3	117.0 (3)	H27A—C27—H27C	109.5
C5—C4—C9	119.5 (4)	H27B—C27—H27C	109.5
C3—C4—C9	123.5 (4)	C26—C28—H28A	109.5
N1—C5—C4	123.2 (3)	C26—C28—H28B	109.5
N1—C5—C6	117.1 (3)	H28A—C28—H28B	109.5
C4—C5—C6	119.7 (3)	C26—C28—H28C	109.5
N2—C6—C7	123.2 (3)	H28A—C28—H28C	109.5
N2—C6—C5	117.4 (3)	H28B—C28—H28C	109.5
C7—C6—C5	119.4 (3)	N5—C29—Fe1	174.5 (4)
С10—С7—С6	116.9 (3)	N5—C29—Fe1 ⁱ	173.2 (5)
C10—C7—C8	124.0 (3)	N6—C30—Fe1 ⁱ	173.6 (4)
C6—C7—C8	119.0 (3)	N6—C30—Fe1	174.6 (4)
C9—C8—C7	121.6 (4)	N7—C31—Fe1	175 (3)
С9—С8—Н8	119.2	N7—C31—Fe1 ⁱ	173 (3)
С7—С8—Н8	119.2	O1—N8—Fe1	176.5 (19)
C8—C9—C4	120.8 (4)	O1—N8—Fe1 ⁱ	176.7 (16)

Symmetry code: (i) -x+2, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C17—H17…N6 ⁱⁱ	0.93	2.55	3.393 (6)	151

Symmetry code: (ii) -x+2, -y+1, -z+1.