Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Phenyl-1,2,4-triazaspiro[4.6]undec-1ene-3-thione

Shaaban K. Mohamed,^{a,b} Joel T. Mague,^c Mehmet Akkurt,^d Alaa A. Hassan^b and Mustafa R. Albayati^e*

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 29 April 2014; accepted 1 May 2014

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.096; data-to-parameter ratio = 21.5.

In the title compound, $C_{14}H_{17}N_3S$, the plane of the phenyl ring makes a dihedral angle of 74.90 (4)° with that of the triazathione ring (r.m.s. deviation = 0.001 Å), while the seven-membered ring adopts a twist-chair conformation. No specific intermolecular interactions are discerned in the crystal packing.

Related literature

For various pharmaceutical properties of spiro compounds, see: Chin et al. (2008); Thadhaney et al. (2010). For industrial uses of heterocyclic spiro compounds, see: Sarma et al. (2010). For the crystal structures of two similar compounds, see: Akkurt et al. (2013); Mague et al. (2014). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

2	
$C_{14}H_{17}N_3S$	$\gamma = 61.6640 \ (6)^{\circ}$
$M_r = 259.36$	V = 674.89 (6) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.0578 (5) Å	Mo $K\alpha$ radiation
b = 9.1324 (5) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 9.4637 (5) Å	T = 150 K
$\alpha = 88.2940 \ (8)^{\circ}$	$0.28 \times 0.23 \times 0.06 \text{ mm}$
$\beta = 79.0690 \ (7)^{\circ}$	

CrossMark

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	163 parameters
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
3508 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

12510 measured reflections 3508 independent reflections

 $R_{\rm int}=0.032$

3125 reflections with $I > 2\sigma(I)$

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Manchester Metropolitan University, Tulane University and Ercives University are gratefully acknowledged for supporting this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5394).

References

- Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259.
- Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390-395.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, 0433-0434.
- Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368-373.

supporting information

Acta Cryst. (2014). E70, o640 [doi:10.1107/S1600536814009817]

4-Phenyl-1,2,4-triazaspiro[4.6]undec-1-ene-3-thione

Shaaban K. Mohamed, Joel T. Mague, Mehmet Akkurt, Alaa A. Hassan and Mustafa R. Albayati

S1. Comment

Spiro-compounds are a significant class of of organic compounds due to their wide spectrum of pharmaceutical and applied chemistry aspects. They showed very promising biological activities such as anticancer agents (Chin *et al.*, 2008) and antimicrobial agents (Thadhaney *et al.*, 2010). Some spiro-compounds have also been recently used as antioxidants (Sarma *et al.*, 2010). In this context and as part of our on-going study in synthesis of spiro-compounds for the purpose of biological potential, we report in this study the synthesis and crystal structure determination of the title compound.

In the title compound (I, Fig. 1), a Cremer-Pople analysis of the conformation of the 7-membered ring (C2/C9/C10–C14) gave puckering parameters Q(2) = 0.5606 (14) Å, Q(3) = 0.6549 (15) Å, $\varphi(2) = 272.80 (15)^{\circ}$ and $\varphi(3) = 272.01 (12)^{\circ}$ (Cremer & Pople, 1975). The total puckerin amplitude is 0.8620 (14) Å.

The phenyl ring (C3–C8) makes a dihedral angle of 74.90 (4)° with the triazathione ring (C1/C2/N1–N3). All bond lengths and bond angles in (I) are comparable with those for the similar compounds that we have reported previously (Akkurt *et al.*, 2013; Mague *et al.*, 2014).

S2. Experimental

A mixture of 1 mmol (261 mg) of cycloheptan-1-one *N*-phenylthiosemicarbazone and 1 mmol (246 mg) of 2,3,5,6-tetrachloro-1,4-benzoquinone (DDQ) in 30 ml of ethyl acetate was stirred at room temperature. The reaction was monitored by TLC until completion. The precipitated DDQ-H₂ was filtered off and the filtrate was concentrated by slow evaporation in air to afford the corresponding product. The crude product was recrystallized from ethanol to furnish orange block crystals suitable for X-ray diffraction.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figure 1

Title compound with 50% probability displacement ellipsoids for non-H atoms.

4-Phenyl-1,2,4-triazaspiro[4.6]undec-1-ene-3-thione

Crystal data

C₁₄H₁₇N₃S $M_r = 259.36$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.0578 (5) Å b = 9.1324 (5) Å c = 9.4637 (5) Å a = 88.2940 (8)° $\beta = 79.0690$ (7)° $\gamma = 61.6640$ (6)° V = 674.89 (6) Å³

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3660 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2013) $T_{\min} = 0.85, T_{\max} = 0.98$ Z = 2 F(000) = 276 $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9063 reflections $\theta = 2.2-29.1^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 150 K Plate, orange $0.28 \times 0.23 \times 0.06 \text{ mm}$

12510 measured reflections 3508 independent reflections 3125 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$ Refinement

Refinement on F ² Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.096$	neighbouring sites
S = 1.04	H-atom parameters constrained
3508 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.2315P]$
163 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.44 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.20 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
S1	1.18135 (4)	0.44697 (4)	0.80140 (3)	0.0246 (1)
N1	0.85249 (12)	0.58855 (11)	0.76728 (10)	0.0161 (2)
N2	0.75975 (13)	0.84504 (12)	0.87544 (11)	0.0222 (3)
N3	0.91495 (13)	0.75963 (13)	0.87953 (11)	0.0223 (3)
C1	0.98219 (14)	0.59098 (14)	0.81285 (12)	0.0180 (3)
C2	0.69598 (14)	0.75078 (13)	0.80402 (12)	0.0169 (3)
C3	0.85298 (13)	0.44117 (13)	0.71782 (12)	0.0165 (3)
C4	0.85413 (15)	0.32566 (14)	0.81669 (13)	0.0205 (3)
C5	0.84438 (16)	0.18734 (15)	0.77211 (14)	0.0255 (3)
C6	0.83537 (18)	0.16576 (16)	0.63011 (15)	0.0292 (4)
C7	0.83794 (18)	0.28004 (17)	0.53131 (14)	0.0294 (4)
C8	0.84735 (15)	0.41916 (15)	0.57489 (12)	0.0219 (3)
C9	0.55281 (15)	0.73871 (14)	0.91260 (12)	0.0202 (3)
C10	0.42376 (16)	0.71324 (16)	0.84612 (13)	0.0238 (3)
C11	0.27415 (16)	0.87693 (17)	0.81639 (14)	0.0267 (3)
C12	0.31779 (16)	0.96808 (17)	0.69115 (14)	0.0273 (3)
C13	0.46872 (15)	0.99887 (15)	0.69690 (13)	0.0232 (3)
C14	0.64134 (14)	0.83880 (14)	0.66771 (12)	0.0192 (3)
H4	0.86150	0.34080	0.91350	0.0250*
Н5	0.84390	0.10770	0.83880	0.0310*
H6	0.82740	0.07180	0.60030	0.0350*
H7	0.83330	0.26350	0.43400	0.0350*
H8	0.84990	0.49780	0.50780	0.0260*
H9A	0.60640	0.64490	0.97310	0.0240*
H9B	0.48930	0.84220	0.97700	0.0240*

supporting information

H10A	0.48410	0.64340	0.75450	0.0280*
H10B	0.37790	0.65200	0.91250	0.0280*
H11A	0.18390	0.85290	0.79680	0.0320*
H11B	0.22550	0.95280	0.90490	0.0320*
H12A	0.21550	1.07700	0.68880	0.0330*
H12B	0.34380	0.90240	0.59990	0.0330*
H13A	0.45120	1.05050	0.79330	0.0280*
H13B	0.47140	1.07860	0.62450	0.0280*
H14A	0.73050	0.86640	0.61770	0.0230*
H14B	0.63500	0.76060	0.60190	0.0230*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0207 (2)	0.0261 (2)	0.0266 (2)	-0.0094 (1)	-0.0087(1)	0.0025 (1)
N1	0.0189 (4)	0.0140 (4)	0.0172 (4)	-0.0087 (3)	-0.0049 (3)	0.0000 (3)
N2	0.0285 (5)	0.0188 (5)	0.0241 (5)	-0.0141 (4)	-0.0079 (4)	-0.0009 (4)
N3	0.0278 (5)	0.0208 (5)	0.0241 (5)	-0.0148 (4)	-0.0090 (4)	0.0004 (4)
C1	0.0234 (5)	0.0190 (5)	0.0158 (5)	-0.0129 (4)	-0.0058 (4)	0.0023 (4)
C2	0.0203 (5)	0.0136 (5)	0.0185 (5)	-0.0089 (4)	-0.0049 (4)	-0.0011 (4)
C3	0.0177 (5)	0.0148 (5)	0.0185 (5)	-0.0092 (4)	-0.0026 (4)	-0.0023 (4)
C4	0.0234 (5)	0.0192 (5)	0.0199 (5)	-0.0112 (4)	-0.0037 (4)	0.0006 (4)
C5	0.0301 (6)	0.0187 (5)	0.0303 (6)	-0.0149 (5)	-0.0033 (5)	0.0030 (5)
C6	0.0374 (7)	0.0225 (6)	0.0336 (7)	-0.0193 (5)	-0.0051 (5)	-0.0056 (5)
C7	0.0412 (7)	0.0293 (7)	0.0226 (6)	-0.0205 (6)	-0.0059 (5)	-0.0058 (5)
C8	0.0290 (6)	0.0212 (5)	0.0176 (5)	-0.0141 (5)	-0.0033 (4)	-0.0003 (4)
C9	0.0230 (5)	0.0207 (5)	0.0161 (5)	-0.0102 (4)	-0.0024 (4)	0.0002 (4)
C10	0.0254 (6)	0.0265 (6)	0.0236 (6)	-0.0168 (5)	-0.0015 (5)	-0.0014 (5)
C11	0.0209 (5)	0.0338 (7)	0.0259 (6)	-0.0137 (5)	-0.0034 (5)	-0.0030 (5)
C12	0.0221 (6)	0.0311 (6)	0.0259 (6)	-0.0093 (5)	-0.0082 (5)	0.0009 (5)
C13	0.0248 (6)	0.0188 (5)	0.0246 (6)	-0.0085 (4)	-0.0076 (5)	0.0031 (4)
C14	0.0214 (5)	0.0182 (5)	0.0191 (5)	-0.0100 (4)	-0.0050 (4)	0.0032 (4)

Geometric parameters (Å, °)

<u>81—C1</u>	1.6364 (13)	C13—C14	1.5325 (18)
N1—C1	1.3357 (18)	C4—H4	0.9500
N1—C2	1.4750 (15)	С5—Н5	0.9500
N1—C3	1.4359 (15)	С6—Н6	0.9500
N2—N3	1.2506 (17)	С7—Н7	0.9500
N2—C2	1.4786 (17)	C8—H8	0.9500
N3—C1	1.4707 (15)	С9—Н9А	0.9900
С2—С9	1.5406 (19)	С9—Н9В	0.9900
C2—C14	1.5356 (16)	C10—H10A	0.9900
C3—C4	1.3867 (16)	C10—H10B	0.9900
C3—C8	1.3874 (16)	C11—H11A	0.9900
C4—C5	1.3904 (18)	C11—H11B	0.9900
C5—C6	1.387 (2)	C12—H12A	0.9900

C6—C7	1.3859 (19)	C12—H12B	0.9900
С7—С8	1.392 (2)	C13—H13A	0.9900
C9—C10	1.537 (2)	C13—H13B	0.9900
C10—C11	1.532 (2)	C14—H14A	0.9900
C11—C12	1.5264 (19)	C14—H14B	0.9900
C12—C13	1.531 (2)		
C1—N1—C2	110.52 (10)	С6—С7—Н7	120.00
C1—N1—C3	124.94 (10)	С8—С7—Н7	120.00
C2—N1—C3	123.30 (11)	C3—C8—H8	120.00
N3—N2—C2	112.14 (10)	С7—С8—Н8	121.00
N2—N3—C1	110.00 (11)	С2—С9—Н9А	108.00
S1—C1—N1	131.05 (9)	С2—С9—Н9В	108.00
S1—C1—N3	122.55 (10)	С10—С9—Н9А	108.00
N1—C1—N3	106.39 (10)	С10—С9—Н9В	108.00
N1—C2—N2	100.93 (10)	H9A—C9—H9B	107.00
N1—C2—C9	112.71 (9)	C9—C10—H10A	109.00
N1-C2-C14	111.24 (9)	C9—C10—H10B	109.00
N2—C2—C9	108.93 (9)	C11—C10—H10A	109.00
N2—C2—C14	107.14 (9)	C11—C10—H10B	109.00
C9—C2—C14	114.78 (11)	H10A-C10-H10B	108.00
N1—C3—C4	118.50 (10)	C10-C11-H11A	108.00
N1—C3—C8	120.00 (10)	C10-C11-H11B	108.00
C4—C3—C8	121.47 (11)	C12—C11—H11A	108.00
C3—C4—C5	119.06 (11)	C12—C11—H11B	108.00
C4—C5—C6	119.93 (12)	H11A—C11—H11B	107.00
C5—C6—C7	120.60 (13)	C11—C12—H12A	109.00
C6—C7—C8	119.93 (12)	C11—C12—H12B	109.00
C3—C8—C7	118.98 (11)	C13—C12—H12A	108.00
C2—C9—C10	115.55 (10)	C13—C12—H12B	108.00
C9—C10—C11	113.31 (11)	H12A—C12—H12B	108.00
C10—C11—C12	115.62 (12)	С12—С13—Н13А	109.00
C11—C12—C13	115.09 (12)	C12—C13—H13B	109.00
C12—C13—C14	112.85 (11)	C14—C13—H13A	109.00
C2—C14—C13	114.07 (9)	C14—C13—H13B	109.00
C3—C4—H4	120.00	H13A—C13—H13B	108.00
C5—C4—H4	120.00	C2—C14—H14A	109.00
С4—С5—Н5	120.00	C2—C14—H14B	109.00
С6—С5—Н5	120.00	C13—C14—H14A	109.00
С5—С6—Н6	120.00	C13—C14—H14B	109.00
С7—С6—Н6	120.00	H14A—C14—H14B	108.00
C2—N1—C1—S1	179.77 (9)	N1—C2—C9—C10	-93.43 (12)
C2—N1—C1—N3	-1.29 (12)	N2—C2—C9—C10	155.42 (10)
C3—N1—C1—S1	12.16 (18)	C14—C2—C9—C10	35.32 (14)
C3—N1—C1—N3	-168.90 (10)	N1—C2—C14—C13	173.50 (11)
C1—N1—C2—N2	0.83 (12)	N2—C2—C14—C13	-77.06 (14)
C1—N1—C2—C9	-115.21 (11)	C9—C2—C14—C13	44.03 (14)

C1—N1—C2—C14	114.23 (11)	N1—C3—C4—C5	176.23 (12)
C3—N1—C2—N2	168.68 (9)	C8—C3—C4—C5	-1.9 (2)
C3—N1—C2—C9	52.64 (14)	N1—C3—C8—C7	-176.32 (13)
C3—N1—C2—C14	-77.92 (14)	C4—C3—C8—C7	1.8 (2)
C1—N1—C3—C4	67.68 (16)	C3—C4—C5—C6	0.6 (2)
C1—N1—C3—C8	-114.17 (14)	C4—C5—C6—C7	0.7 (2)
C2—N1—C3—C4	-98.41 (14)	C5—C6—C7—C8	-0.9 (2)
C2—N1—C3—C8	79.74 (15)	C6—C7—C8—C3	-0.4 (2)
C2—N2—N3—C1	-0.83 (13)	C2-C9-C10-C11	-87.16 (13)
N3—N2—C2—N1	0.05 (13)	C9-C10-C11-C12	71.74 (14)
N3—N2—C2—C9	118.86 (11)	C10-C11-C12-C13	-52.16 (16)
N3—N2—C2—C14	-116.42 (11)	C11—C12—C13—C14	70.85 (14)
N2—N3—C1—S1	-179.60 (9)	C12—C13—C14—C2	-91.21 (13)
N2—N3—C1—N1	1.35 (13)		