



OPEN d ACCESS

## Crystal structure of bis[(5-oxooxolan-3yl)triphenylphosphanium] hexaiodidotellurate(IV)

#### Sari M. Närhi, Raija Oilunkaniemi and Risto S. Laitinen\*

Department of Chemistry, P.O. Box 3000, FI-90014 University of Oulu, Finland. \*Correspondence e-mail: risto.laitinen@oulu.fi

Received 26 October 2014; accepted 30 October 2014

Edited by M. Zeller, Youngstown State University, USA

The asymmetric unit of the title salt,  $[C_{22}H_{20}O_2P]_2^+[TeI_6]^{2-}$ , consists of one triphenyl(5-oxooxolan-3-yl)phosphanium cation and one half of a hexaiodidotellurate(IV) dianion. The Te atom is located at an inversion centre and is octahedrally coordinated by six I atoms. The Te-I bond lengths range from 2.9255 (9) to 2.9439 (10) Å. The I-Te-I angles between cis-iodide ligands are in the range 87.85 (3)-92.15 (3)°. In the crystal, the components are connected by C-H···I interactions. In the final refinement of the compound a void of 32  $Å^3$  was observed.

Keywords: crystal structure; bis[triphenyl(5-oxooxolan-3-yl)phosphanium] cation; hexaiodidotellurate(2-) anion.

#### CCDC reference: 1031805

#### **1. Related literature**

For the isolation and structure of the related compound  $\{PPh_3(C_4H_5O_2)\}_2[TeI_4]$ , see: Närhi et al. (2013). For other related structures, see: Srivastava et al. (2004); Närhi et al. (2004). For discussion about the formation of the cation, see: Närhi et al. (2013).



2. Experimental

2.1. Crystal data  $2C_{22}H_{20}O_2P^+ \cdot TeI_6^{2-}$  $M_r = 1583.70$ 

Triclinic,  $P\overline{1}$ a = 9.4479 (19) Å b = 11.022 (2) Å c = 13.259 (3) Å  $\alpha = 74.64 (3)^{\circ}$  $\beta = 69.70(3)^{\circ}$  $\gamma = 77.28 \ (3)^{\circ}$ V = 1236.1 (5) Å<sup>3</sup>

#### 2.2. Data collection

Tabla 1

| Bruker Nonius KappaCCD               |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: $\psi$ scan   |
| (XPREP in SHELXTL; Shel-             |
| drick, 2008)                         |
| $T_{\min} = 0.543, T_{\max} = 0.927$ |

| 2.3. Refinement                 |                                                            |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.032$ | 260 parameters                                             |
| $wR(F^2) = 0.078$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4557 reflections                | $\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$ |
|                                 |                                                            |

Z = 1

Mo  $K\alpha$  radiation

 $0.25 \times 0.20 \times 0.20$  mm

11104 measured reflections

4557 independent reflections 3957 reflections with  $I > 2\sigma(I)$ 

 $\mu = 4.45 \text{ mm}^{-1}$ 

T = 100 K

 $R_{\rm int} = 0.039$ 

|   | able   |          |          |     |     |
|---|--------|----------|----------|-----|-----|
| H | lydrog | gen-bond | geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots \mathbf{A}$ |
|-----------------------------|------|-------------------------|--------------|------------------------------------|
| C35−H35···I1 <sup>ii</sup>  | 0.95 | 3.17                    | 4.080 (6)    | 161                                |
| C16−H16···I2                | 0.95 | 2.97                    | 3.839 (5)    | 152                                |
| $C22 - H22 \cdots I2^{iii}$ | 0.95 | 3.09                    | 3.875 (6)    | 141                                |
| $C32 - H32 \cdots I3^{iii}$ | 0.95 | 3.08                    | 3.958 (6)    | 155                                |

Symmetry codes: (ii) -x, -y + 1, -z; (iii) x + 1, y, z.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

#### Acknowledgements

Financial support from Academy of Finland is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2606).

#### References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Närhi, S. M., Malo, K., Oilunkaniemi, R. & Laitinen, R. S. (2013). Polyhedron, 65, 308-315.
- Närhi, S. M., Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2004). Inorg. Chem. 43, 3742-3750.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Srivastava, P. C., Bajpai, S., Bajpai, S., Ram, C., Kumar, R., Jasinski, J. P. & Butcher, R. J. (2004). J. Organomet. Chem. 689, 194-202.

# supporting information

Acta Cryst. (2014). E70, o1241 [doi:10.1107/S1600536814023940]

## Crystal structure of bis[(5-oxooxolan-3-yl)triphenylphosphanium] hexaiodidotellurate(IV)

## Sari M. Närhi, Raija Oilunkaniemi and Risto S. Laitinen

## S1. Synthesis and crystallization

Dark purple crystals of  $\{PPh_3(C_4H_5O_2)\}_2[TeI_6]$  were isolated in the reaction of  $Fu_2Te_2$  (Fu = 2-furyl, C<sub>4</sub>H<sub>5</sub>O), I<sub>2</sub>, and Ph<sub>3</sub>P in THF. Under ambient conditions, the reaction is reported to give a mixture of products (Närhi *et al.* (2013)). The crystals of  $\{PPh_3(C_4H_5O_2)\}_2[TeI_6]$  are probably formed by the reaction of  $\{PPh_3(C_4H_5O_2)\}_2[TeI_4]$  with I<sub>2</sub>. They are formed as a separate layer on the wall of the reaction vessel during slow evaporation of the solvent.

### S2. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$ , 1.00 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  and 0.95 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for the methylene, tertiary, and aromatic hydrogens, respectively.

In the final refinement of the compound a void of  $32 \text{ Å}^3$  was observed. The void contains no residual electron density and the volume is very small for solvent molecules. The cavity probably results from the inflexible packing of the bulky, rigid ions of the title compound.



#### Figure 1

The molecular structure of  $\{Ph_3(C_4H_5O_2)P\}_2[TeI_6]$  indicating the numbering of the atoms. The displacement ellipsoids have been drawn at 50% probability. Hydrogen atoms have been omitted for clarity. Symmetry code: *i*: -*x*, -*y*, -*z*.



### Figure 2

The shortest H…I hydrogen bonds between the cation and the anion. The van der Waals' radius of iodine has been overlaid with the structure of the anion.

## Bis[(5-oxooxolan-3-yl)triphenylphosphanium] hexaiodidotellurate(IV)

| Crystal data                                              |                                                       |
|-----------------------------------------------------------|-------------------------------------------------------|
| $2C_{22}H_{20}O_2P^+ \cdot TeI_6^{2-}$                    | Z = 1                                                 |
| $M_r = 1583.70$                                           | F(000) = 736                                          |
| Triclinic, P1                                             | $D_{\rm x} = 2.128 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 9.4479 (19)  Å                                        | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 11.022 (2) Å                                          | Cell parameters from 3957 reflections                 |
| c = 13.259 (3) Å                                          | $\theta = 2.8 - 25.7^{\circ}$                         |
| $\alpha = 74.64$ (3)°                                     | $\mu = 4.45 \text{ mm}^{-1}$                          |
| $\beta = 69.70 (3)^{\circ}$                               | T = 100  K                                            |
| $\gamma = 77.28 (3)^{\circ}$                              | Block, dark purple                                    |
| $V = 1236.1 (5) Å^3$                                      | $0.25 \times 0.20 \times 0.20$ mm                     |
| Data collection                                           |                                                       |
| Bruker Nonius KappaCCD                                    | Absorption correction: $\psi$ scan                    |
| diffractometer                                            | (XPREP in SHELXTL; Sheldrick, 2008)                   |
| Radiation source: fine-focus sealed tube                  | $T_{\min} = 0.543, T_{\max} = 0.927$                  |
| $\varphi$ scans, and $\omega$ scans with $\kappa$ offsets | 11104 measured reflections                            |

| 4557 independent reflections                                   | $h = -11 \rightarrow 11$                                                                                          |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 3957 reflections with $I > 2\sigma(I)$                         | $k = -13 \rightarrow 13$                                                                                          |
| $R_{\rm int} = 0.039$                                          | $l = -15 \rightarrow 16$                                                                                          |
| $\theta_{\max} = 25.7^{\circ}, \ \theta_{\min} = 2.8^{\circ}$  |                                                                                                                   |
| Refinement                                                     |                                                                                                                   |
| Refinement on $F^2$                                            | Hydrogen site location: inferred from                                                                             |
| Least-squares matrix: full                                     | neighbouring sites                                                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                                | H-atom parameters constrained                                                                                     |
| $wR(F^2) = 0.078$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0302P)^2 + 2.1829P]$                                                                 |
| <i>S</i> = 1.05                                                | where $P = (F_o^2 + 2F_c^2)/3$                                                                                    |
| 4557 reflections                                               | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                               |
| 260 parameters                                                 | $\Delta \rho_{\rm max} = 0.80 \text{ e } \text{\AA}^{-3}$                                                         |
| 0 restraints                                                   | $\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$                                                        |
| Primary atom site location: structure-invariant direct methods | Extinction correction: <i>SHELXL2013</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Secondary atom site location: difference Fourier               | Extinction coefficient: 0.0026 (3)                                                                                |
| map                                                            |                                                                                                                   |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Z          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|-------------|------------|---------------------------|
| C1  | 0.4386 (5)  | -0.0474 (4) | 0.3688 (4) | 0.0261 (10)               |
| C2  | 0.5254 (5)  | 0.0617 (4)  | 0.3411 (4) | 0.0249 (10)               |
| H2A | 0.6366      | 0.0328      | 0.3197     | 0.030*                    |
| H2B | 0.4965      | 0.1035      | 0.4044     | 0.030*                    |
| C3  | 0.4790 (5)  | 0.1532 (4)  | 0.2435 (4) | 0.0228 (9)                |
| Н3  | 0.5725      | 0.1785      | 0.1830     | 0.027*                    |
| C4  | 0.4013 (6)  | 0.0707 (4)  | 0.2060 (4) | 0.0273 (10)               |
| H4A | 0.3070      | 0.1196      | 0.1909     | 0.033*                    |
| H4B | 0.4708      | 0.0425      | 0.1384     | 0.033*                    |
| C11 | 0.1952 (5)  | 0.2509 (4)  | 0.4010 (4) | 0.0244 (10)               |
| C12 | 0.2007 (6)  | 0.2481 (6)  | 0.5045 (4) | 0.0384 (12)               |
| H12 | 0.2854      | 0.2737      | 0.5123     | 0.046*                    |
| C13 | 0.0825 (7)  | 0.2079 (6)  | 0.5970 (4) | 0.0461 (15)               |
| H13 | 0.0872      | 0.2058      | 0.6678     | 0.055*                    |
| C14 | -0.0408 (6) | 0.1711 (6)  | 0.5871 (5) | 0.0434 (14)               |
| H14 | -0.1222     | 0.1456      | 0.6508     | 0.052*                    |
| C15 | -0.0464 (6) | 0.1714 (6)  | 0.4833 (5) | 0.0437 (14)               |
| H15 | -0.1304     | 0.1442      | 0.4760     | 0.052*                    |
| C16 | 0.0711 (6)  | 0.2116 (5)  | 0.3913 (4) | 0.0351 (12)               |
| H16 | 0.0672      | 0.2123      | 0.3205     | 0.042*                    |
| C21 | 0.4479 (5)  | 0.3983 (4)  | 0.3112 (4) | 0.0253 (10)               |
| C22 | 0.5921 (6)  | 0.3606 (5)  | 0.3220 (4) | 0.0343 (12)               |
| H22 | 0.6433      | 0.2775      | 0.3143     | 0.041*                    |

| C23 | 0.6625 (7)   | 0.4450 (5)   | 0.3441 (5)   | 0.0438 (14)  |
|-----|--------------|--------------|--------------|--------------|
| H23 | 0.7619       | 0.4195       | 0.3512       | 0.053*       |
| C24 | 0.5882 (7)   | 0.5647 (5)   | 0.3555 (4)   | 0.0394 (13)  |
| H24 | 0.6362       | 0.6215       | 0.3713       | 0.047*       |
| C25 | 0.4456 (7)   | 0.6029 (5)   | 0.3442 (5)   | 0.0444 (14)  |
| H25 | 0.3952       | 0.6861       | 0.3522       | 0.053*       |
| C26 | 0.3745 (6)   | 0.5213 (5)   | 0.3213 (5)   | 0.0386 (13)  |
| H26 | 0.2761       | 0.5485       | 0.3124       | 0.046*       |
| C31 | 0.2836 (5)   | 0.3777 (4)   | 0.1675 (4)   | 0.0256 (10)  |
| C32 | 0.3746 (6)   | 0.3662 (5)   | 0.0613 (4)   | 0.0349 (12)  |
| H32 | 0.4692       | 0.3115       | 0.0505       | 0.042*       |
| C33 | 0.3278 (7)   | 0.4342 (5)   | -0.0284 (5)  | 0.0420 (14)  |
| H33 | 0.3890       | 0.4241       | -0.1004      | 0.050*       |
| C34 | 0.1938 (7)   | 0.5157 (5)   | -0.0138 (5)  | 0.0439 (14)  |
| H34 | 0.1633       | 0.5632       | -0.0757      | 0.053*       |
| C35 | 0.1024 (7)   | 0.5292 (5)   | 0.0909 (6)   | 0.0467 (15)  |
| H35 | 0.0095       | 0.5860       | 0.1004       | 0.056*       |
| C36 | 0.1458 (6)   | 0.4600 (5)   | 0.1820 (5)   | 0.0365 (12)  |
| H36 | 0.0823       | 0.4686       | 0.2539       | 0.044*       |
| O1  | 0.3662 (4)   | -0.0376 (3)  | 0.2954 (3)   | 0.0303 (7)   |
| O2  | 0.4316 (4)   | -0.1369 (3)  | 0.4452 (3)   | 0.0392 (9)   |
| P1  | 0.35088 (13) | 0.29555 (11) | 0.28121 (10) | 0.0218 (3)   |
| Te1 | 0.0000       | 0.0000       | 0.0000       | 0.02328 (12) |
| I1  | 0.22939 (4)  | 0.16601 (3)  | -0.14044 (3) | 0.03310 (11) |
| I2  | -0.06205 (4) | 0.14116 (3)  | 0.17266 (3)  | 0.03253 (11) |
| I3  | -0.23996 (4) | 0.16762 (3)  | -0.08546 (3) | 0.03373 (12) |
|     |              |              |              |              |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$  | $U^{22}$  | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-----------|-----------|-----------------|--------------|--------------|--------------|
| C1  | 0.024 (2) | 0.027 (2) | 0.023 (2)       | -0.0060 (19) | -0.0004 (19) | -0.005 (2)   |
| C2  | 0.027 (3) | 0.022 (2) | 0.027 (2)       | -0.0056 (19) | -0.011 (2)   | -0.0030 (19) |
| C3  | 0.018 (2) | 0.022 (2) | 0.026 (2)       | -0.0016 (18) | -0.0037 (18) | -0.0059 (19) |
| C4  | 0.029(3)  | 0.026 (2) | 0.026 (2)       | -0.003(2)    | -0.010 (2)   | -0.004(2)    |
| C11 | 0.024 (2) | 0.027 (2) | 0.023 (2)       | -0.0039 (19) | -0.0071 (18) | -0.0047 (19) |
| C12 | 0.033 (3) | 0.055 (3) | 0.031 (3)       | -0.013 (2)   | -0.008 (2)   | -0.010 (3)   |
| C13 | 0.045 (3) | 0.071 (4) | 0.023 (3)       | -0.019 (3)   | -0.003 (2)   | -0.010 (3)   |
| C14 | 0.035 (3) | 0.056 (4) | 0.033 (3)       | -0.016 (3)   | 0.001 (2)    | -0.005 (3)   |
| C15 | 0.032 (3) | 0.056 (4) | 0.043 (3)       | -0.021 (3)   | -0.003 (2)   | -0.009(3)    |
| C16 | 0.030 (3) | 0.049 (3) | 0.030 (3)       | -0.014 (2)   | -0.007 (2)   | -0.012 (2)   |
| C21 | 0.026 (2) | 0.026 (2) | 0.022 (2)       | -0.0076 (19) | -0.0056 (19) | -0.0022 (19) |
| C22 | 0.030 (3) | 0.031 (3) | 0.042 (3)       | -0.007(2)    | -0.011 (2)   | -0.006 (2)   |
| C23 | 0.037 (3) | 0.041 (3) | 0.058 (4)       | -0.013 (2)   | -0.019 (3)   | -0.007 (3)   |
| C24 | 0.052 (4) | 0.040 (3) | 0.032 (3)       | -0.027 (3)   | -0.012 (2)   | -0.001 (2)   |
| C25 | 0.053 (4) | 0.033 (3) | 0.052 (4)       | -0.008 (3)   | -0.016 (3)   | -0.015 (3)   |
| C26 | 0.036 (3) | 0.030 (3) | 0.051 (3)       | 0.000(2)     | -0.014 (3)   | -0.015 (2)   |
| C31 | 0.029 (3) | 0.019 (2) | 0.030 (3)       | -0.0039 (18) | -0.013 (2)   | -0.0010 (19) |
| C32 | 0.036 (3) | 0.036 (3) | 0.027 (3)       | -0.001 (2)   | -0.008 (2)   | -0.004 (2)   |
|     |           |           |                 |              |              |              |

# supporting information

| C33 | 0.051 (4)    | 0.045 (3)    | 0.029 (3)    | -0.016 (3)    | -0.013 (2)    | 0.006 (2)     |
|-----|--------------|--------------|--------------|---------------|---------------|---------------|
| C34 | 0.061 (4)    | 0.033 (3)    | 0.045 (3)    | -0.012 (3)    | -0.034 (3)    | 0.007 (3)     |
| C35 | 0.051 (4)    | 0.028 (3)    | 0.069 (4)    | 0.008 (2)     | -0.038 (3)    | -0.009 (3)    |
| C36 | 0.037 (3)    | 0.029 (3)    | 0.045 (3)    | 0.005 (2)     | -0.018 (2)    | -0.011 (2)    |
| 01  | 0.0299 (18)  | 0.0295 (17)  | 0.0345 (19)  | -0.0091 (14)  | -0.0131 (15)  | -0.0034 (15)  |
| O2  | 0.051 (2)    | 0.0310 (19)  | 0.034 (2)    | -0.0133 (17)  | -0.0117 (17)  | 0.0003 (17)   |
| P1  | 0.0209 (6)   | 0.0212 (6)   | 0.0223 (6)   | -0.0030 (4)   | -0.0060 (5)   | -0.0036 (5)   |
| Te1 | 0.0205 (2)   | 0.0252 (2)   | 0.0228 (2)   | -0.00338 (16) | -0.00399 (16) | -0.00623 (17) |
| I1  | 0.02691 (19) | 0.03040 (18) | 0.0364 (2)   | -0.00844 (13) | -0.00070 (14) | -0.00623 (14) |
| I2  | 0.03118 (19) | 0.0377 (2)   | 0.03201 (19) | -0.00362 (14) | -0.00814 (14) | -0.01573 (15) |
| I3  | 0.02802 (19) | 0.0372 (2)   | 0.03218 (19) | 0.00223 (14)  | -0.00940 (14) | -0.00627 (15) |
|     |              |              |              |               |               |               |

Geometric parameters (Å, °)

| C1—02     | 1.208 (6) | C22—C23             | 1.394 (8)   |
|-----------|-----------|---------------------|-------------|
| C101      | 1.341 (6) | C22—H22             | 0.9500      |
| C1—C2     | 1.498 (6) | C23—C24             | 1.371 (8)   |
| C2—C3     | 1.547 (6) | С23—Н23             | 0.9500      |
| C2—H2A    | 0.9900    | C24—C25             | 1.368 (8)   |
| C2—H2B    | 0.9900    | C24—H24             | 0.9500      |
| C3—C4     | 1.549 (7) | C25—C26             | 1.381 (8)   |
| C3—P1     | 1.826 (4) | C25—H25             | 0.9500      |
| С3—Н3     | 1.0000    | C26—H26             | 0.9500      |
| C4—O1     | 1.446 (6) | C31—C32             | 1.394 (7)   |
| C4—H4A    | 0.9900    | C31—C36             | 1.397 (7)   |
| C4—H4B    | 0.9900    | C31—P1              | 1.785 (5)   |
| C11—C12   | 1.383 (7) | C32—C33             | 1.386 (7)   |
| C11—C16   | 1.392 (7) | С32—Н32             | 0.9500      |
| C11—P1    | 1.792 (5) | C33—C34             | 1.366 (9)   |
| C12—C13   | 1.388 (8) | С33—Н33             | 0.9500      |
| С12—Н12   | 0.9500    | C34—C35             | 1.384 (9)   |
| C13—C14   | 1.371 (8) | C34—H34             | 0.9500      |
| С13—Н13   | 0.9500    | C35—C36             | 1.388 (8)   |
| C14—C15   | 1.395 (8) | С35—Н35             | 0.9500      |
| C14—H14   | 0.9500    | С36—Н36             | 0.9500      |
| C15—C16   | 1.381 (7) | Te1—I2 <sup>i</sup> | 2.9255 (9)  |
| С15—Н15   | 0.9500    | Te1—I2              | 2.9255 (9)  |
| С16—Н16   | 0.9500    | Te1—I1              | 2.9417 (12) |
| C21—C22   | 1.380 (7) | Te1—I1 <sup>i</sup> | 2.9417 (12) |
| C21—C26   | 1.398 (7) | Te1—I3              | 2.9439 (10) |
| C21—P1    | 1.797 (5) | Te1—I3 <sup>i</sup> | 2.9439 (10) |
|           |           |                     |             |
| 02—C1—O1  | 121.0 (4) | C25—C24—H24         | 119.7       |
| O2—C1—C2  | 127.2 (5) | C23—C24—H24         | 119.7       |
| 01—C1—C2  | 111.8 (4) | C24—C25—C26         | 120.3 (5)   |
| C1—C2—C3  | 104.3 (4) | C24—C25—H25         | 119.8       |
| C1—C2—H2A | 110.9     | C26—C25—H25         | 119.8       |
| C3—C2—H2A | 110.9     | C25—C26—C21         | 119.7 (5)   |

|                                              | 110.0             |                                      | 1001               |
|----------------------------------------------|-------------------|--------------------------------------|--------------------|
| C1—C2—H2B                                    | 110.9             | C25—C26—H26                          | 120.1              |
| C3—C2—H2B                                    | 110.9             | C21—C26—H26                          | 120.1              |
| H2A—C2—H2B                                   | 108.9             | C32—C31—C36                          | 119.2 (5)          |
| C2—C3—C4                                     | 103.4 (3)         | C32—C31—P1                           | 119.4 (4)          |
| C2—C3—P1                                     | 113.1 (3)         | C36—C31—P1                           | 121.2 (4)          |
| C4—C3—P1                                     | 111.7 (3)         | C33—C32—C31                          | 120.3 (5)          |
| С2—С3—Н3                                     | 109.5             | С33—С32—Н32                          | 119.8              |
| С4—С3—Н3                                     | 109.5             | C31—C32—H32                          | 119.8              |
| Р1—С3—Н3                                     | 109.5             | $C_{34} - C_{33} - C_{32}$           | 120.2 (6)          |
| 01 - C4 - C3                                 | 106.2(4)          | $C_{34}$ $C_{33}$ H <sub>33</sub>    | 119.9              |
| O1 C4 H4A                                    | 110.2 (4)         | C32 C33 H33                          | 110.0              |
| $C_{1}$                                      | 110.5             | $C_{32} = C_{33} = 1155$             | 119.9              |
| $C_3 - C_4 - H_4 A$                          | 110.5             | $C_{33} = C_{34} = C_{33}$           | 120.3 (3)          |
| OI - C4 - H4B                                | 110.5             | C33—C34—H34                          | 119.9              |
| C3—C4—H4B                                    | 110.5             | C35—C34—H34                          | 119.9              |
| H4A—C4—H4B                                   | 108.7             | C34—C35—C36                          | 120.3 (5)          |
| C12—C11—C16                                  | 119.2 (5)         | С34—С35—Н35                          | 119.8              |
| C12—C11—P1                                   | 120.5 (4)         | С36—С35—Н35                          | 119.8              |
| C16—C11—P1                                   | 120.2 (4)         | C35—C36—C31                          | 119.6 (5)          |
| C11—C12—C13                                  | 120.0 (5)         | С35—С36—Н36                          | 120.2              |
| C11—C12—H12                                  | 120.0             | С31—С36—Н36                          | 120.2              |
| C13—C12—H12                                  | 120.0             | C1—O1—C4                             | 111.5 (4)          |
| C14—C13—C12                                  | 120.7 (5)         | C31—P1—C11                           | 110.7 (2)          |
| C14—C13—H13                                  | 119.6             | C31 - P1 - C21                       | 109.2 (2)          |
| C12_C13_H13                                  | 119.6             | $C_{11}$ $P_{1}$ $C_{21}$            | 108.3(2)           |
| $C_{12} = C_{13} = C_{14} = C_{15}$          | 119.8 (5)         | $C_{31}$ $P_{1}$ $C_{3}$             | 107.7(2)           |
| $C_{13} = C_{14} = C_{13}$                   | 119.8 (5)         | $C_{11}$ $P_1$ $C_3$                 | 107.7(2)           |
| C15 - C14 - II14                             | 120.1             | C11 - 1 - C3                         | 109.0(2)           |
| C13-C14-H14                                  | 120.1             |                                      | 111.2 (2)          |
| C16—C15—C14                                  | 119.4 (5)         | 12 - 1e1 - 12                        | 180.0              |
| С16—С15—Н15                                  | 120.3             | 12'—1e1—11                           | 91.74 (3)          |
| C14—C15—H15                                  | 120.3             | I2—Te1—I1                            | 88.26 (3)          |
| C15—C16—C11                                  | 120.8 (5)         | $I2^{i}$ —Te1—I1 <sup>i</sup>        | 88.26 (3)          |
| C15—C16—H16                                  | 119.6             | I2—Te1—I1 <sup>i</sup>               | 91.74 (3)          |
| C11—C16—H16                                  | 119.6             | I1—Te1—I1 <sup>i</sup>               | 180.0              |
| C22—C21—C26                                  | 119.6 (5)         | $I2^{i}$ —Te1—I3                     | 87.85 (3)          |
| C22—C21—P1                                   | 122.3 (4)         | I2—Te1—I3                            | 92.15 (3)          |
| C26—C21—P1                                   | 118.1 (4)         | I1—Te1—I3                            | 92.00 (3)          |
| C21—C22—C23                                  | 119.7 (5)         | $I1^{i}$ —Te1—I3                     | 88.00 (3)          |
| C21—C22—H22                                  | 120.1             | $I2^{i}$ —Te1—I3 <sup>i</sup>        | 92.15 (3)          |
| $C^{23}$ $C^{22}$ $H^{22}$                   | 120.1             | $I2$ $I01$ $I3^{i}$                  | 87.85 (3)          |
| $C_{24}$ $C_{23}$ $C_{22}$ $C_{23}$ $C_{22}$ | 120.1<br>120.1(5) | 12 - 101 - 13<br>$11 - Te1 - 13^{i}$ | 88 00 (3)          |
| $C_{24} = C_{23} = C_{22}$                   | 120.1 (5)         | $11^{i}$ Te1 $13^{i}$                | 00.00(3)           |
| $C_{24} = C_{23} = H_{23}$                   | 120.0             | 11 - 1c1 - 15<br>12 To1 12           | 92.00 (3)<br>180.0 |
| C22—C23—H23                                  | 120.0             | 13—1e1—13 <sup>.</sup>               | 180.0              |
| $C_{25} - C_{24} - C_{23}$                   | 120.5 (5)         |                                      |                    |
| O2—C1—C2—C3                                  | -174.2 (5)        | P1-C31-C36-C35                       | 175.4 (4)          |
| O1—C1—C2—C3                                  | 6.8 (5)           | O2—C1—O1—C4                          | -174.9 (4)         |
| C1—C2—C3—C4                                  | -14.0 (5)         | C2-C1-O1-C4                          | 4.2 (5)            |
| C1—C2—C3—P1                                  | 107.0 (4)         | C3—C4—O1—C1                          | -13.4 (5)          |
|                                              |                   |                                      |                    |

| C2-C3-C4-O1     | 16.6 (4)   | C32—C31—P1—C11 | -148.4 (4) |
|-----------------|------------|----------------|------------|
| P1-C3-C4-O1     | -105.3 (3) | C36—C31—P1—C11 | 35.8 (5)   |
| C16—C11—C12—C13 | -0.8 (8)   | C32—C31—P1—C21 | 92.4 (4)   |
| P1-C11-C12-C13  | -177.1 (5) | C36—C31—P1—C21 | -83.4 (4)  |
| C11—C12—C13—C14 | -0.3 (9)   | C32—C31—P1—C3  | -28.5 (5)  |
| C12—C13—C14—C15 | 1.4 (10)   | C36—C31—P1—C3  | 155.7 (4)  |
| C13—C14—C15—C16 | -1.4(9)    | C12—C11—P1—C31 | -146.6 (4) |
| C14—C15—C16—C11 | 0.4 (9)    | C16—C11—P1—C31 | 37.2 (5)   |
| C12—C11—C16—C15 | 0.7 (8)    | C12—C11—P1—C21 | -26.8 (5)  |
| P1-C11-C16-C15  | 177.0 (4)  | C16—C11—P1—C21 | 157.0 (4)  |
| C26—C21—C22—C23 | 0.8 (8)    | C12—C11—P1—C3  | 94.7 (4)   |
| P1-C21-C22-C23  | 179.3 (4)  | C16—C11—P1—C3  | -81.5 (4)  |
| C21—C22—C23—C24 | 0.2 (8)    | C22—C21—P1—C31 | -129.0 (4) |
| C22—C23—C24—C25 | -0.7 (9)   | C26—C21—P1—C31 | 49.5 (5)   |
| C23—C24—C25—C26 | 0.1 (9)    | C22—C21—P1—C11 | 110.3 (4)  |
| C24—C25—C26—C21 | 1.0 (9)    | C26—C21—P1—C11 | -71.3 (4)  |
| C22—C21—C26—C25 | -1.4 (8)   | C22—C21—P1—C3  | -10.3 (5)  |
| P1-C21-C26-C25  | -179.9 (4) | C26—C21—P1—C3  | 168.2 (4)  |
| C36—C31—C32—C33 | -1.0 (8)   | C2-C3-P1-C31   | -170.7 (3) |
| P1—C31—C32—C33  | -176.8 (4) | C4—C3—P1—C31   | -54.5 (4)  |
| C31—C32—C33—C34 | 1.7 (9)    | C2-C3-P1-C11   | -50.1 (4)  |
| C32—C33—C34—C35 | -1.2 (9)   | C4—C3—P1—C11   | 66.0 (4)   |
| C33—C34—C35—C36 | -0.1 (9)   | C2-C3-P1-C21   | 69.6 (4)   |
| C34—C35—C36—C31 | 0.8 (8)    | C4—C3—P1—C21   | -174.2 (3) |
| C32—C31—C36—C35 | -0.3 (8)   |                |            |
|                 |            |                |            |

Symmetry code: (i) -x, -y, -z.

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H  | H···A | D···A     | D—H···A |  |
|---------------------------|------|-------|-----------|---------|--|
| C35—H35…I1 <sup>ii</sup>  | 0.95 | 3.17  | 4.080 (6) | 161     |  |
| C16—H16…I2                | 0.95 | 2.97  | 3.839 (5) | 152     |  |
| C22—H22…I2 <sup>iii</sup> | 0.95 | 3.09  | 3.875 (6) | 141     |  |
| C32—H32…I3 <sup>iii</sup> | 0.95 | 3.08  | 3.958 (6) | 155     |  |

Symmetry codes: (ii) -x, -y+1, -z; (iii) x+1, y, z.