

OPEN access

Crystal structure of 2-methoxy-1-nitronaphthalene

Hasna Yassine,^a Mostafa Khouili,^a* Lahcen El Ammari,^b Mohamed Saadi^b and El Mostafa Ketatni^c

^aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco, ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and ^cLaboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco. *Correspondence e-mail: m.khouili@usms.ma

Received 2 August 2015; accepted 28 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The asymmetric unit of the title compound, C₁₁H₉NO₃, contains two molecules, A and B. In molecule A, the dihedral angle between the planes of the naphthalene ring system (r.m.s. deviation = 0.003 Å) and the nitro group is 89.9 (2)°, and the C atom of the methoxy group deviates from the naphthyl plane by 0.022 (2) Å. Equivalent data for molecule Bare 0.008 Å, 65.9 (2)° and -0.198 (2) Å, respectively. In the crystal, molecules are linked by weak $C-H \cdots O$ interactions, forming [100] chains of alternating A and B molecules. Weak aromatic π - π stacking contacts, with a range of centroidcentroid distances from 3.5863 (9) to 3.8048 (9) Å, are also observed.

Keywords: crystal structure; naphthalene derivative; weak C—H···O interactions; π – π stacking.

CCDC reference: 1421062

1. Related literature

For biological activities of naphthalene derivatives, see: Wright et al. (2000); Rokade & Sayyed (2009); Upadhayaya et al. (2010). For the title compound as an intermediate in the synthesis of antipyretic drugs, see: Stoylkova et al. (2000); Govindarajana et al. (2011); Kirumakki et al. (2004); Yadav et al. (1998). For a related structure, see: Wannalerse et al. (2013).

2. Experimental

2.1. Crystal data

C₁₁H₉NO₃ $M_r = 203.19$ Triclinic, $P\overline{1}$ a = 9.1291 (4) Å b = 10.2456 (4) Å c = 10.5215 (4) Å $\alpha = 86.390(2)^{\circ}$ $\beta = 82.964 \ (2)^{\circ}$

2.2. Data collection

Bruker X8 APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\rm min} = 0.676, T_{\rm max} = 0.746$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.141$

S = 1.045450 reflections $0.39 \times 0.32 \times 0.24$ mm

 $\gamma = 85.801 \ (2)^{\circ}$

Z = 4

V = 972.63 (7) Å³

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

34901 measured reflections 5450 independent reflections 3446 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$

272 parameters	
H-atom parameters constrained	ł
$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots O5^{i}$ $C11-H11A\cdots O5^{ii}$	0.93	2.57	3.409 (2)	150
	0.96	2.60	3.462 (3)	150

Symmetry codes: (i) x + 1, y + 1, z; (ii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7477).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Govindarajan, M., Ganasan, K., Periandy, S. & Karabacak, M. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 646–653.
- Kirumakki, S. R., Nagaraju, N., Chary, K. V. R. & Narayanan, S. (2004). J. Catal. 221, 549–559.

- Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972-980
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoylkova, T. Y., Chanev, C. D., Lechert, H. T. & Bezouhanova, C. P. (2000). *Catal. Lett.* **69**, 109–112.
- Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). *Eur. J. Med. Chem.* **45**, 1854–1867.
- Wannalerse, B., Pannil, W., Loriang, J., Tuntulani, T. & Duangthongyou, T. (2013). Acta Cryst. E69, o682.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wright, M. S., Lax, A. R., Henderson, G. & Chen, J. A. (2000). Mycologia, 92, 42–45.
- Yadav, G. D. & Krishnan, S. (1998). Ind. Eng. Chem. Res. 37, 3358-3365.

supporting information

Acta Cryst. (2015). E71, o701-o702 [doi:10.1107/S2056989015016114]

Crystal structure of 2-methoxy-1-nitronaphthalene

Hasna Yassine, Mostafa Khouili, Lahcen El Ammari, Mohamed Saadi and El Mostafa Ketatni

S1. Comment

Naphthalene derivatives have been extensively employed in many fields, for example, as a colorant, explosive, disinfectant, insecticide, auxin plant hormone and play a role in the chemical defence against biological (Wright *et al.*, 2000) and have diverse and interesting antibiotic properties (Rokade & Sayyed, 2009; Upadhayaya *et al.* 2010). 2-Methoxynaphthalene is an important intermediate used in the production of naproxen. It is widely used a non-steroidal antiinflammatory, analgesic and antipyretic drug (Stoylkova *et al.*, 2000, Govindarajana *et al.*, 2011, Kirumakki *et al.*, 2004; Yadav *et al.*, 1998). Nitration of 1-methoxynaphthalene with bismuth nitrate in CH₂Cl₂ gives a compound (I) and describes its structure here.

The asymmetric unit of the title compound consists of two crystallographically independent molecules of nearly similar geometry as shown in Fig. 1. Bond lengths and angles of the title compound are comparable with that found in the similar structure (Wannalerse *et al.*, 2013). In the first (O1O2O3N1C1–C11) and second (O4O5O6N2C12–C22) molecules, the dihedral angles between the nitro group and the attached naphthalene system are 89.9 (2)° and 65.9 (2)°, respectively. The two naphthalene rings belonging to the both molecules form a dihedral angle of 72.02 (5)°.

In the crystal, the molecules are linked together by weak C—H···O interactions. Moreover, the π - π contacts between the naphthalene rings, may further consolidate the structure, with range of centroid– centroid distances = 3.5863 (9)—3.8048 (9) Å.

S2. Experimental

2-Methoxynaphtalene (500 mg, 3.164 mmol) and silica gel (500 mg) was added to a suspension of bismuth nitrate pentahydrate (1.2 eqv.) in CH₂Cl₂ (20 ml). The mixture was refluxed for 6 h. After cooling to room temperature, the reaction mixture was filtered and watched with CH₂Cl₂, the filtrate obtained was concentrated, and the resulting residue was purified by column chromatography using EtOAc-Hexane (1:9 ν/ν). The title compound was recrystallized from the solvent mixture ethyl acetate/hexane to yield orange block crystals (yield: 74%).

S3. Refinement

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with C—H = 0.93-0.96 Å, and refined as riding on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}$ for aromatic and $U_{iso}(H) = 1.5 U_{eq}$ (C) for methyl. Two outlier reflections, (-7 3 0) and (-1 - 3 2), were omitted in the last cycles of refinement.

Figure 1

A view of the molecule of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Figure 2

Partial crystal packing for the title compound showing molecules linked by hydrogen bonds as blue dashed lines and π - π contacts between the naphthalene rings (red dashed lines).

2-Methoxy-1-nitronaphthalene

Crystal data

C₁₁H₉NO₃ $M_r = 203.19$ Triclinic, P1*a* = 9.1291 (4) Å b = 10.2456 (4) Å c = 10.5215 (4) Å $\alpha = 86.390 \ (2)^{\circ}$ $\beta = 82.964 \ (2)^{\circ}$ $\gamma = 85.801 \ (2)^{\circ}$ $V = 972.63 (7) Å^3$

Data collection

Bruker X8 APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.676, \ T_{\max} = 0.746$

Refinement

Refinement on F^2 H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0511P)^2 + 0.2462P]$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.141$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ S = 1.045450 reflections $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ 272 parameters 0 restraints Hydrogen site location: inferred from Extinction coefficient: 0.011 (2) neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.82138 (17)	0.83303 (15)	0.59386 (15)	0.0445 (3)	
C2	0.76837 (19)	0.92960 (16)	0.67524 (16)	0.0512 (4)	
C3	0.8714 (2)	0.99956 (17)	0.72711 (17)	0.0582 (4)	
H3	0.8389	1.0650	0.7832	0.070*	
C4	1.0189 (2)	0.97177 (17)	0.69542 (16)	0.0562 (4)	
H4	1.0854	1.0201	0.7298	0.067*	
C5	1.07461 (18)	0.87266 (15)	0.61254 (15)	0.0464 (4)	
C6	0.97310 (17)	0.79982 (14)	0.55904 (14)	0.0416 (3)	

Z = 4F(000) = 424 $D_{\rm x} = 1.388 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3506 reflections $\theta = 1.7 - 30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, orange $0.39 \times 0.32 \times 0.24$ mm

34901 measured reflections 5450 independent reflections 3446 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.038$ $\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -14 \rightarrow 14$

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

C7	1.02802 (19)	0.70018 (16)	0.47545 (16)	0.0515 (4)
H7	0.9625	0.6519	0.4398	0.062*
C8	1.1760 (2)	0.67452 (19)	0.44694 (18)	0.0605 (5)
H8	1.2107	0.6085	0.3920	0.073*
С9	1.2771 (2)	0.7456 (2)	0.49869 (19)	0.0633 (5)
H9	1.3782	0.7266	0.4781	0.076*
C10	1.2280 (2)	0.84240 (19)	0.57914 (18)	0.0580 (5)
H10	1.2961	0.8895	0.6128	0.070*
C11	0.5602 (3)	1.0473 (2)	0.7849 (2)	0.0859 (7)
H11A	0.4542	1.0518	0.7914	0.129*
H11B	0.5951	1.1311	0.7543	0.129*
H11C	0.5912	1.0242	0.8678	0.129*
C12	0.12086 (16)	0.31177 (13)	0.90308 (14)	0.0391 (3)
C13	0.19472 (16)	0.40531 (14)	0.82703 (14)	0.0411 (3)
C14	0.11092 (19)	0.51331 (15)	0.77661 (15)	0.0477 (4)
H14	0.1581	0.5779	0.7242	0.057*
C15	-0.03834 (18)	0.52299 (15)	0.80456 (15)	0.0483 (4)
H15	-0.0915	0.5959	0.7721	0.058*
C16	-0.11572 (17)	0.42663 (14)	0.88090 (14)	0.0424 (3)
C17	-0.03443 (16)	0.31586 (14)	0.93202 (14)	0.0391 (3)
C18	-0.11305 (19)	0.22006 (16)	1.00938 (17)	0.0515 (4)
H18	-0.0618	0.1475	1.0446	0.062*
C19	-0.2632 (2)	0.23339 (18)	1.0326 (2)	0.0612 (5)
H19	-0.3135	0.1690	1.0827	0.073*
C20	-0.34344 (19)	0.34223 (19)	0.9822 (2)	0.0618 (5)
H20	-0.4460	0.3497	0.9990	0.074*
C21	-0.27129 (18)	0.43676 (17)	0.90895 (18)	0.0532 (4)
H21	-0.3251	0.5093	0.8767	0.064*
C22	0.4201 (2)	0.47481 (19)	0.71352 (18)	0.0615 (5)
H22A	0.5244	0.4516	0.7073	0.092*
H22B	0.4010	0.5629	0.7403	0.092*
H22C	0.3862	0.4688	0.6314	0.092*
N1	0.20980 (15)	0.20198 (13)	0.95773 (14)	0.0483 (3)
N2	0.71338 (16)	0.76148 (15)	0.53852 (16)	0.0571 (4)
O1	0.6734 (2)	0.8025 (2)	0.43824 (19)	0.1118 (7)
O2	0.6708 (2)	0.66298 (17)	0.5941 (2)	0.1043 (6)
O3	0.61970 (14)	0.95078 (14)	0.69777 (14)	0.0703 (4)
O4	0.29054 (17)	0.22522 (13)	1.03577 (15)	0.0785 (4)
O5	0.19774 (17)	0.09259 (12)	0.92409 (16)	0.0767 (4)
O6	0.34371 (12)	0.38730 (11)	0.80514 (11)	0.0537 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0446 (8)	0.0428 (8)	0.0464 (8)	-0.0077 (6)	-0.0072 (7)	0.0025 (6)
C2	0.0539 (10)	0.0513 (9)	0.0462 (9)	-0.0005 (7)	-0.0013 (7)	0.0027 (7)
C3	0.0772 (13)	0.0527 (9)	0.0447 (9)	-0.0034 (9)	-0.0046 (9)	-0.0084 (7)
C4	0.0708 (12)	0.0557 (10)	0.0465 (9)	-0.0177 (8)	-0.0179 (8)	-0.0006 (7)

C5	0.0510 (9)	0.0486 (8)	0.0410 (8)	-0.0110 (7)	-0.0117 (7)	0.0069 (7)
C6	0.0441 (8)	0.0415 (7)	0.0393 (8)	-0.0064 (6)	-0.0076 (6)	0.0052 (6)
C7	0.0527 (10)	0.0499 (9)	0.0526 (10)	-0.0041 (7)	-0.0081 (8)	-0.0046 (7)
C8	0.0582 (11)	0.0624 (11)	0.0580 (11)	0.0062 (8)	-0.0016 (8)	-0.0027 (8)
C9	0.0455 (10)	0.0768 (13)	0.0640 (12)	0.0008 (9)	-0.0028 (8)	0.0118 (10)
C10	0.0499 (10)	0.0688 (11)	0.0578 (11)	-0.0170 (8)	-0.0169 (8)	0.0122 (9)
C11	0.0839 (16)	0.0823 (15)	0.0800 (15)	0.0233 (12)	0.0198 (12)	-0.0064 (12)
C12	0.0404 (8)	0.0360 (7)	0.0417 (8)	-0.0007 (6)	-0.0080 (6)	-0.0039 (6)
C13	0.0390 (8)	0.0445 (8)	0.0403 (8)	-0.0033 (6)	-0.0047 (6)	-0.0046 (6)
C14	0.0524 (9)	0.0456 (8)	0.0442 (8)	-0.0048 (7)	-0.0055 (7)	0.0049 (6)
C15	0.0522 (9)	0.0444 (8)	0.0483 (9)	0.0032 (7)	-0.0121 (7)	0.0036 (7)
C16	0.0413 (8)	0.0445 (8)	0.0431 (8)	-0.0009 (6)	-0.0099 (6)	-0.0089 (6)
C17	0.0392 (8)	0.0386 (7)	0.0409 (8)	-0.0042 (6)	-0.0070 (6)	-0.0069 (6)
C18	0.0493 (9)	0.0441 (8)	0.0611 (10)	-0.0087 (7)	-0.0048 (8)	0.0001 (7)
C19	0.0505 (10)	0.0582 (10)	0.0746 (12)	-0.0188 (8)	0.0041 (9)	-0.0067 (9)
C20	0.0370 (9)	0.0710 (12)	0.0785 (13)	-0.0071 (8)	-0.0011 (8)	-0.0203 (10)
C21	0.0411 (9)	0.0570 (10)	0.0636 (11)	0.0021 (7)	-0.0125 (8)	-0.0125 (8)
C22	0.0487 (10)	0.0745 (12)	0.0592 (11)	-0.0146 (9)	0.0053 (8)	0.0020 (9)
N1	0.0435 (7)	0.0412 (7)	0.0595 (8)	-0.0011 (5)	-0.0071 (6)	0.0016 (6)
N2	0.0450 (8)	0.0572 (9)	0.0709 (10)	-0.0085 (6)	-0.0111 (7)	-0.0039 (7)
01	0.1262 (16)	0.1253 (15)	0.1010 (13)	-0.0526 (12)	-0.0681 (12)	0.0190 (11)
O2	0.1055 (13)	0.0811 (11)	0.1351 (16)	-0.0523 (10)	-0.0365 (11)	0.0232 (10)
03	0.0542 (8)	0.0768 (9)	0.0753 (9)	0.0099 (6)	0.0049 (6)	-0.0104 (7)
O4	0.0826 (10)	0.0663 (8)	0.0944 (11)	-0.0031 (7)	-0.0500 (9)	0.0107 (7)
05	0.0839 (10)	0.0403 (7)	0.1082 (12)	0.0091 (6)	-0.0230 (8)	-0.0139 (7)
O6	0.0394 (6)	0.0609 (7)	0.0585 (7)	-0.0050 (5)	-0.0002 (5)	0.0050 (5)

Geometric parameters (Å, °)

C1—C2	1.372 (2)	C12—N1	1.4678 (19)
C1—C6	1.411 (2)	C13—O6	1.3524 (18)
C1—N2	1.466 (2)	C13—C14	1.412 (2)
C2—O3	1.353 (2)	C14—C15	1.356 (2)
С2—С3	1.404 (3)	C14—H14	0.9300
С3—С4	1.360 (3)	C15—C16	1.408 (2)
С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.406 (2)	C16—C21	1.412 (2)
C4—H4	0.9300	C16—C17	1.423 (2)
C5—C10	1.418 (2)	C17—C18	1.414 (2)
С5—С6	1.419 (2)	C18—C19	1.361 (2)
С6—С7	1.413 (2)	C18—H18	0.9300
С7—С8	1.358 (2)	C19—C20	1.400 (3)
С7—Н7	0.9300	C19—H19	0.9300
С8—С9	1.396 (3)	C20—C21	1.357 (3)
С8—Н8	0.9300	C20—H20	0.9300
C9—C10	1.360 (3)	C21—H21	0.9300
С9—Н9	0.9300	C22—O6	1.427 (2)
C10—H10	0.9300	C22—H22A	0.9600

C11—O3	1.424 (2)	С22—Н22В	0.9600
C11—H11A	0.9600	С22—Н22С	0.9600
C11—H11B	0.9600	N1—O5	1.2129 (17)
C11—H11C	0.9600	N1—O4	1.2136 (18)
C12—C13	1.371 (2)	N2—O1	1.200 (2)
C12—C17	1.411 (2)	N2—O2	1.200 (2)
C2—C1—C6	124.01 (15)	O6—C13—C14	124.40 (14)
C2-C1-N2	117.77 (15)	C12—C13—C14	118.16 (14)
C6-C1-N2	118.21 (14)	C15—C14—C13	120.05 (14)
O3—C2—C1	116.87 (16)	C15—C14—H14	120.0
O3—C2—C3	125.16 (16)	C13—C14—H14	120.0
C1—C2—C3	117.96 (16)	C14—C15—C16	122.34 (14)
C4—C3—C2	120.12 (16)	C14—C15—H15	118.8
С4—С3—Н3	119.9	C16—C15—H15	118.8
С2—С3—Н3	119.9	C15—C16—C21	122.11 (14)
C3—C4—C5	122.44 (16)	C15—C16—C17	118.92 (14)
C3—C4—H4	118.8	C21—C16—C17	118.97 (14)
C5—C4—H4	118.8	C12—C17—C18	124.80 (14)
C4—C5—C10	123.00 (16)	C12—C17—C16	116.68 (13)
C4—C5—C6	118.74 (15)	C18—C17—C16	118.51 (14)
C10—C5—C6	118.27 (16)	C19—C18—C17	120.38 (16)
C1—C6—C7	124.13 (14)	C19—C18—H18	119.8
C1—C6—C5	116.72 (14)	C17—C18—H18	119.8
C7—C6—C5	119.15 (15)	C18—C19—C20	121.21 (17)
C8—C7—C6	120.33 (16)	C18—C19—H19	119.4
С8—С7—Н7	119.8	С20—С19—Н19	119.4
С6—С7—Н7	119.8	C21—C20—C19	119.91 (16)
C7—C8—C9	121.14 (18)	C21—C20—H20	120.0
С7—С8—Н8	119.4	С19—С20—Н20	120.0
С9—С8—Н8	119.4	C20—C21—C16	121.01 (16)
C10—C9—C8	120.03 (18)	C20—C21—H21	119.5
С10—С9—Н9	120.0	C16—C21—H21	119.5
С8—С9—Н9	120.0	O6—C22—H22A	109.5
C9—C10—C5	121.09 (17)	O6—C22—H22B	109.5
С9—С10—Н10	119.5	H22A—C22—H22B	109.5
C5—C10—H10	119.5	O6—C22—H22C	109.5
O3—C11—H11A	109.5	H22A—C22—H22C	109.5
O3—C11—H11B	109.5	H22B—C22—H22C	109.5
H11A—C11—H11B	109.5	O5—N1—O4	123.26 (14)
O3—C11—H11C	109.5	O5—N1—C12	118.58 (14)
H11A—C11—H11C	109.5	O4—N1—C12	118.15 (13)
H11B—C11—H11C	109.5	O1—N2—O2	122.74 (17)
C13—C12—C17	123.81 (13)	O1—N2—C1	118.59 (15)
C13—C12—N1	117.52 (13)	O2—N2—C1	118.65 (16)
C17—C12—N1	118.66 (13)	C2—O3—C11	118.58 (17)
O6—C13—C12	117.43 (13)	C13—O6—C22	117.88 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C4—H4···O5 ⁱ	0.93	2.57	3.409 (2)	150
C11—H11A····O5 ⁱⁱ	0.96	2.60	3.462 (3)	150

Symmetry codes: (i) *x*+1, *y*+1, *z*; (ii) *x*, *y*+1, *z*.