data reports

open 👌 access

Crystal structure of (piperidine-1-carbodithioato- $\kappa^2 S$,S)[2-(pyridin-2-yl)phenyl- $\kappa^2 C^1$,N]palladium(II)

Mikhail Kondrashov, André Fleckhaus, Roman Gritcenko and Ola F. Wendt*

Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden. *Correspondence e-mail: ola.wendt@chem.lu.se

Received 5 August 2015; accepted 11 August 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

The title compound, $[Pd(C_{11}H_8N)(C_6H_{10}NS_2)]$, crystallizes with three similar and discrete molecules in the asymmetric unit. The CNS₂ donor set defines a distorted square-planar geometry around the Pd^{II} atom, with very small deviations from planarity. The bidentate nature of the ligands gives fairly large deviations from the ideal 90° angles; the C-Pd-N angles are all around 81° and the S-Pd-S angles are around 75°. Molecules pack *via* dispersion interactions.

Keywords: crystal structure; palladium; phenylpyridine; dithiocarbamate.

CCDC reference: 1418104

1. Related literature

For structures of phenylpyridine with palladium, see: Nasielski *et al.* (2010). For a hexathiaadamantane structure with an S–Pd–S moiety, see: Pickardt & Rautenberg (1986). For examples of dinuclear palladium(II) complexes relevant to possible C–H activation, see: Powers *et al.* (2009, 2010). For the preparation of the dithiocarbamic acid, see: Kiss (2007).

2. Experimental

```
2.1. Crystal data
```

```
[Pd(C_{11}H_{\$}N)(C_{6}H_{10}NS_{2})]

M_{r} = 420.85

Monoclinic, P2_{1}/c

a = 24.0780 (9) Å

b = 8.5585 (2) Å

c = 26.6841 (10) Å

\beta = 113.514 (4)°
```

2.2. Data collection

Agilent Xcalibur Sapphire3 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) *T*_{min} = 0.604, *T*_{max} = 1.000

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.096$ S = 1.0812332 reflections $V = 5042.2 (3) \text{ Å}^{3}$ Z = 12Mo K\alpha radiation $\mu = 1.35 \text{ mm}^{-1}$ T = 293 K $0.25 \times 0.15 \times 0.03 \text{ mm}$

58403 measured reflections 12332 independent reflections 8246 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.057$

595 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.78~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.69~e~{\rm \AA}^{-3} \end{split}$$

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (CrystalMaker, 2011); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2008).

Acknowledgements

Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5379).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. (http://www.crystalmaker.com)
- Kiss, Z. (2007). CanCure Laboratories, LLC Patent: US2007/10427 A1, 11.
- Nasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O'Brien, C. J., Lough, A. & Organ, M. G. (2010). *Chem. Eur. J.* 16, 10844–10853.
- Pickardt, J. & Rautenberg, N. (1986). Z. Naturforsch. Teil B, **41**, 409–412.
- Powers, D. C., Geibel, M. A. L., Klein, J. E. M. N. & Ritter, T. (2009). J. Am. Chem. Soc. 131, 17050–17051.
- Powers, D. C., Xiao, D. Y., Geibel, M. A. L. & Ritter, T. (2010). J. Am. Chem. Soc. 132, 14530–14536.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2015). E71, m166 [https://doi.org/10.1107/S2056989015015005]

Crystal structure of (piperidine-1-carbodithioato- $\kappa^2 S$,S)[2-(pyridin-2-yl)phenyl- $\kappa^2 C^1$,N]palladium(II)

Mikhail Kondrashov, André Fleckhaus, Roman Gritcenko and Ola F. Wendt

S1. Structural commentary

We were interested in synthesizing dinuclear Pd^{II} complexes because of their possible involvement in C—H activation (Powers *et al.*, 2009; Powers *et al.*, 2010). The title compound was synthesized by a ligand exchange from a corresponding acetate-bridged dimer (Powers *et al.* (2009) and *N*-piperidinedithiocarbamic acid (Kiss, 2007). However, despite the isoelectronic structure and similar geometry of acetate and dithiocarbamate, the product formed was found to have a monomeric structure. The likely explanation for this difference is that the larger atomic radius and longer bonds of sulfur decrease the strain in the four-membered ring that is formed in a monomeric structure. The asymmetric unit contains three discrete molecules and there is no indication of any strong intermolecular forces; packing is by dispersion. The natural bite angle of the ligands make the angles smaller than 90° and there is good agreement with other phenylpyridine palladium(II) complexes (Nasielski *et al.* 2010), and also with an example of a hexathiaadamantane structure displaying the same S–Pd–S moiety as seen here (Pickardt and Rautenberg, 1986). Bond distances are unremarkable and the higher trans influence of the σ -C compared to the nitrogen is clearly seen in the Pd–S bond which is approximately 0.1 Å longer *trans* to carbon.

S2. Synthesis and crystallization

In air, $[(phpy)PdOAc]_2$ (20 mg, 0.034 mmol, 1 equiv) was added to a solution of N-piperidinedithiocarbamic acid (11 mg, 0.068 mmol, 2 equiv) in MeCN (10 mL). The resulting solution was stirred overnight at 40°C, and then it was cooled to RT. The reaction mixture was concentrated to ~1mL and a mixture of Et₂O/pentane (3:1, 5 mL) was added. The bright-yellow precipitate formed was filtered off and washed with mixture of Et₂O/pentane (3:1, 3x2 mL) and dried. 23 mg (80%) of the title compound was obtained. X-ray quality crystals were obtained by recrystallization from a CH₂Cl₂/MeCN solution.

¹H NMR (500 MHz, CD₂Cl₂): d 8.38 (d, *J* = 5 Hz, 1H, H₁), 7.86 (m, 1H, H₃), 7.80 (d, *J* = 8 Hz, 1H, H₄), 7.59 (dd, *J* = 7, 1 Hz, 1H, H₇), 7.20 – 7.00 (m, 4H, H_{2,8-10}), 4.01 (dd, *J* = 11, 5 Hz, 4H, H₁₃₊₁₇), 1.80 – 1.64 (m, 6H, H₁₄₋₁₆)

S3. Refinement

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}$.

The molecular structure of one of the molecules in the asymmetric unit with atom labels and 50% probability displacement ellipsoids. H-atoms are omitted for clarity.

(Piperidine-1-carbodithioato- $\kappa^2 S$, S)[2-(pyridin-2-yl)phenyl- $\kappa^2 C^1$, N]palladium(II)

Crystal data

 $[Pd(C_{11}H_8N)(C_6H_{10}NS_2)]$ $M_r = 420.85$ Monoclinic, $P2_1/c$ a = 24.0780 (9) Å b = 8.5585 (2) Å c = 26.6841 (10) Å $\beta = 113.514$ (4)° V = 5042.2 (3) Å³ Z = 12

Data collection

Agilent Xcalibur Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1829 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\min} = 0.604, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.096$ S = 1.08 F(000) = 2544 $D_x = 1.663 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8955 reflections $\theta = 2.5-29.0^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.25 \times 0.15 \times 0.03 \text{ mm}$

58403 measured reflections 12332 independent reflections 8246 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -32 \rightarrow 31$ $k = -11 \rightarrow 11$ $l = -34 \rightarrow 35$

12332 reflections595 parameters0 restraintsHydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2 + 4.0221P]$	$\Delta ho_{ m max} = 0.78 \ { m e} \ { m \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.69 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.47872 (19)	0.9806 (5)	0.59090 (18)	0.0540 (11)
H1	0.4729	0.8838	0.6039	0.065*
C2	0.5189 (2)	1.0838 (6)	0.6266 (2)	0.0637 (13)
H2	0.5398	1.0577	0.6632	0.076*
C3	0.5275 (2)	1.2265 (6)	0.6070 (2)	0.0676 (14)
Н3	0.5550	1.2974	0.6303	0.081*
C4	0.4954 (2)	1.2637 (5)	0.5531 (2)	0.0590 (13)
H4	0.5008	1.3610	0.5401	0.071*
C5	0.45500 (17)	1.1572 (4)	0.51770 (18)	0.0429 (10)
C6	0.41895 (17)	1.1804 (4)	0.45974 (18)	0.0425 (10)
C11	0.38240 (17)	1.0550 (4)	0.43218 (16)	0.0400 (9)
C12	0.33523 (17)	0.5711 (5)	0.47067 (16)	0.0421 (9)
C13	0.25652 (19)	0.3891 (5)	0.41511 (17)	0.0503 (11)
H13A	0.2655	0.2870	0.4044	0.060*
H13B	0.2527	0.4626	0.3863	0.060*
C14	0.19769 (18)	0.3824 (5)	0.42284 (18)	0.0536 (11)
H14A	0.1658	0.3430	0.3898	0.064*
H14B	0.1865	0.4867	0.4296	0.064*
C15	0.2039 (2)	0.2771 (6)	0.47048 (19)	0.0656 (14)
H15A	0.1670	0.2814	0.4768	0.079*
H15B	0.2097	0.1701	0.4616	0.079*
C16	0.25689 (19)	0.3259 (5)	0.52196 (18)	0.0550 (12)
H16A	0.2486	0.4275	0.5336	0.066*
H16B	0.2618	0.2515	0.5509	0.066*
C17	0.31480 (18)	0.3338 (5)	0.51270 (18)	0.0515 (11)
H17A	0.3474	0.3730	0.5453	0.062*
H17B	0.3258	0.2301	0.5051	0.062*
N1	0.44742 (14)	1.0153 (4)	0.53759 (14)	0.0460 (8)
N2	0.30608 (14)	0.4380 (4)	0.46629 (13)	0.0445 (8)
S1	0.39245 (5)	0.63462 (13)	0.53043 (5)	0.0510 (3)
S2	0.31981 (5)	0.70232 (13)	0.41777 (4)	0.0500 (3)
Pd1	0.38867 (2)	0.86906 (3)	0.48024 (2)	0.04174 (9)
C42	-0.1449 (3)	0.3674 (7)	0.1333 (2)	0.0747 (15)
H42	-0.1863	0.3804	0.1138	0.090*
C43	-0.1223 (3)	0.2369 (7)	0.1647 (2)	0.0768 (16)
H43	-0.1487	0.1610	0.1674	0.092*

C44	-0.0605 (3)	0.2182 (6)	0.1925 (2)	0.0716 (15)
H44	-0.0453	0.1289	0.2134	0.086*
C45	-0.0210(2)	0.3326 (5)	0.18941 (18)	0.0532 (12)
C46	0.0450 (2)	0.3269 (5)	0.21499 (18)	0.0535 (11)
C47	0.0774 (3)	0.2004 (6)	0.2458 (2)	0.0753 (16)
H47	0.0571	0.1136	0.2510	0.090*
C48	0.1401 (3)	0.2049 (7)	0.2685 (2)	0.0793 (17)
H48	0.1618	0.1208	0.2891	0.095*
C49	0.1703 (3)	0.3323 (6)	0.2609 (2)	0.0709 (14)
H49	0.2124	0.3349	0.2766	0.085*
C50	0.1381(2)	0.4575 (5)	0.22969 (18)	0.0571 (12)
H50	0.1589	0.5429	0.2244	0.068*
C51	0.0755(2)	0.5729 0.4574 (5)	0.20639 (17)	0.000
C52	0.0755(2) 0.03404(18)	0.1371(3) 0.9253(5)	0.20039(17) 0.12234(16)	0.0453(10)
C52	0.10411 (19)	1.1262(5)	0.11693 (18)	0.0433(10) 0.0578(12)
Н534	0.1342	1.1202 (5)	0.1335	0.0578 (12)
H53R	0.1110	1.0450	0.1428	0.069*
C54	0.1119 0.1088 (2)	1.2115	0.1428 0.06510 (10)	0.009
U54 A	0.1088(2) 0.1483	1.1840 (0)	0.00313(13)	0.0020 (13)
1134A 1154D	0.1465	1.2317	0.0743	0.075*
ПЈ4В	0.1032	1.0970	0.0410 0.0260(2)	0.073°
UJJ 1155 A	0.0002 (2)	1.3033 (0)	0.0500 (2)	0.0093 (14)
ПЈЈА	0.0637	1.3931	0.0388	0.083
ПЭЭВ С5(0.0033	1.3332	0.0025	0.085°
	-0.0014(2)	1.2330 (5)	0.02334 (19)	0.0035 (15)
H56A	-0.0086	1.1498	-0.0030	0.076*
HS6B	-0.0322	1.3129	0.0070	0.076*
C57	-0.0066 (2)	1.1706 (5)	0.07404 (19)	0.0575 (12)
H5/A	-0.0061	1.2570	0.0978	0.069*
H57B	-0.0450	1.1167	0.0638	0.069*
N5	-0.04432 (17)	0.4636 (4)	0.15885 (15)	0.0528 (9)
N6	0.04299 (15)	1.0624 (4)	0.10399 (14)	0.0467 (8)
S5	0.09201 (5)	0.80207 (14)	0.16127 (5)	0.0576 (3)
S6	-0.03610 (5)	0.84672 (14)	0.10983 (5)	0.0585 (3)
Pd3	0.02011 (2)	0.62500 (4)	0.16033 (2)	0.04749 (10)
C7	0.4200 (2)	1.3170 (5)	0.4314 (2)	0.0562 (12)
H7	0.4442	1.4006	0.4497	0.067*
C8	0.3848 (2)	1.3272 (5)	0.3759 (2)	0.0625 (13)
H8	0.3849	1.4186	0.3571	0.075*
C9	0.3500 (2)	1.2038 (6)	0.3487 (2)	0.0606 (13)
H9	0.3272	1.2102	0.3112	0.073*
C10	0.3488 (2)	1.0690 (5)	0.37684 (18)	0.0545 (11)
H10	0.3248	0.9857	0.3579	0.065*
C21	0.4498 (2)	0.0167 (6)	0.1723 (2)	0.0633 (13)
H21	0.4504	0.1109	0.1551	0.076*
C22	0.4939 (2)	-0.0922 (7)	0.1785 (2)	0.0749 (15)
H22	0.5235	-0.0731	0.1652	0.090*
C23	0.4934 (3)	-0.2304 (7)	0.2049 (2)	0.0777 (16)
H23	0.5239	-0.3039	0.2109	0.093*

C24	0.4481 (2)	-0.2592 (6)	0.22206 (19)	0.0699 (15)
H24	0.4470	-0.3541	0.2386	0.084*
C25	0.4037 (2)	-0.1475 (5)	0.21495 (17)	0.0544 (12)
C26	0.3526 (2)	-0.1629 (5)	0.23108 (17)	0.0529 (12)
C27	0.3415 (2)	-0.2961 (6)	0.25529 (19)	0.0652 (14)
H27	0.3670	-0.3822	0.2620	0.078*
C28	0.2925 (3)	-0.2998 (6)	0.26931 (19)	0.0723 (16)
H28	0.2856	-0.3882	0.2863	0.087*
C29	0.2534 (2)	-0.1751 (6)	0.25874 (19)	0.0689 (14)
H29	0.2200	-0.1791	0.2680	0.083*
C30	0.2648 (2)	-0.0418 (5)	0.23374 (17)	0.0584 (12)
H30	0.2385	0.0428	0.2264	0.070*
C31	0.3136 (2)	-0.0332 (5)	0.21989 (16)	0.0488 (11)
C32	0.29763 (19)	0.4484 (5)	0.14680 (16)	0.0474 (10)
C33	0.2954 (2)	0.6764 (5)	0.09022 (18)	0.0541 (11)
H33A	0.3330	0.6322	0.0912	0.065*
H33B	0.3037	0.7812	0.1052	0.065*
C34	0.2494 (2)	0.6829 (6)	0.03194 (18)	0.0614 (13)
H34A	0.2450	0.5797	0.0158	0.074*
H34B	0.2637	0.7530	0.0111	0.074*
C35	0.1882 (2)	0.7388 (6)	0.0286 (2)	0.0720 (15)
H35A	0.1910	0.8477	0.0395	0.086*
H35B	0.1587	0.7308	-0.0088	0.086*
C36	0.1675 (2)	0.6421 (6)	0.06549 (18)	0.0614 (13)
H36A	0.1306	0.6868	0.0658	0.074*
H36B	0.1584	0.5368	0.0511	0.074*
C37	0.2145 (2)	0.6357 (5)	0.12260 (18)	0.0584 (12)
H37A	0.2199	0.7390	0.1388	0.070*
H37B	0.2011	0.5662	0.1443	0.070*
C41	-0.1044 (2)	0.4787 (6)	0.1314 (2)	0.0636 (13)
H41	-0.1193	0.5677	0.1102	0.076*
N3	0.40623 (16)	-0.0083 (4)	0.19014 (14)	0.0527 (9)
N4	0.27226 (16)	0.5801 (4)	0.12316 (14)	0.0499 (9)
S3	0.36489 (5)	0.37714 (14)	0.14774 (5)	0.0570 (3)
S4	0.26594 (6)	0.32525 (13)	0.17964 (5)	0.0571 (3)
Pd2	0.34020 (2)	0.14795 (4)	0.18645 (2)	0.04822 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.057 (3)	0.058 (3)	0.044 (3)	-0.006 (2)	0.018 (2)	-0.005 (2)
C2	0.059 (3)	0.078 (3)	0.049 (3)	-0.005 (3)	0.016 (2)	-0.020 (3)
C3	0.051 (3)	0.074 (4)	0.069 (4)	-0.015 (3)	0.016 (3)	-0.030 (3)
C4	0.053 (3)	0.047 (3)	0.078 (4)	-0.011 (2)	0.027 (3)	-0.015 (3)
C5	0.037 (2)	0.040 (2)	0.056 (3)	-0.0019 (19)	0.023 (2)	-0.008(2)
C6	0.038 (2)	0.038 (2)	0.057 (3)	0.0010 (18)	0.026 (2)	-0.003 (2)
C11	0.037 (2)	0.040(2)	0.045 (3)	0.0036 (18)	0.0189 (19)	-0.0031 (19)
C12	0.040(2)	0.044 (2)	0.046 (2)	-0.0016 (19)	0.0220 (19)	-0.0047 (19)

C13	0.056 (3)	0.049 (2)	0.045 (3)	-0.016 (2)	0.020 (2)	-0.010 (2)
C14	0.039 (2)	0.067 (3)	0.052 (3)	-0.007 (2)	0.015 (2)	0.005 (2)
C15	0.046 (3)	0.082 (3)	0.069 (3)	-0.009(3)	0.022 (2)	0.014 (3)
C16	0.056 (3)	0.056 (3)	0.055 (3)	0.008 (2)	0.025 (2)	0.016 (2)
C17	0.047 (3)	0.049 (2)	0.056 (3)	-0.002(2)	0.017 (2)	0.010(2)
N1	0.0406 (19)	0.050 (2)	0.049 (2)	-0.0007 (16)	0.0192 (17)	-0.0078(17)
N2	0.044 (2)	0.0458 (19)	0.045 (2)	-0.0068 (17)	0.0192 (16)	0.0000 (17)
S1	0.0469 (6)	0.0522 (6)	0.0465 (6)	-0.0083(5)	0.0108 (5)	-0.0018(5)
S2	0.0547 (7)	0.0481 (6)	0.0446 (6)	-0.0095 (5)	0.0170 (5)	0.0023 (5)
Pd1	0.04080 (18)	0.03782 (16)	0.04519 (19)	-0.00455 (14)	0.01567 (14)	-0.00407 (15)
C42	0.073 (4)	0.083 (4)	0.074 (4)	-0.025(3)	0.036 (3)	-0.020(3)
C43	0.095 (5)	0.073 (4)	0.077 (4)	-0.036(3)	0.050 (4)	-0.017(3)
C44	0.101 (5)	0.063(3)	0.060 (3)	-0.019(3)	0.042 (3)	0.002(3)
C45	0.083(4)	0.048(3)	0.042 (3)	-0.007(2)	0.039(3)	-0.005(2)
C46	0.075(3)	0.053(3)	0.041(3)	0.007(2)	0.032(2)	0.003(2)
C47	0.075(5)	0.055(3)	0.066 (4)	0.007(2)	0.032(2) 0.049(3)	0.000(2)
C48	0.100(5)	0.083(4)	0.000(1) 0.057(3)	0.030(4)	0.036(3)	0.026(3)
C49	0.102(3) 0.079(4)	0.003(1) 0.081(4)	0.057(3)	0.030(1)	0.030(3)	0.020(3)
C50	0.077(4) 0.067(3)	0.001(4)	0.050(3)	0.014(3)	0.031(3) 0.028(2)	-0.001(2)
C51	0.067(3)	0.030(3)	0.032(3)	-0.002(2)	0.020(2)	-0.006(2)
C52	0.002(3)	0.043(2) 0.052(2)	0.044(3)	0.002(2)	0.029(2)	0.000(2)
C52	0.047(2)	0.052(2)	0.042(2)	-0.011(2)	0.024(2)	0.000(2)
C54	0.049(3)	0.001(3)	0.059(3)	-0.022(3)	0.010(2)	-0.002(2)
C55	0.038(3)	0.072(3)	0.002(3)	-0.018(3)	0.029(3)	0.003(3)
C55	0.034(4)	0.000(3)	0.058(3)	0.018(3)	0.028(3)	0.013(3)
C50	0.071(3)	0.055(3)	0.037(3)	0.001(3)	0.018(3)	0.012(2)
N5	0.051(3)	0.054(3)	0.000(3)	0.004(2)	0.022(2)	-0.008(2)
NG	0.000(3)	0.030(2)	0.052(2)	-0.000(2)	0.033(2)	-0.0080(19)
NU S5	0.040(2)	0.030(2)	0.050(2)	-0.0003(17)	0.0174(10)	0.0073(18)
55 56	0.04/8(7)	0.0372(7)	0.0030(8)	0.0043(0)	0.0202(0)	0.0132(0)
50 D42	0.0443(0)	0.0004(7)	0.0729(8)	-0.0049(0)	0.0233(0)	0.0081(0)
Pus	0.0534(2)	0.04511(18)	0.0490(2)	-0.00138(10)	0.02012(10)	-0.00013(10)
C°	0.053(3)	0.045(2)	0.073(4)	-0.004(2)	0.028(3)	0.001(2)
	0.0/1(3)	0.052(3)	0.073(4)	0.010(3)	0.039(3)	0.017(3)
C9	0.068(3)	0.063(3)	0.054 (3)	0.014(3)	0.027(3)	0.009(3)
C10 C21	0.060(3)	0.048(2)	0.052(3)	0.005(2)	0.019(2)	-0.002(2)
C21 C22	0.052(3)	0.065(3)	0.065(3)	-0.006(3)	0.015(3)	-0.009(3)
C22	0.056 (3)	0.091 (4)	0.068 (4)	0.003 (3)	0.015 (3)	-0.020(3)
C23	0.069 (4)	0.080 (4)	0.066 (4)	0.024 (3)	0.007 (3)	-0.013(3)
C24	0.077 (4)	0.057 (3)	0.051 (3)	0.013(3)	0.000 (3)	0.001 (2)
C25	0.059 (3)	0.047(2)	0.037(2)	-0.001(2)	-0.003(2)	-0.003(2)
C26	0.058 (3)	0.052 (3)	0.032 (2)	-0.007(2)	0.000 (2)	-0.003(2)
C27	0.073(4)	0.055 (3)	0.047 (3)	-0.005 (3)	0.002 (3)	0.002 (2)
C28	0.094 (4)	0.061 (3)	0.042 (3)	-0.020(3)	0.006 (3)	0.004 (2)
C29	0.075 (4)	0.079 (4)	0.047 (3)	-0.026 (3)	0.017 (3)	-0.008 (3)
C30	0.063 (3)	0.059 (3)	0.043 (3)	-0.011 (2)	0.010 (2)	-0.008(2)
C31	0.049 (3)	0.051 (3)	0.032 (2)	-0.006 (2)	0.002 (2)	-0.004 (2)
C32	0.052 (3)	0.049 (2)	0.035 (2)	-0.003 (2)	0.011 (2)	-0.004 (2)
C33	0.054 (3)	0.051 (3)	0.056 (3)	-0.008(2)	0.021 (2)	0.004 (2)

C34	0.072 (3)	0.065 (3)	0.047 (3)	-0.014 (3)	0.024 (2)	0.008 (2)
C35	0.062 (3)	0.083 (4)	0.057 (3)	-0.007 (3)	0.009 (3)	0.022 (3)
C36	0.053 (3)	0.070 (3)	0.058 (3)	-0.004 (3)	0.019 (2)	0.001 (3)
C37	0.065 (3)	0.059 (3)	0.058 (3)	0.013 (2)	0.031 (2)	0.010 (2)
C41	0.061 (3)	0.065 (3)	0.065 (3)	-0.004 (3)	0.026 (3)	-0.006 (3)
N3	0.049 (2)	0.054 (2)	0.042 (2)	-0.0057 (18)	0.0042 (18)	-0.0072 (18)
N4	0.051 (2)	0.055 (2)	0.044 (2)	0.0026 (18)	0.0195 (18)	0.0077 (18)
S3	0.0483 (7)	0.0545 (7)	0.0648 (8)	0.0017 (6)	0.0189 (6)	0.0004 (6)
S4	0.0644 (8)	0.0543 (7)	0.0540 (7)	0.0005 (6)	0.0251 (6)	0.0104 (6)
Pd2	0.0496 (2)	0.04335 (18)	0.0424 (2)	-0.00218 (16)	0.00854 (15)	-0.00136 (15)

Geometric parameters (Å, °)

C1—N1	1.351 (5)	C54—H54B	0.9700
C1—C2	1.374 (6)	C55—C56	1.506 (6)
C1—H1	0.9300	С55—Н55А	0.9700
C2—C3	1.377 (7)	С55—Н55В	0.9700
C2—H2	0.9300	C56—C57	1.508 (6)
C3—C4	1.371 (6)	C56—H56A	0.9700
С3—Н3	0.9300	С56—Н56В	0.9700
C4—C5	1.392 (5)	C57—N6	1.470 (5)
C4—H4	0.9300	С57—Н57А	0.9700
C5—N1	1.366 (5)	С57—Н57В	0.9700
C5—C6	1.454 (6)	N5—C41	1.342 (5)
C6—C11	1.397 (5)	N5—Pd3	2.065 (4)
C6—C7	1.398 (6)	S5—Pd3	2.2935 (12)
C11—C10	1.377 (5)	S6—Pd3	2.4069 (12)
C11—Pd1	2.011 (4)	C7—C8	1.384 (6)
C12—N2	1.319 (5)	С7—Н7	0.9300
C12—S2	1.725 (4)	C8—C9	1.363 (6)
C12—S1	1.727 (4)	C8—H8	0.9300
C13—N2	1.471 (5)	C9—C10	1.383 (6)
C13—C14	1.512 (5)	С9—Н9	0.9300
С13—Н13А	0.9700	C10—H10	0.9300
С13—Н13В	0.9700	C21—N3	1.331 (6)
C14—C15	1.516 (6)	C21—C22	1.372 (6)
C14—H14A	0.9700	C21—H21	0.9300
C14—H14B	0.9700	C22—C23	1.378 (7)
C15—C16	1.513 (6)	C22—H22	0.9300
C15—H15A	0.9700	C23—C24	1.364 (7)
C15—H15B	0.9700	С23—Н23	0.9300
C16—C17	1.512 (6)	C24—C25	1.390 (6)
C16—H16A	0.9700	C24—H24	0.9300
C16—H16B	0.9700	C25—N3	1.376 (5)
C17—N2	1.471 (5)	C25—C26	1.461 (6)
С17—Н17А	0.9700	C26—C27	1.388 (6)
С17—Н17В	0.9700	C26—C31	1.408 (6)
N1—Pd1	2.045 (3)	C27—C28	1.374 (7)

C1 D11	2 2020 (11)	C07 1107	0.0200
SI-PdI	2.3939 (11)	C2/—H2/	0.9300
S2—Pd1	2.3149 (11)	C28—C29	1.376 (7)
C42—C43	1.373 (7)	C28—H28	0.9300
C42—C41	1.378 (6)	C29—C30	1.403 (6)
C42—H42	0.9300	С29—Н29	0.9300
C43—C44	1.382 (7)	C30—C31	1.368 (6)
C43—H43	0.9300	С30—Н30	0.9300
C44—C45	1.390 (6)	C31—Pd2	2.016 (4)
C44—H44	0.9300	C32—N4	1.317 (5)
C45—N5	1 368 (5)	C_{32} = S_{3}	1 721 (4)
C45 C46	1.500 (5)	C_{32} S_4	1.721(1) 1.730(4)
$C_{45} = C_{40}$	1.439(0) 1 205(6)	C_{32} N4	1.750(4)
C40 - C47	1.395 (0)	C33—N4	1.407 (3)
C46—C51	1.405 (6)	C33—C34	1.508 (6)
C47—C48	1.384 (7)	С33—Н33А	0.9700
C47—H47	0.9300	С33—Н33В	0.9700
C48—C49	1.371 (7)	C34—C35	1.517 (6)
C48—H48	0.9300	C34—H34A	0.9700
C49—C50	1.388 (6)	C34—H34B	0.9700
C49—H49	0.9300	C35—C36	1.514 (6)
C50—C51	1.382 (6)	С35—Н35А	0.9700
С50—Н50	0.9300	C35—H35B	0.9700
C_{51} Pd3	2 009 (4)	$C_{36} - C_{37}$	1 494 (6)
C_{51} N6	2.009(4)	C_{36} H_{36A}	0.0700
C52_N0	1.322(3)		0.9700
C52—S0	1.722 (4)	C36—H36B	0.9700
C52—S5	1.727 (4)	C37—N4	1.464 (5)
C53—N6	1.476 (5)	С37—Н37А	0.9700
C53—C54	1.515 (6)	С37—Н37В	0.9700
С53—Н53А	0.9700	C41—H41	0.9300
С53—Н53В	0.9700	N3—Pd2	2.050 (4)
C54—C55	1.511 (6)	S3—Pd2	2.3996 (12)
C54—H54A	0.9700	S4—Pd2	2.2963 (13)
N1—C1—C2	122.1 (4)	С55—С56—Н56А	109 3
N1-C1-H1	118.9	C57—C56—H56A	109.3
$C_2 C_1 H_1$	118.0	C55 C56 H56B	109.3
$C_1 = C_2 = C_3$	118.6 (5)	C57 C56 H56P	109.3
C1 = C2 = C3	110.0 (5)		109.3
C1 - C2 - H2	120.7	H56A—C56—H56B	108.0
С3—С2—Н2	120.7	N6—C57—C56	111.9 (4)
C4—C3—C2	119.8 (5)	N6—C57—H57A	109.2
С4—С3—Н3	120.1	С56—С57—Н57А	109.2
С2—С3—Н3	120.1	N6—C57—H57B	109.2
C3—C4—C5	120.5 (4)	С56—С57—Н57В	109.2
C3—C4—H4	119.7	H57A—C57—H57B	107.9
C5—C4—H4	119.7	C41—N5—C45	120.1 (4)
N1—C5—C4	119.0 (4)	C41—N5—Pd3	125.7 (3)
N1-C5-C6	114.8 (3)	C45—N5—Pd3	114.2 (3)
C4—C5—C6	1262(4)	C52 - N6 - C57	122.9 (3)
$C_{11} - C_{6} - C_{7}$	120.2 (4)	$C_{52} = N_6 = C_{53}$	122.7(3) 122 A (A)
	140.1 (7)	052-110-055	122.7(4)

C11—C6—C5	116.0 (4)	C57—N6—C53	114.4 (3)
C7—C6—C5	123.9 (4)	C52—S5—Pd3	88.37 (15)
C10—C11—C6	118.4 (4)	C52—S6—Pd3	84.87 (14)
C10—C11—Pd1	128.0 (3)	C51—Pd3—N5	81.04 (16)
C6—C11—Pd1	113.6 (3)	C51—Pd3—S5	98.70 (13)
N2—C12—S2	123.9 (3)	N5—Pd3—S5	179.26 (10)
N2—C12—S1	123.7 (3)	C51—Pd3—S6	173.14 (13)
S2—C12—S1	112.5 (2)	N5—Pd3—S6	105.44 (11)
N2—C13—C14	110.0 (3)	S5—Pd3—S6	74.84 (4)
N2—C13—H13A	109.7	C8—C7—C6	119.7 (4)
C14—C13—H13A	109.7	С8—С7—Н7	120.1
N2—C13—H13B	109.7	С6—С7—Н7	120.1
C14—C13—H13B	109.7	C9—C8—C7	120.3 (4)
H13A—C13—H13B	108.2	С9—С8—Н8	119.8
C13—C14—C15	110.6 (4)	С7—С8—Н8	119.8
C13—C14—H14A	109.5	C8—C9—C10	119.9 (5)
C15—C14—H14A	109.5	С8—С9—Н9	120.1
C13—C14—H14B	109.5	С10—С9—Н9	120.1
C15—C14—H14B	109.5	C11—C10—C9	121.6 (4)
H14A—C14—H14B	108.1	C11—C10—H10	119.2
C16—C15—C14	111.3 (4)	C9—C10—H10	119.2
C16—C15—H15A	109.4	N3—C21—C22	122.0 (5)
C14—C15—H15A	109.4	N3—C21—H21	119.0
C16—C15—H15B	109.4	C22—C21—H21	119.0
C14—C15—H15B	109.4	C21—C22—C23	118.8 (5)
H15A—C15—H15B	108.0	C21—C22—H22	120.6
C17—C16—C15	111.2 (4)	C23—C22—H22	120.6
C17—C16—H16A	109.4	C24—C23—C22	119.8 (5)
C15—C16—H16A	109.4	C24—C23—H23	120.1
C17—C16—H16B	109.4	С22—С23—Н23	120.1
C15—C16—H16B	109.4	C23—C24—C25	120.3 (5)
H16A—C16—H16B	108.0	C23—C24—H24	119.8
N2—C17—C16	109.5 (3)	С25—С24—Н24	119.8
N2—C17—H17A	109.8	N3—C25—C24	118.8 (5)
С16—С17—Н17А	109.8	N3—C25—C26	115.1 (4)
N2—C17—H17B	109.8	C24—C25—C26	126.1 (5)
С16—С17—Н17В	109.8	C27—C26—C31	120.7 (5)
H17A—C17—H17B	108.2	C27—C26—C25	123.6 (5)
C1—N1—C5	120.0 (4)	C31—C26—C25	115.8 (4)
C1—N1—Pd1	125.6 (3)	C28—C27—C26	119.5 (5)
C5—N1—Pd1	114.4 (3)	С28—С27—Н27	120.2
C12—N2—C13	122.3 (3)	С26—С27—Н27	120.2
C12—N2—C17	123.8 (3)	C27—C28—C29	121.2 (5)
C13—N2—C17	113.6 (3)	С27—С28—Н28	119.4
C12—S1—Pd1	84.79 (14)	C29—C28—H28	119.4
C12—S2—Pd1	87.34 (14)	C28—C29—C30	118.7 (5)
C11—Pd1—N1	81.17 (15)	С28—С29—Н29	120.6
C11—Pd1—S2	100.29 (12)	С30—С29—Н29	120.6

N1—Pd1—S2	177.45 (10)	C31—C30—C29	121.7 (5)
C11—Pd1—S1	175.08 (12)	С31—С30—Н30	119.2
N1—Pd1—S1	103.52 (10)	С29—С30—Н30	119.2
S2—Pd1—S1	75.09 (4)	C30—C31—C26	118.2 (4)
C43—C42—C41	118.2 (5)	C30—C31—Pd2	128.3 (4)
C43—C42—H42	120.9	C26—C31—Pd2	113.4 (3)
C41—C42—H42	120.9	N4—C32—S3	124.3 (3)
C42—C43—C44	120.0 (5)	N4—C32—S4	123.4 (3)
C42—C43—H43	120.0	S3—C32—S4	112.3 (2)
C44—C43—H43	120.0	N4—C33—C34	109.9 (3)
C43—C44—C45	120.1 (5)	N4—C33—H33A	109.7
C43—C44—H44	119.9	С34—С33—Н33А	109.7
C45—C44—H44	119.9	N4—C33—H33B	109.7
N5—C45—C44	119.0 (5)	С34—С33—Н33В	109.7
N5—C45—C46	114.7 (4)	H33A—C33—H33B	108.2
C44—C45—C46	126.3 (5)	C33—C34—C35	111.7 (4)
C47—C46—C51	120.4 (5)	С33—С34—Н34А	109.3
C47—C46—C45	123.5 (5)	С35—С34—Н34А	109.3
C51—C46—C45	116.1 (4)	C33—C34—H34B	109.3
C48—C47—C46	119.5 (5)	C35—C34—H34B	109.3
C48—C47—H47	120.2	H34A—C34—H34B	107.9
С46—С47—Н47	120.2	C36—C35—C34	110.7 (4)
C49—C48—C47	120.6 (5)	С36—С35—Н35А	109.5
C49—C48—H48	119.7	С34—С35—Н35А	109.5
C47—C48—H48	119.7	С36—С35—Н35В	109.5
C48—C49—C50	119.9 (5)	С34—С35—Н35В	109.5
C48—C49—H49	120.0	H35A—C35—H35B	108.1
С50—С49—Н49	120.0	C37—C36—C35	111.8 (4)
C51—C50—C49	121.2 (5)	С37—С36—Н36А	109.3
С51—С50—Н50	119.4	С35—С36—Н36А	109.3
С49—С50—Н50	119.4	С37—С36—Н36В	109.3
C50—C51—C46	118.3 (4)	С35—С36—Н36В	109.3
C50—C51—Pd3	127.8 (3)	H36A—C36—H36B	107.9
C46—C51—Pd3	113.9 (3)	N4—C37—C36	110.6 (4)
N6—C52—S6	124.5 (3)	N4—C37—H37A	109.5
N6—C52—S5	123.6 (3)	С36—С37—Н37А	109.5
S6—C52—S5	111.9 (2)	N4—C37—H37B	109.5
N6—C53—C54	109.8 (4)	С36—С37—Н37В	109.5
N6—C53—H53A	109.7	H37A—C37—H37B	108.1
С54—С53—Н53А	109.7	N5—C41—C42	122.5 (5)
N6—C53—H53B	109.7	N5—C41—H41	118.8
С54—С53—Н53В	109.7	C42—C41—H41	118.8
H53A—C53—H53B	108.2	C21—N3—C25	120.3 (4)
C55—C54—C53	111.6 (4)	C21—N3—Pd2	125.8 (3)
С55—С54—Н54А	109.3	C25—N3—Pd2	113.9 (3)
С53—С54—Н54А	109.3	C32—N4—C37	122.7 (4)
C55—C54—H54B	109.3	C32—N4—C33	123.6 (4)
C53—C54—H54B	109.3	C37—N4—C33	113.4 (3)

H54A—C54—H54B	108.0	C32—S3—Pd2	84.42 (15)	
C56—C55—C54	109.9 (4)	C32—S4—Pd2	87.47 (15)	
С56—С55—Н55А	109.7	C31—Pd2—N3	81.62 (17)	
С54—С55—Н55А	109.7	C31—Pd2—S4	99.70 (14)	
С56—С55—Н55В	109.7	N3—Pd2—S4	178.20 (11)	
С54—С55—Н55В	109.7	C31—Pd2—S3	174.86 (14)	
H55A—C55—H55B	108.2	N3—Pd2—S3	103.49 (11)	
C55—C56—C57	111.6 (4)	S4—Pd2—S3	75.20 (4)	