

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-Methyl-N'-[(4-oxo-4H-chromen-3vl)methylidene]benzohydrazide

Yoshinobu Ishikawa* and Kohzoh Watanabe

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 17 March 2014; accepted 10 April 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.187; data-to-parameter ratio = 15.5.

In the title chromone-tethered benzohydrazide derivative, C₁₈H₁₄N₂O₃, the 4H-chromen-4-one and the -CH=N-NH-CO- units are each essentially planar, with the largest deviations from their planes being 0.052(2) and 0.003(2) Å, respectively. The dihedral angles between the 4H-chromen-4one and the -CH=N-NH-CO- units, the 4H-chromen-4-one unit and the benzene ring of the 4-tolyl group, and the benzene ring of the 4-tolyl group and the -CH=N-NH-COunit are 8.09 (7), 9.94 (5) and 17.97 (8) $^{\circ}$, respectively. In the crystal, the molecules form two types of centrosymmetric dimers: one by $N-H \cdots O$ hydrogen bonds and the other by π - π stacking interactions between the 4*H*-chromen-4-one unit and the 4-tolyl group [centroid-centroid distance = 3.641 (5) Å]. These dimers form one-dimensional assemblies extending along the *a*-axis direction. Additional π - π stacking interactions between two 4H-chromen-4-one units [centroidcentroid distance = 3.591(5)Å] and two 4-tolyl groups [centroid–centroid distance = 3.792(5) Å] organize the molecules into a three-dimensional network.

Related literature

For the biological activity of related compounds, see: Khan et al. (2009); Tu et al. (2013). For a related structure, see: Ishikawa & Watanabe (2014).

Experimental

Crystal data

$C_{18}H_{14}N_2O_3$	$\gamma = 94.60 \ (9)^{\circ}$
$M_r = 306.32$	$V = 704.6 (15) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 7.759 (10) Å	Mo $K\alpha$ radiation
b = 8.543 (7) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 11.047 (15) Å	$T = 100 { m K}$
$\alpha = 103.55 \ (11)^{\circ}$	$0.50 \times 0.40 \times 0.15 \text{ mm}$
$\beta = 95.53 \ (12)^{\circ}$	
Data collection	

Rigaku AFC-7R diffractometer 3953 measured reflections 3235 independent reflections 2434 reflections with $F^2 > 2\sigma(F^2)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	209 parameters
$wR(F^2) = 0.187$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
3235 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.016$

reflections

3 standard reflections every 150

intensity decay: 1.0%

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdots A$ $D = H \cdots A$ $N2 - H2 \cdot \cdot \cdot O2^{i}$ 2.22 0.88 3.012 (4) 151

Symmetry code: (i) -x + 2, -y, -z + 2.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2609).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Ishikawa, Y. & Watanabe, K. (2014). Acta Cryst. E70, 0472.
- Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.

supporting information

Acta Cryst. (2014). E70, o565 [doi:10.1107/S1600536814008113]

(E)-4-Methyl-N'-[(4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide

Yoshinobu Ishikawa and Kohzoh Watanabe

S1. Comment

Schiff bases derived from 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan *et al.*, 2009; Tu *et al.*, 2013). We herein report the crystal structure of the title compound, which was prepared by the condensation reaction of 3-formylchromone with 4-methylbenzoylhydrazide in ethanol. The structure (Figure 1) shows that the atoms of both the 4*H*-chromen-4-one and the -CH=N-NH-CO- segments are essentially coplanar, and the largest deviations are 0.052 (2) for C2 and 0.003 (2) Å for C11, respectively. The dihedral angles between the 4*H*-chromen-4-one segment and the -CH=N-NH-CO- segment and the benzene ring of the 4-methylbenzene segment, and the benzene ring of the 4-methylbenzene segment and the benzene ring of the 4-methylbenzene segment are 8.09 (7), 9.94 (5), and 17.97 (8)°, respectively. In the crystal, the molecules related by inversion center (symmetry code: -x + 2, -y, -z + 2) are linked by N–H···O hydrogen bonds to form a dimer. There is also an extensive sytem of $\pi \cdots \pi$ stacking interactions between inversion related molecules involving both the 4*H*-chromen-4-one unit and the 4-tolyl group.

S2. Experimental

4-Methylbenzoylhydrazide (1.00 mmol), 3-formylchromone (1.00 mmol), and a few drops of acetic acid were dissolved in 25 ml of ethanol, and the mixture was stirred for 6 h at room temperature. The precipitate was collected, washed with ethanol, and dried *in vacuo* (yield 55.0%). ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 6.96 (d, 2H, *J* = 8.3 Hz), 7.41 (t, 1H, *J* = 7.6 Hz), 7.53 (d, 1H, *J* = 8.3 Hz), 7.72 (t, 1H, *J* = 7.6 Hz), 7.90 (d, 2H, *J* = 7.9 Hz), 8.13 (d, 1H, *J* = 8.3 Hz), 8.56 (s, 1H), 8.84 (s, 1H), 9.77 (s, 1H). DART-MS calcd for [C₁₈H₁₄N₂O₃ + H⁺]: 307.321, found 307.156. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)- and N(*sp*²)-bound hydrogen atoms were placed in geometrically determined positions [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$, N–H 0.88 Å, $U_{iso}(H) = 1.2U_{eq}(N)$], and refined using a riding model. Hydrogen atoms of methyl group were found in a difference Fourier map, and a rotating group model was applied with the distance constraint [C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A crystal packing view of the title compound. Intermolecular N–H…O hydrogen bonds are represented by dashed lines. Hydrogen atoms are omitted for clarity.

(E)-4-Methyl-N'-[(4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide

Crystal data	
$C_{18}H_{14}N_2O_3$	<i>c</i> = 11.047 (15) Å
$M_r = 306.32$	$\alpha = 103.55 \ (11)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 95.53 \ (12)^{\circ}$
Hall symbol: -P 1	γ = 94.60 (9)°
a = 7.759 (10) Å	$V = 704.6 (15) \text{ Å}^3$
b = 8.543 (7) Å	Z = 2

F(000) = 320.00 $D_x = 1.444 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.3-17.5^{\circ}$

Data collection

Rigaku AFC-7R	
diffractometer	
ω –2 θ scans	
3953 measured reflections	
3235 independent reflections	
2434 reflections with $F^2 > 2\sigma(F^2)$	
$R_{\rm int} = 0.016$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.054$	map
$wR(F^2) = 0.187$	Hydrogen site location: inferred from
S = 1.09	neighbouring sites
3235 reflections	H-atom parameters constrained
209 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1269P)^2 + 0.0754P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, colorless

 $0.50 \times 0.40 \times 0.15 \text{ mm}$

intensity decay: 1.0%

3 standard reflections every 150 reflections

T = 100 K

 $\theta_{\max} = 27.5^{\circ}$ $h = -10 \rightarrow 5$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$

Fractional atomic coordinates and isotro	ppic or equivalent isotropic	e displacement parameters (\AA^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.70112 (16)	0.52823 (15)	1.02907 (12)	0.0164 (4)	
O2	1.05971 (17)	0.25136 (15)	1.14769 (13)	0.0185 (4)	
O3	0.33072 (18)	-0.08140 (17)	0.74095 (14)	0.0243 (4)	
N1	0.6201 (2)	0.04137 (19)	0.89360 (15)	0.0162 (4)	
N2	0.5919 (2)	-0.12076 (18)	0.83493 (15)	0.0153 (4)	
C1	0.6869 (3)	0.3661 (2)	0.98690 (17)	0.0152 (4)	
C2	0.7963 (3)	0.2663 (2)	1.02346 (16)	0.0130 (4)	
C3	0.9490 (3)	0.3343 (2)	1.11510 (16)	0.0134 (4)	
C4	1.0907 (3)	0.5952 (3)	1.25872 (17)	0.0164 (4)	
C5	1.0995 (3)	0.7613 (3)	1.30115 (18)	0.0193 (5)	
C6	0.9761 (3)	0.8487 (3)	1.25160 (18)	0.0180 (4)	
C7	0.8436 (3)	0.7679 (3)	1.16113 (18)	0.0162 (4)	
C8	0.9585 (3)	0.5112 (2)	1.16508 (16)	0.0131 (4)	
C9	0.8369 (3)	0.6008 (2)	1.11925 (17)	0.0137 (4)	
C10	0.7627 (3)	0.0913 (2)	0.96497 (16)	0.0143 (4)	
C11	0.4381 (3)	-0.1734 (3)	0.75811 (17)	0.0155 (4)	
C12	0.4090 (3)	-0.3499 (2)	0.69518 (17)	0.0145 (4)	

C13	0.4972 (3)	-0.4671 (3)	0.73642 (17)	0.0164 (4)	
C14	0.4579 (3)	-0.6300 (3)	0.67544 (18)	0.0180 (4)	
C15	0.3306 (3)	-0.6795 (3)	0.57241 (17)	0.0177 (4)	
C16	0.2422 (3)	-0.5614 (3)	0.53282 (18)	0.0214 (5)	
C17	0.2796 (3)	-0.3990 (3)	0.59301 (18)	0.0204 (5)	
C18	0.2909 (3)	-0.8561 (3)	0.50609 (19)	0.0257 (5)	
H1	0.5911	0.3175	0.9258	0.0182*	
H2	0.6689	-0.1878	0.8461	0.0183*	
H4	1.1746	0.5375	1.2931	0.0197*	
H5	1.1898	0.8171	1.3644	0.0231*	
H6	0.9841	0.9632	1.2805	0.0216*	
H7	0.7583	0.8255	1.1280	0.0195*	
H10	0.8440	0.0186	0.9799	0.0172*	
H13	0.5846	-0.4357	0.8065	0.0196*	
H14	0.5188	-0.7087	0.7046	0.0216*	
H16	0.1544	-0.5930	0.4631	0.0256*	
H17	0.2169	-0.3207	0.5647	0.0244*	
H18A	0.3058	-0.9223	0.5671	0.0309*	
H18B	0.3705	-0.8846	0.4426	0.0309*	
H18C	0.1706	-0.8764	0.4654	0.0309*	

Atomic displacement parameters $(Å^2)$

	I 711	1 722	1733	1712	1713	1723
	0	0	0	0	0	0
01	0.0150 (7)	0.0108 (7)	0.0199 (7)	0.0035 (5)	-0.0056(5)	-0.0008(5)
02	0.0158 (7)	0.0155 (7)	0.0227 (7)	0.0054 (5)	-0.0039 (5)	0.0028 (6)
O3	0.0196 (8)	0.0179 (7)	0.0312 (8)	0.0074 (6)	-0.0074 (6)	0.0003 (6)
N1	0.0163 (8)	0.0113 (8)	0.0191 (8)	0.0023 (6)	0.0004 (6)	0.0002 (6)
N2	0.0127 (8)	0.0110 (8)	0.0189 (8)	0.0026 (6)	-0.0023 (6)	-0.0015 (6)
C1	0.0141 (9)	0.0125 (9)	0.0163 (9)	0.0011 (7)	-0.0013 (7)	-0.0006 (7)
C2	0.0113 (9)	0.0121 (9)	0.0144 (9)	-0.0007 (7)	0.0010 (7)	0.0016 (7)
C3	0.0121 (9)	0.0135 (9)	0.0144 (9)	0.0030(7)	0.0014 (7)	0.0023 (7)
C4	0.0137 (9)	0.0170 (9)	0.0166 (9)	0.0014 (7)	-0.0017 (7)	0.0017 (7)
C5	0.0171 (9)	0.0193 (10)	0.0174 (9)	0.0003 (7)	-0.0030(7)	-0.0009 (8)
C6	0.0189 (10)	0.0123 (9)	0.0198 (9)	0.0012 (7)	0.0017 (8)	-0.0018 (7)
C7	0.0155 (9)	0.0133 (9)	0.0198 (9)	0.0047 (7)	0.0018 (7)	0.0029 (7)
C8	0.0119 (9)	0.0135 (9)	0.0131 (9)	0.0017 (7)	0.0018 (7)	0.0012 (7)
C9	0.0118 (9)	0.0141 (9)	0.0136 (8)	-0.0000 (7)	0.0001 (7)	0.0012 (7)
C10	0.0138 (9)	0.0117 (9)	0.0164 (9)	0.0031 (7)	0.0006 (7)	0.0013 (7)
C11	0.0134 (9)	0.0155 (9)	0.0163 (9)	0.0021 (7)	-0.0008 (7)	0.0022 (7)
C12	0.0134 (9)	0.0148 (9)	0.0140 (9)	0.0004 (7)	0.0007 (7)	0.0014 (7)
C13	0.0143 (9)	0.0166 (9)	0.0160 (9)	0.0017 (7)	-0.0017 (7)	0.0010(7)
C14	0.0181 (10)	0.0155 (9)	0.0191 (10)	0.0038 (7)	-0.0000 (8)	0.0016 (7)
C15	0.0200 (10)	0.0149 (9)	0.0159 (9)	-0.0013 (7)	0.0035 (7)	-0.0005 (7)
C16	0.0242 (11)	0.0204 (10)	0.0152 (9)	-0.0024 (8)	-0.0075 (8)	0.0014 (8)
C17	0.0199 (10)	0.0194 (10)	0.0198 (10)	0.0009 (8)	-0.0067 (8)	0.0051 (8)
C18	0.0316 (12)	0.0194 (10)	0.0209 (10)	0.0012 (8)	-0.0013(9)	-0.0034(8)

Geometric parameters (Å, °)

01—C1	1.345 (3)	C13—C14	1.391 (3)
O1—C9	1.375 (3)	C14—C15	1.393 (4)
O2—C3	1.236 (3)	C15—C16	1.393 (4)
O3—C11	1.221 (3)	C15—C18	1.508 (3)
N1—N2	1.375 (3)	C16—C17	1.385 (3)
N1-C10	1.275 (3)	N2—H2	0.880
N2—C11	1.374 (3)	C1—H1	0.950
C1—C2	1.350 (3)	C4—H4	0.950
С2—С3	1.466 (4)	С5—Н5	0.950
C2-C10	1.474 (3)	С6—Н6	0.950
С3—С8	1.476 (3)	С7—Н7	0.950
C4—C5	1.380 (3)	C10—H10	0.950
C4—C8	1.403 (4)	C13—H13	0.950
С5—С6	1.407 (4)	C14—H14	0.950
С6—С7	1.377 (4)	C16—H16	0.950
С7—С9	1.389 (3)	C17—H17	0.950
С8—С9	1.392 (3)	C18—H18A	0.980
C11—C12	1.494 (3)	C18—H18B	0.980
C12—C13	1.394 (3)	C18—H18C	0.980
C12—C17	1.397 (4)		
O1…C3	2.871 (4)	C5…H14 ^v	3.0350
O2…C1	3.573 (5)	C5…H17 ^{vii}	3.2163
O2…C4	2.887 (4)	C5…H18B ^{ix}	3.4854
O2…C10	2.926 (5)	C5…H18C ^{ix}	3.1753
O3…N1	2.655 (5)	C5····H18C ^{iv}	3.4913
O3…C17	2.796 (4)	C6···H10 ⁱⁱ	3.4010
N1···C1	2.712 (4)	C6…H18A ^{iv}	3.1090
N2…C13	2.910 (4)	C6…H18C ^{ix}	3.0855
C1…C7	3.571 (5)	C6…H18C ^{iv}	3.3918
C1…C8	2.737 (5)	C7…H1 ⁱ	3.3884
C2…C9	2.786 (4)	C7…H10 ⁱⁱⁱ	3.2563
C4…C7	2.796 (4)	C7···H14 ^{iv}	3.3602
С5…С9	2.746 (5)	C7…H18A ^{iv}	3.3403
C6…C8	2.805 (4)	C9····H1 ⁱ	3.4609
C10…C11	3.498 (6)	C9····H14 ^{iv}	3.5858
C12…C15	2.814 (4)	C10····H6 ⁱⁱ	3.4658
C13…C16	2.768 (5)	$C10$ ···· $H7^{vi}$	3.2123
C14…C17	2.770 (4)	C10…H10 ^v	3.3064
01…01 ⁱ	3.100 (5)	C11····H7 ⁱ	3.4762
O1…O2 ⁱⁱ	3.559 (5)	C11····H18A ⁱⁱⁱ	3.4878
O1…C1 ⁱ	3.212 (5)	C11····H18B ^{viii}	2.8982
O1…C3 ⁱⁱ	3.533 (5)	C12····H18B ^{viii}	3.2615
01···C8 ⁱⁱ	3.548 (5)	C13···H1 ^{vi}	3.1655
01···C13 ⁱⁱⁱ	3.470 (6)	C13…H4 ^v	2.6957
O1…C13 ^{iv}	3.260 (5)	C14····H1 ^{vi}	3.0044

O1…C14 ^{iv}	3.543 (6)	C14····H4 ^v	2.8629
O2…O1 ⁱⁱ	3.559 (5)	C14…H5 ^v	3.2908
O2…N2 ^v	3.012 (4)	C14···H7 ^{iv}	3.5029
O2···C7 ⁱⁱ	3.533 (6)	C16…H4 ^x	2.9759
O2…C10 ^v	3.360 (4)	C16…H16 ^{xi}	3.4437
O3…C2 ^{iv}	3.523 (5)	C17…H4 ^x	3.2407
O3…C6 ⁱ	3.217 (4)	C17…H5 ^x	3.5108
O3····C7 ⁱ	3.111 (4)	C17…H16 ^{xi}	3.3564
O3…C10 ^{iv}	3.415 (6)	C18····H5 ^{xii}	2.8674
O3…C18 ⁱⁱⁱ	3.579 (5)	C18···H6 ^{xii}	3.2749
N1…N1 ^{iv}	3.304 (5)	C18····H6 ^{iv}	3.5518
N1…N2 ^{iv}	3.513 (6)	H1…O1 ⁱ	2.7414
N2····Q ^v	3,012,(4)	$H1\cdots C4^{ii}$	3 4921
N2···N1 ^{iv}	3 513 (6)	H1···C7 ⁱ	3 3884
$C1 \cdots O1^{i}$	3.212(5)	H1····C9 ⁱ	3 4609
$C1 \cdots C4^{ii}$	3.212(5) 3.418(6)	H1····C13 ⁱⁱⁱ	3 1655
	3 560 (5)	H1····C14 ⁱⁱⁱ	3.0044
$C1 \cdots C13^{iv}$	3.509 (5)		3 5465
$C_{1}^{2} C_{1}^{3}$	3.434 (0)	111 114 11117^{i}	2 8200
$C_2 = C_1 I_1 V$	3.323(3)		2.8309
$C_2 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	3.337(3)		2.7570
C2C12	3.379(0)		2.2201
	3.333 (3) 2.548 (C)		2.4082
	3.548 (6)		3.5116
	3.335 (5)		2.2147
	3.418 (6)	H2···C3·	3.3375
C4C13 ^v	3.461 (5)	H2····H4 ^v	3.3991
C4···C14 ^v	3.482 (5)	H2…H7 ^{v1}	3.0983
C6…O3 ¹	3.217 (4)	$H2\cdots H18B^{vm}$	3.3788
C6…C10 ⁿ	3.382 (5)	H4···C13 ^v	2.6957
C6…C18 ^{iv}	3.531 (6)	H4···C14 ^v	2.8629
C7···O2 ⁱⁱ	3.533 (6)	H4···C16 ^{vii}	2.9759
C7···O3 ⁱ	3.111 (4)	H4····C17 ^{vii}	3.2407
C7···C3 ⁱⁱ	3.548 (6)	H4…H1 ⁱⁱ	3.5465
C7…C14 ^{iv}	3.389 (5)	$H4\cdots H2^{v}$	3.3991
C7…C15 ^{iv}	3.565 (6)	H4···H13 ^v	2.3807
C8…O1 ⁱⁱ	3.548 (5)	H4…H14 ^v	2.6851
C8…C1 ⁱⁱ	3.569 (5)	H4…H16 ^{vii}	2.4088
C9…C3 ⁱⁱ	3.335 (5)	H4…H17 ^{vii}	2.9362
C9…C13 ^{iv}	3.426 (5)	H5…C14 ^v	3.2908
C9····C14 ^{iv}	3.356 (6)	H5…C17 ^{vii}	3.5108
C10…O2 ^v	3.360 (4)	H5…C18 ^{ix}	2.8674
C10…O3 ^{iv}	3.415 (6)	H5…H14 ^v	2.6245
C10…C6 ⁱⁱ	3.382 (5)	H5…H17 ^{vii}	2.7383
C10C11 ^{iv}	3.516 (6)	H5…H18A ^{ix}	2.7813
C11C2 ^{iv}	3.357 (5)	H5…H18B ^{ix}	2.7145
C11····C10 ^{iv}	3.516 (6)	H5…H18C ^{ix}	2.6172
C12····C2 ^{iv}	3.579 (6)	H5…H18C ^{iv}	3.5212
C13…O1 ^{vi}	3.470 (6)	H6····Q2 ⁱⁱⁱ	3,1915
			2.12.10

C13…O1 ^{iv}	3.260 (5)	H6…O3 ⁱ	2.7276
C13…C1 ^{iv}	3.454 (6)	H6…C10 ⁱⁱ	3.4658
C13…C4 ^v	3.461 (5)	H6…C18 ^{ix}	3.2749
C13…C9 ^{iv}	3.426 (5)	H6…C18 ^{iv}	3.5518
C14…O1 ^{iv}	3.543 (6)	H6…H10 ⁱⁱⁱ	3.5436
C14…C4 ^v	3.482 (5)	H6…H10 ⁱⁱ	3.3155
C14…C7 ^{iv}	3.389 (5)	H6…H18A ^{iv}	2.9828
C14C9 ^{iv}	3.356 (6)	H6…H18B ^{ix}	3.3372
C15…C7 ^{iv}	3.565 (6)	H6…H18C ^{ix}	2.4385
C18····O3 ^{vi}	3.579 (5)	H6…H18C ^{iv}	3.3689
C18C6 ^{iv}	3.531 (6)	H7…O2 ⁱⁱ	3.4265
01…H7	2.5030	H7···O3 ⁱ	2.5113
02H4	2.6243	H7…N1 ⁱ	3.2406
O2…H10	2.7081	H7…N2 ⁱⁱⁱ	3.5138
O3…H2	3.0580	H7…C10 ⁱⁱⁱ	3.2123
O3…H17	2.5031	H7…C11 ⁱ	3.4762
N1…H1	2.3347	H7···C14 ^{iv}	3.5029
N2…H10	2.4367	H7…H1 ⁱ	2.8309
N2…H13	2.6299	H7…H2 ⁱⁱⁱ	3.0983
C1H10	3 2867	H7…H10 ⁱⁱⁱ	2.6721
C3…H1	3.2832	H7…H14 ^{iv}	3.2138
C3…H4	2.6821	H7…H18A ^{iv}	3.3708
C3…H10	2.7745	H10····O2 ^v	2.6112
C4···H6	3.2746	H10····O3 ^{iv}	3.4330
C5…H7	3.2733	H10····C3 ^v	3.5196
C6…H4	3.2772	H10····C6 ⁱⁱ	3.4010
C7…H5	3.2633	H10····C7 ^{vi}	3.2563
C8…H5	3.2697	H10C10 ^v	3.3064
C8…H7	3.2937	H10···H6 ^{vi}	3.5436
C9…H1	3.1796	H10…H6 ⁱⁱ	3.3155
C9…H4	3.2541	H10…H7 ^{vi}	2.6721
C9…H6	3.2435	H10···H10 ^v	2.4774
C10…H1	2.5273	H13…O1 ^{vi}	2.6329
С10…Н2	2.4517	H13…O1 ^{iv}	3.1636
C11H13	2.7298	H13…O2 ^v	3.0022
C11H17	2.6041	H13····C1 ^{vi}	2.9937
С12…Н2	2.5663	H13····C1 ^{iv}	3.2392
C12···H14	3.2687	H13····C4 ^v	3.0275
C12···H16	3.2653	H13…H1 ^{vi}	2.7376
C13···H2	2.6000	H13…H1 ^{iv}	3.3501
C13…H17	3.2627	H13…H4 ^v	2.3807
C14…H16	3.2482	H14····O3 ^{vi}	3.5214
C14···H18A	2.6299	H14…N1 ^{vi}	3.4032
C14…H18B	2.9350	H14····C1 ^{vi}	3.1600
C14…H18C	3.2781	H14···C4 ^v	3.0644
C15H13	3.2778	H14···C5 ^v	3.0350
C15…H17	3.2748	H14···C7 ^{iv}	3.3602
C16…H14	3.2489	H14C9 ^{iv}	3.5858

C16…H18A	3.2627	H14····H1 ^{vi}	2.4082
C16…H18B	2.9920	$H14\cdots H4^{v}$	2.6851
C16…H18C	2.6162	H14…H5 ^v	2.6245
C17…H13	3.2631	$H14\cdots H7^{iv}$	3.2138
C18…H14	2.6690	H16…O2 ^x	3.4097
C18…H16	2.6813	H16…C4 ^x	3.0884
H1…H10	3.4674	H16…C16 ^{xi}	3.4437
H2…H10	2.2688	H16…C17 ^{xi}	3.3564
H2…H13	2.0957	H16…H4 ^x	2.4088
H4…H5	2.3230	H16…H16 ^{xi}	3.0510
Н5…Н6	2.3532	H16…H17 ^{xi}	2.8844
H6…H7	2.3374	H17…C4 ^x	3.3186
H13…H14	2.3314	H17…C5 ^x	3.2163
H14…H18A	2.4703	H17…H4 ^x	2.9362
H14…H18B	3.0000	H17…H5 ^x	2.7383
H14…H18C	3.5445	H17…H16 ^{xi}	2.8844
H16…H17	2.3230	H17…H18A ⁱⁱⁱ	3.4121
H16…H18A	3.5215	H17···H18B ^{viii}	3.5420
H16…H18B	3.0907	H17…H18C ^{xi}	3.5867
H16…H18C	2.4407	H18A…O3 ^{vi}	2.6017
O1…H1 ⁱ	2.7414	H18A…C6 ^{iv}	3.1090
O1…H2 ⁱⁱⁱ	3.5116	H18A…C7 ^{iv}	3.3403
O1…H13 ⁱⁱⁱ	2.6329	H18A…C11 ^{vi}	3.4878
O1…H13 ^{iv}	3.1636	H18A…H5 ^{xii}	2.7813
O2···H2 ^v	2.2147	$H18A\cdots H6^{iv}$	2.9828
O2…H6 ^{vi}	3.1915	$H18A\cdots H7^{iv}$	3.3708
O2…H7 ⁱⁱ	3.4265	$H18A$ ··· $H17^{vi}$	3.4121
O2…H10 ^v	2.6112	H18A…H18B ^{xiii}	3.1100
O2…H13 ^v	3.0022	H18B····O3 ^{viii}	3.2105
O2…H16 ^{vii}	3.4097	H18B…N2 ^{viii}	3.1184
O3…H6 ⁱ	2.7276	H18B····C5 ^{xii}	3.4854
O3…H7 ⁱ	2.5113	H18B····C11 ^{viii}	2.8982
O3…H10 ^{iv}	3.4330	H18B····C12 ^{viii}	3.2615
O3…H14 ⁱⁱⁱ	3.5214	H18B…H2 ^{viii}	3.3788
O3…H18A ⁱⁱⁱ	2.6017	H18B····H5 ^{xii}	2.7145
O3…H18B ^{viii}	3.2105	H18B···H6 ^{xii}	3.3372
N1…H7 ⁱ	3.2406	H18B…H17 ^{viii}	3.5420
N1···H14 ⁱⁱⁱ	3.4032	H18B···H18A ^{xiii}	3,1100
N2…H7 ^{vi}	3.5138	H18B···H18B ^{xiii}	3.2931
N2…H18B ^{viii}	3.1184	H18C···C5 ^{xii}	3.1753
C1…H13 ⁱⁱⁱ	2.9937	H18C···C5 ^{iv}	3,4913
C1H13 ^{iv}	3.2392	H18C···C6 ^{xii}	3.0855
C1…H14 ⁱⁱⁱ	3.1600	H18C···C6 ^{iv}	3.3918
C3…H2 ^v	3 3375	H18C···H5 ^{xii}	2.6172
C3…H10 ^v	3 5196	H18C···H5 ^{iv}	3 5212
C4…H1 ⁱⁱ	3 4921	H18C···H6 ^{xii}	2 4385
C4…H13 ^v	3 0275	H18C···H6 ^{iv}	3 3689
C4…H14 ^v	3 0644	H18C···H17 ^{xi}	3 5867
			-//

supporting information

C4····H16 ^{vii}	3.0884	H18C····H18C ^{xiv}	3.5069
C4…H17 ^{vii}	3.3186		
C1—O1—C9	117.98 (18)	C16—C15—C18	121.33 (19)
N2—N1—C10	117.43 (19)	C15—C16—C17	121.38 (19)
N1—N2—C11	117.00 (18)	C12—C17—C16	120.3 (3)
O1—C1—C2	125.95 (18)	N1—N2—H2	121.503
C1—C2—C3	119.63 (18)	C11—N2—H2	121.492
C1—C2—C10	118.57 (17)	O1—C1—H1	117.026
C3—C2—C10	121.73 (19)	C2—C1—H1	117.025
O2—C3—C2	123.18 (18)	C5—C4—H4	119.839
O2—C3—C8	123.00 (17)	C8—C4—H4	119.837
C2—C3—C8	113.82 (19)	С4—С5—Н5	119.690
C5—C4—C8	120.3 (2)	С6—С5—Н5	119.685
C4—C5—C6	120.63 (19)	С5—С6—Н6	120.064
C5—C6—C7	119.87 (19)	С7—С6—Н6	120.067
C6—C7—C9	118.7 (2)	С6—С7—Н7	120.626
C3—C8—C4	121.51 (19)	C9—C7—H7	120.626
C3—C8—C9	120.80 (17)	N1—C10—H10	121.301
C4—C8—C9	117.68 (18)	C2-C10-H10	121.295
01	115.60 (19)	С12—С13—Н13	119.863
O1—C9—C8	121.67 (17)	C14—C13—H13	119.863
C7—C9—C8	122.74 (18)	C13—C14—H14	119.442
N1—C10—C2	117.4 (2)	C15—C14—H14	119.438
O3—C11—N2	122.18 (18)	C15—C16—H16	119.316
O3—C11—C12	121.41 (18)	C17—C16—H16	119.306
N2—C11—C12	116.42 (19)	С12—С17—Н17	119.868
C11—C12—C13	123.77 (18)	C16—C17—H17	119.869
C11—C12—C17	117.3 (2)	C15—C18—H18A	109.473
C13—C12—C17	118.88 (18)	C15—C18—H18B	109.470
C12—C13—C14	120.27 (19)	C15—C18—H18C	109.469
C13—C14—C15	121.1 (2)	H18A—C18—H18B	109.473
C14—C15—C16	118.08 (18)	H18A—C18—H18C	109.474
C14—C15—C18	120.6 (2)	H18B—C18—H18C	109.468
C1—O1—C9—C7	-178.84 (15)	Н6—С6—С7—Н7	-1.1
C1—O1—C9—C8	1.0 (3)	C6-C7-C9-O1	179.93 (17)
C9—O1—C1—C2	-1.2 (3)	C6—C7—C9—C8	0.1 (3)
C9—O1—C1—H1	178.8	H7—C7—C9—O1	-0.1
N2—N1—C10—C2	177.37 (15)	Н7—С7—С9—С8	-179.9
N2—N1—C10—H10	-2.6	C3—C8—C9—O1	2.0 (3)
C10—N1—N2—C11	-179.93 (16)	C3—C8—C9—C7	-178.21 (16)
C10—N1—N2—H2	0.1	C4—C8—C9—O1	-178.83 (16)
N1—N2—C11—O3	0.6 (3)	C4—C8—C9—C7	1.0 (3)
N1—N2—C11—C12	-179.89 (15)	O3—C11—C12—C13	-160.68 (18)
H2—N2—C11—O3	-179.4	O3—C11—C12—C17	16.1 (3)
H2—N2—C11—C12	0.1	N2-C11-C12-C13	19.8 (3)
O1—C1—C2—C3	-1.5 (3)	N2-C11-C12-C17	-163.39 (16)

O1—C1—C2—C10	-178.67 (16)	C11—C12—C13—C14	177.51 (16)
H1—C1—C2—C3	178.5	C11—C12—C13—H13	-2.5
H1-C1-C2-C10	1.3	C11—C12—C17—C16	-178.00 (16)
C1—C2—C3—O2	-175.92 (17)	C11—C12—C17—H17	2.0
C1—C2—C3—C8	4.1 (3)	C13—C12—C17—C16	-1.1 (3)
C1-C2-C10-N1	-8.1 (3)	C13—C12—C17—H17	178.9
C1-C2-C10-H10	171.9	C17—C12—C13—C14	0.8 (3)
C3—C2—C10—N1	174.81 (16)	C17—C12—C13—H13	-179.2
C3—C2—C10—H10	-5.2	C12—C13—C14—C15	0.1 (3)
C10—C2—C3—O2	1.1 (3)	C12-C13-C14-H14	-179.9
C10—C2—C3—C8	-178.81 (15)	H13—C13—C14—C15	-179.9
O2—C3—C8—C4	-3.5 (3)	H13—C13—C14—H14	0.1
O2—C3—C8—C9	175.66 (17)	C13-C14-C15-C16	-0.7 (3)
C2—C3—C8—C4	176.47 (15)	C13—C14—C15—C18	179.17 (17)
C2—C3—C8—C9	-4.4 (3)	H14—C14—C15—C16	179.3
C5—C4—C8—C3	178.06 (17)	H14-C14-C15-C18	-0.8
C5—C4—C8—C9	-1.1 (3)	C14-C15-C16-C17	0.4 (3)
C8—C4—C5—C6	0.2 (3)	C14—C15—C16—H16	-179.6
C8—C4—C5—H5	-179.8	C14-C15-C18-H18A	33.7
H4—C4—C5—C6	-179.8	C14-C15-C18-H18B	-86.3
H4—C4—C5—H5	0.2	C14—C15—C18—H18C	153.7
H4—C4—C8—C3	-1.9	C16—C15—C18—H18A	-146.4
H4—C4—C8—C9	178.9	C16-C15-C18-H18B	93.6
C4—C5—C6—C7	0.9 (3)	C16—C15—C18—H18C	-26.4
C4—C5—C6—H6	-179.1	C18—C15—C16—C17	-179.45 (17)
H5—C5—C6—C7	-179.1	C18-C15-C16-H16	0.5
H5—C5—C6—H6	0.9	C15—C16—C17—C12	0.5 (3)
C5—C6—C7—C9	-1.1 (3)	C15—C16—C17—H17	-179.5
С5—С6—С7—Н7	178.9	H16—C16—C17—C12	-179.5
Н6—С6—С7—С9	178.9	H16—C16—C17—H17	0.5

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+2, -y+1, -z+2; (iii) x, y+1, z; (iv) -x+1, -y, -z+2; (v) -x+2, -y, -z+2; (vi) x, y-1, z; (vii) x+1, y+1, z+1; (viii) -x+1, -y-1, -z+1; (ix) x+1, y+2, z+1; (x) x-1, y-1, z-1; (xi) -x, -y-1, -z+1; (xii) x-1, y-2, -z-1; (xiii) -x+1, -y-2, -z+1; (xiv) -x, -y-2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···O2 ^v	0.88	2.22	3.012 (4)	151

Symmetry code: (v) -x+2, -y, -z+2.