CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 20 August 2015
Accepted 26 August 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; amine; polymorph; conformation; Hirshfeld surface

CCDC reference: 1420783
Supporting information: this article has supporting information at journals.iucr.org/e

A monoclinic polymorph of 4 -(2 H -1,3-benzodioxol-5-yl)-1-(4-methylphenyl)-1H-pyrazol-5-amine

Mukesh M. Jotani, ${ }^{\text {a }}$ N Nilesh N. Gajera, ${ }^{\text {b }}$ Mukesh C. Patel, ${ }^{\text {b }}$ Herman H. Y. Sung ${ }^{\text {c }}$ and Edward R. T. Tiekink ${ }^{\text {d, } \mathrm{e}_{*}}$

${ }^{\text {a }}$ Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001 , India, ${ }^{\text {b }}$ P. S. Science and H. D. Patel Arts College, S. V. Campus, Kadi, Gujarat 382 715, India, ${ }^{\text {c }}$ Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China, ${ }^{\text {d Department }}$ of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\mathbf{e}}$ Centre for Chemical Crystallography and Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
*Correspondence e-mail: mmjotani@rediffmail.com, edward.tiekink@gmail.com

The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$, is a monoclinic polymorph $\left(P 2_{1} / c\right.$ with $\left.Z^{\prime}=1\right)$ of the previously reported triclinic ($P \overline{1}$ with $Z^{\prime}=2$) form [Gajera et al. (2013). Acta Cryst. E69, o736-0737]. The molecule in the monoclinic polymorph features a central pyrazolyl ring with an N -bound p-tolyl group and a C -bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N - and C bound rings are 50.06 (5) and $27.27(5)^{\circ}$, respectively. The angle between the pendent rings is $77.31(4)^{\circ}$, indicating the molecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methylene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent molecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, molecules assemble into supramolecular helical chains via amino-pyrazolyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. These are linked into layers via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, and layers stack along the a axis with no specific interactions between them.

1. Chemical context

It is the broad range of biological activities, such as antidepressant, anti-anxiety, anti-fungal, anti-bacterial, antidiabetic, anti-cancer, etc. (Tanitame et al., 2004; Chimenti et al., 2006; Ding et al.,2009; Shen et al., 2011; Deng et al., 2012), that continues to inspire interest in compounds containing the amino-substituted pyrazole unit. It was in this context that the crystal structure of 4-(2H-1,3-benzodioxol-5-yl)-1-(4-methyl-phenyl)-1 H-pyrazol-5-amine (I) was originally determined (Gajera et al., 2013). Subsequently, during scale up, crystals of the monoclinic form were isolated from recrystallization of (I) from ethyl acetate, the same solvent system that afforded the original triclinic polymorph. Herein, the crystal and molecular structures of the monoclinic form of (I), hereafter (mI), are described and compared with the triclinic polymorph, (tI).

Figure 1
The molecular structure of the molecule found in the monoclinic polymorph showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

2. Structural commentary

The molecule in (mI), Fig. 1, comprises a central and almost planar pyrazolyl ring (r.m.s. deviation of the five atoms $=$ $0.0043 \AA$) flanked by an N -bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused ring system. In the latter, the fivemembered dioxolyl ring adopts an envelope conformation with the methylene-C17 atom being the flap; the C 17 atom lies 0.318 (2) \AA out of the least-squares plane defined by the O 1 , $\mathrm{O} 2, \mathrm{C} 14$ and C15 atoms (r.m.s. deviation $=0.0005 \AA$). The dihedral angles between the central ring and the N - and C bound six-membered rings are $50.06(5)$ and $27.27(5)^{\circ}$, respectively. The dihedral angle between the six-membered rings is $77.31(4)^{\circ}$, indicating an overall twisted arrangement. In general terms, the relative disposition of the amino and dioxolyl substituents may be described as being syn.

While (mI) crystallizes with $Z^{\prime}=1$, the triclinic polymorph, (tI), crystallizes with $Z^{\prime}=2$ (Gajera et al., 2013). In the latter, the molecules have quite different conformations. In one of the independent molecules, the amino and dioxolyl substituents are syn, as for (mI), and in the other these substituents are anti. These differences in molecular conformations are highlighted in Fig. 2. The syn/anti distinction is quite clear from this overlap diagram where the dioxolyl ring obviously occupies a different position in the second independent mol-

Table 1
Dihedral angle $\left({ }^{\circ}\right)$ data for the three independent molecules in (mI) and (tI).

Structure	pyrazolyl $/ p$-tolyl	pyrazolyl/benzo-C 6	p-tolyl/benzo-C ${ }_{6}$
(mI)	$50.06(5)$	$27.27(5)$	$77.31(4)$
(tI), molecule a	$49.08(9)$	$47.18(7)$	$85.22(8)$
(tI), molecule b	$68.22(9)$	$31.67(8)$	$80.63(8)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and Cg 2 are the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 11-\mathrm{C} 16$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 1 N \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.88(2)$	$2.16(2)$	$2.9981(16)$	$159(1)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g 1^{\mathrm{ii}}$	0.95	2.97	$3.6753(14)$	133
$\mathrm{C} 17-\mathrm{H} 17 B \cdots C g 2^{\mathrm{iii}}$	0.99	2.66	$3.6334(15)$	169

Symmetry codes
$x,-y+\frac{1}{2}, z-\frac{3}{2}$.
(i) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$;
(ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$;
(iii)

Figure 4
Unit-cell contents shown in projection down the c axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as blue and purple dashed lines, respectively.

Figure 5
Views of the Hirshfeld surfaces for $(a)(\mathrm{mI}),(b)(\mathrm{tI})$ - molecule a, and (c) (tI) - molecule b.

4. Supramolecular features

The most notable feature of the crystal packing in (mI) is the formation of supramolecular helical chains aligned along the b axis and mediated by amino-pyrazolyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, Fig. 3 and Table 2. The chains are consolidated into layers in the $b c$ plane by pyrazolyl-tolyl $\mathrm{C} 10-\mathrm{H} \cdots \pi$ and methylene-benzo-C ${ }_{6} \mathrm{C} 17-\mathrm{H} \cdots \pi$ interactions, Table 2. The layers inter-digitate along the a axis whereby the dioxolyl rings face each other, Fig. 4. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are at distances beyond the standard criteria (Spek, 2009). In the packing scheme just described, no specific role is found for the second amino- H 2 N atom. To a first approximation, the mode of association between molecules in (tI) is similar in that supramolecular chains are formed. These comprise alternating independent molecules a and b that are connected by aminopyrazolyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The difference is that in (tI), the chains have a zigzag topology. Chains in (tI) are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

5. Analysis of the Hirshfeld surfaces

In order to investigate further the nature of the crystal packing in (mI) and (tI), an analysis of the Hirshfeld surfaces (Spackman \& Jayatilaka, 2009) was undertaken employing CrystalExplorer (Wolff et al., 2012). The Hirshfeld surfaces were mapped over $d_{\text {norm }}$ for each of the three molecules, Fig. 5. The points of contact corresponding to the amino-pyrazolyl $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are recognized easily by deep-red depressions on the Hirshfeld surfaces of all three molecules. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions in (mI) are indicated by both diminutive spots and light-red regions on the surface. These are also apparent in (tI) with additional features arising from the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, Fig. 5. The fingerprint plots (Rohl $e t$ al., 2008) were also calculated and enabled a delineation of the relative contribution of the different intermolecular contacts to the respective crystal structures. These contributions are illustrated graphically in Fig. 6. Despite the different modes of association between the respective molecules, to a first approximation the relative contributions to the surfaces are similar.

Figure 6
Relative contributions of various intermolecular contacts to the Hirshfeld surface area in (a) mI, and of (tI) molecules (b) a and (c) b.

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)

Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer

Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

```
C
293.32
Monoclinic, P2 / c
100
13.9652 (3), 10.6898 (2), 9.8459 (2)
109.844 (2)
1382.57 (5)
4
Cu K\alpha
0.77
0.35\times0.25 }\times0.1
Agilent SuperNova Dual
    diffractometer with an Atlas
    detector
Multi-scan (CrysAlis PRO;
        Agilent, 2014)
0.989,1.000
4379, 2582, 2289
0.013
0.609
0.036, 0.096, 1.03
2582
206
2
H}\mathrm{ atoms treated by a mixture of
    independent and constrained
    refinement
0.19,-0.27
```

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXL97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

6. Database survey

A search of the Cambridge Structural Database (Groom \& Allen, 2014), revealed there are no direct analogues of (I), i.e. $1,3 \mathrm{~N}$ - and C -disubstituted species. There are four examples of 1,3,4 trisubstituted analogues (Abu Thaher et al., 2012; and references therein).

7. Synthesis and crystallization

The title compound was synthesized according to the same synthetic process as described in the original report (Gajera et al., 2013). Single crystals suitable for X-ray measurements in the form of light-brown prisms were obtained from its ethyl acetate solution at room temperature.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$) and were
included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2-1.5 U_{\mathrm{eq}}(\mathrm{C})$. The N -bound H atoms were located in a difference Fourier map but were refined with a distance restraint of $\mathrm{N}-\mathrm{H}=0.88 \pm 0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{N})$.

Acknowledgements

The authors are thankful to the Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Hong Kong (People's Republic of China), for access to the X-ray diffraction facility during the IYCr2014 OpenLab. One of the authors, MMJ, is also thankful to Professor Ian D. Williams (HKUST) for useful discussions. We thank Mr Y. S. Tan (University of Malaya) for performing the PXRD analysis.

References

Abu Thaher, B., Koch, P., Schollmeyer, D. \& Laufer, S. (2012). Acta Cryst. E68, o2603.
Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Granese, A., Befani, O., Turini, P., Cirilli, R., La Torre, F., Alcaro, S., Ortuso, F. \& Langer, T. (2006). Curr. Med. Chem. 13, 1411-1428.

Deng, H., Yu, Z., Shi, G., Chen, M., Tao, K. \& Hou, T. (2012). Chem. Biol. Drug Des. 79, 279-289.
Ding, X.-L., Zhang, H.-Y., Qi, L., Zhao, B.-X., Lian, S., Lv, H.-S. \& Miao, J.-Y. (2009). Bioorg. Med. Chem. Lett. 19, 5325-5328.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gajera, N. N., Patel, M. C., Jotani, M. M. \& Tiekink, E. R. T. (2013). Acta Cryst. E69, o736-o737.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

PANalytical (2009). X'Pert HighScore Plus. PANalytical, B. V. Almelo, The Netherlands.
Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. \& Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shen, D.-M., Brady, E. J., Candelore, M. R., Dallas-Yang, Q., Ding, V. D.-H., Feeney, W. P., Jiang, G., McCann, M. E., Mock, S., Qureshi, S. A., Saperstein, R., Shen, X., Tong, X., Tota, L. M., Wright, M. J., Yang, X., Zheng, S., Chapman, K. T., Zhang, B. B., Tata, J. R. \& Parmee, E. R. (2011). Bioorg. Med. Chem. Lett. 21, 7681.

Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M. \& Yamagishi, J. (2004). J. Med. Chem. 47, 3693-3696.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.

supporting information

A monoclinic polymorph of 4-(2H-1,3-benzodioxol-5-yl)-1-(4-methyl-phenyl)-1H-pyrazol-5-amine

Mukesh M. Jotani, Nilesh N. Gajera, Mukesh C. Patel, Herman H. Y. Sung and Edward R. T. Tiekink

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

4-(2H-1,3-Benzodioxol-5-yl)-1-(4-methylphenyl)-1H-pyrazol-5-amine

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$

$M_{r}=293.32$
Monoclinic, $P 2_{1} / c$
$a=13.9652$ (3) \AA
$b=10.6898(2) \AA$
$c=9.8459(2) \AA$
$\beta=109.844$ (2) ${ }^{\circ}$
$V=1382.57(5) \AA^{3}$
$Z=4$

Data collection

Agilent SuperNova Dual
diffractometer with an Atlas detector
Radiation source: SuperNova (Cu) X-ray

Source

Mirror monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\min }=0.989, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.096$
$S=1.03$
2582 reflections

$$
F(000)=616
$$

$D_{\mathrm{x}}=1.409 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2900 reflections
$\theta=5.3-75.6^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, light-brown
$0.35 \times 0.25 \times 0.15 \mathrm{~mm}$

4379 measured reflections
2582 independent reflections
2289 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=70.0^{\circ}, \theta_{\text {min }}=5.3^{\circ}$
$h=-16 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-11 \rightarrow 11$

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0527 P)^{2}+0.5203 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	-0.01538 (7)	0.79537 (9)	0.05812 (10)	0.0229 (2)
O2	0.09248 (7)	0.63677 (9)	0.17958 (10)	0.0229 (2)
N1	0.47346 (8)	0.93081 (10)	0.71284 (11)	0.0146 (2)
N2	0.46867 (8)	1.04737 (10)	0.65038 (11)	0.0168 (2)
N3	0.38155 (8)	0.73744 (11)	0.67648 (13)	0.0229 (3)
H1N	0.4302 (10)	0.6978 (15)	0.7442 (15)	0.028*
H2N	0.3203 (8)	0.7054 (15)	0.6459 (17)	0.028*
C1	0.79815 (10)	0.85389 (13)	1.24901 (15)	0.0226 (3)
H1A	0.7964	0.9221	1.3147	0.034*
H1B	0.8637	0.8547	1.2330	0.034*
H1C	0.7896	0.7737	1.2917	0.034*
C2	0.71312 (10)	0.87116 (12)	1.10672 (14)	0.0178 (3)
C3	0.73229 (9)	0.91569 (12)	0.98529 (14)	0.0188 (3)
H3	0.8002	0.9347	0.9919	0.023*
C4	0.65366 (9)	0.93269 (12)	0.85479 (14)	0.0173 (3)
H4	0.6679	0.9627	0.7728	0.021*
C5	0.55400 (9)	0.90549 (11)	0.84473 (13)	0.0146 (3)
C6	0.53312 (9)	0.86113 (11)	0.96412 (13)	0.0161 (3)
H6	0.4651	0.8427	0.9574	0.019*
C7	0.61276 (10)	0.84398 (12)	1.09371 (14)	0.0174 (3)
H7	0.5984	0.8130	1.1752	0.021*
C8	0.39184 (9)	0.85823 (12)	0.63961 (13)	0.0149 (3)
C9	0.33011 (9)	0.93033 (12)	0.52569 (13)	0.0154 (3)
C10	0.38242 (10)	1.04516 (12)	0.54044 (13)	0.0170 (3)
H10	0.3579	1.1141	0.4773	0.020*
C11	0.23592 (9)	0.89631 (12)	0.40828 (13)	0.0157 (3)
C12	0.16893 (9)	0.99103 (12)	0.33479 (14)	0.0180 (3)
H12	0.1828	1.0747	0.3683	0.022*
C13	0.08223 (10)	0.96750 (13)	0.21382 (14)	0.0199 (3)
H13	0.0379	1.0328	0.1646	0.024*
C14	0.06491 (9)	0.84515 (13)	0.17031 (13)	0.0177 (3)
C15	0.12917 (9)	0.75009 (12)	0.24281 (14)	0.0170 (3)
C16	0.21486 (9)	0.77116 (12)	0.36133 (14)	0.0169 (3)
H16	0.2580	0.7044	0.4095	0.020*
C17	0.01608 (10)	0.66946 (14)	0.04489 (14)	0.0217 (3)
H17A	-0.0427	0.6118	0.0237	0.026*

H17B 0.0442	0.6637	-0.0347	0.026^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0172(4)$	$0.0250(5)$	$0.0207(5)$	$0.0016(4)$	$-0.0013(4)$	$-0.0017(4)$
O2	$0.0204(5)$	$0.0185(5)$	$0.0223(5)$	$-0.0015(4)$	$-0.0023(4)$	$-0.0026(4)$
N1	$0.0150(5)$	$0.0125(5)$	$0.0151(5)$	$-0.0002(4)$	$0.0036(4)$	$0.0007(4)$
N2	$0.0198(5)$	$0.0137(5)$	$0.0161(5)$	$-0.0013(4)$	$0.0050(4)$	$0.0010(4)$
N3	$0.0144(5)$	$0.0165(6)$	$0.0307(7)$	$-0.0019(4)$	$-0.0017(5)$	$0.0071(5)$
C1	$0.0221(7)$	$0.0219(7)$	$0.0195(7)$	$-0.0008(5)$	$0.0015(5)$	$0.0003(5)$
C2	$0.0197(6)$	$0.0134(6)$	$0.0178(6)$	$0.0013(5)$	$0.0030(5)$	$-0.0025(5)$
C3	$0.0148(6)$	$0.0188(6)$	$0.0217(7)$	$-0.0007(5)$	$0.0046(5)$	$-0.0014(5)$
C4	$0.0183(6)$	$0.0170(6)$	$0.0171(6)$	$0.0000(5)$	$0.0066(5)$	$-0.0001(5)$
C5	$0.0158(6)$	$0.0116(6)$	$0.0147(6)$	$0.0013(4)$	$0.0031(5)$	$-0.0023(5)$
C6	$0.0153(6)$	$0.0142(6)$	$0.0189(6)$	$0.0003(5)$	$0.0061(5)$	$-0.0016(5)$
C7	$0.0223(6)$	$0.0141(6)$	$0.0162(6)$	$0.0009(5)$	$0.0071(5)$	$-0.0008(5)$
C8	$0.0127(6)$	$0.0154(6)$	$0.0171(6)$	$-0.0001(4)$	$0.0057(5)$	$-0.0013(5)$
C9	$0.0153(6)$	$0.0147(6)$	$0.0160(6)$	$0.0009(5)$	$0.0052(5)$	$0.0005(5)$
C10	$0.0199(6)$	$0.0150(6)$	$0.0149(6)$	$0.0002(5)$	$0.0046(5)$	$0.0014(5)$
C11	$0.0141(6)$	$0.0182(6)$	$0.0157(6)$	$-0.0001(5)$	$0.0062(5)$	$0.0017(5)$
C12	$0.0179(6)$	$0.0157(6)$	$0.0202(6)$	$0.0011(5)$	$0.0063(5)$	$0.0011(5)$
C13	$0.0178(6)$	$0.0198(7)$	$0.0204(7)$	$0.0045(5)$	$0.0045(5)$	$0.0046(5)$
C14	$0.0132(6)$	$0.0238(7)$	$0.0143(6)$	$0.0002(5)$	$0.0026(5)$	$0.0015(5)$
C15	$0.0160(6)$	$0.0166(6)$	$0.0183(6)$	$-0.0010(5)$	$0.0057(5)$	$-0.0003(5)$
C16	$0.0141(6)$	$0.0171(6)$	$0.0181(6)$	$0.0016(5)$	$0.0035(5)$	$0.0025(5)$
C17	$0.0180(6)$	$0.0242(7)$	$0.0190(6)$	$-0.0007(5)$	$0.0013(5)$	$-0.0026(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 2-\mathrm{C} 15$	1.3787 (16)	C4-H4	0.9500
$\mathrm{O} 2-\mathrm{C} 17$	1.4347 (15)	C5-C6	1.3872 (18)
O1-C14	1.3856 (15)	C6-C7	1.3911 (17)
O1-C17	1.4354 (17)	C6-H6	0.9500
N1-C8	1.3649 (16)	C7-H7	0.9500
N1-N2	1.3810 (15)	C8-C9	1.3925 (17)
N1-C5	1.4258 (15)	C9-C10	1.4105 (17)
N2-C10	1.3183 (16)	C9-C11	1.4719 (17)
N3-C8	1.3621 (17)	C10-H10	0.9500
N3-H1N	0.883 (9)	C11-C12	1.4016 (18)
N3-H2N	0.875 (9)	C11-C16	1.4134 (18)
$\mathrm{C} 1-\mathrm{C} 2$	1.5091 (17)	C12-C13	1.4032 (17)
C1-H1A	0.9800	C12-H12	0.9500
C1-H1B	0.9800	C13-C14	1.372 (2)
C1-H1C	0.9800	C13-H13	0.9500
C2-C7	1.3940 (19)	C14-C15	1.3830 (18)
C2-C3	1.3946 (19)	C15-C16	1.3771 (17)
C3-C4	1.3898 (17)	C16-H16	0.9500

C3-H3	0.9500
C4-C5	1.3921 (18)
C15-O2-C17	104.43 (10)
C14-O1-C17	104.05 (9)
C8-N1-N2	111.85 (10)
C8-N1-C5	129.22 (11)
N2-N1-C5	118.74 (10)
C10-N2-N1	104.01 (10)
C8-N3-H1N	122.2 (11)
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{H} 2 \mathrm{~N}$	117.3 (11)
H1N-N3-H2N	119.0 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
H1A-C1-H1B	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
H1B-C1-H1C	109.5
C7-C2-C3	118.16 (12)
C7-C2- ${ }^{\text {C1 }}$	120.64 (12)
C3-C2-C1	121.20 (12)
C4-C3-C2	121.06 (12)
C4-C3-H3	119.5
C2-C3-H3	119.5
C3-C4-C5	119.71 (12)
C3-C4-H4	120.1
C5-C4-H4	120.1
C6-C5-C4	120.25 (11)
C6-C5-N1	120.59 (11)
C4-C5-N1	119.06 (11)
C5-C6-C7	119.32 (11)
C5-C6-H6	120.3
C7-C6-H6	120.3
C6-C7- 22	121.51 (12)
C6-C7-H7	119.2
C2-C7-H7	119.2
C8-N1-N2-C10	1.15 (13)
C5-N1-N2-C10	-174.21 (10)
C7-C2-C3-C4	0.04 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-179.34 (12)
C2-C3-C4-C5	0.3 (2)
C3-C4-C5-C6	-0.26 (19)
C3-C4-C5-N1	176.08 (11)
C8-N1-C5-C6	-47.97 (18)
N2-N1-C5-C6	126.47 (12)
C8-N1-C5-C4	135.70 (13)
N2-N1-C5-C4	-49.86 (16)

C17-H17A	0.9900
C17-H17B	0.9900
N3-C8-N1	122.88 (11)
N3-C8-C9	130.31 (12)
N1-C8-C9	106.77 (11)
C8-C9-C10	103.96 (11)
C8-C9-C11	129.77 (12)
C10-C9-C11	126.12 (11)
N2-C10-C9	113.40 (11)
N2-C10-H10	123.3
C9-C10-H10	123.3
C12-C11-C16	119.12 (12)
C12-C11-C9	119.26 (12)
C16-C11-C9	121.47 (11)
C11-C12-C13	122.76 (12)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	118.6
C13-C12-H12	118.6
C14-C13-C12	116.48 (12)
C14-C13-H13	121.8
C12-C13-H13	121.8
C13-C14-C15	121.64 (12)
C13-C14-O1	128.63 (12)
C15-C14-O1	109.69 (12)
C16-C15-O2	127.53 (12)
C16-C15-C14	122.83 (12)
O2-C15-C14	109.63 (11)
C15-C16-C11	117.16 (11)
C15-C16-H16	121.4
C11-C16-H16	121.4
O2-C17-O1	107.40 (10)
$\mathrm{O} 2-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	110.2
O1-C17-H17A	110.2
$\mathrm{O} 2-\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	110.2
O1-C17-H17B	110.2
H17A-C17-H17B	108.5
C8-C9-C10-N2	0.51 (14)
C11-C9-C10-N2	-175.48 (11)
C8-C9-C11-C12	158.82 (13)
C10-C9-C11-C12	-26.24 (19)
C8-C9-C11-C16	-25.6 (2)
C10-C9-C11-C16	149.34 (13)
C16-C11-C12-C13	-1.36 (19)
C9-C11-C12-C13	174.33 (11)
C11-C12-C13-C14	0.57 (19)
C12-C13-C14-C15	0.53 (19)
C12-C13-C14-O1	178.07 (12)

C4-C5-C6-C7	-0.10 (18)	C17-O1-C14-C13	168.94 (14)
N1-C5-C6-C7	-176.39 (11)	C17-O1-C14-C15	-13.28 (14)
C5-C6-C7-C2	0.44 (19)	C17-O2-C15-C16	-168.01 (13)
C3-C2-C7-C6	-0.41 (19)	C17-O2-C15-C14	13.12 (14)
C1-C2-C7-C6	178.98 (12)	C13-C14-C15-C16	-0.8 (2)
N2-N1-C8-N3	177.01 (11)	O1-C14-C15-C16	-178.81 (11)
C5-N1-C8-N3	-8.2 (2)	C13-C14-C15-O2	178.09 (12)
N2-N1-C8-C9	-0.87 (14)	$\mathrm{O} 1-\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 2$	0.12 (15)
C5-N1-C8-C9	173.88 (11)	$\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	-178.70 (12)
N3-C8-C9-C10	-177.44 (13)	C14-C15-C16-C11	0.03 (19)
N1-C8-C9-C10	0.23 (13)	C12-C11-C16-C15	1.02 (18)
N3-C8-C9-C11	-1.7 (2)	C9-C11-C16-C15	-174.57 (11)
N1-C8-C9-C11	176.01 (12)	C15-O2-C17-O1	-21.31 (13)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	-1.00 (14)	$\mathrm{C} 14-\mathrm{O} 1-\mathrm{C} 17-\mathrm{O} 2$	21.29 (13)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 and Cg 2 are the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 11-\mathrm{C} 16$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 1 N \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.88(2)$	$2.16(2)$	$2.9981(16)$	$159(1)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots C g 1^{i i}$	0.95	2.97	$3.6753(14)$	133
$\mathrm{C} 17-\mathrm{H} 17 B \cdots C g 2^{i i i}$	0.99	2.66	$3.6334(15)$	169

Symmetry codes: (i) $-x+1, y-1 / 2,-z+3 / 2$; (ii) $-x+1, y+1 / 2,-z+3 / 2$; (iii) $x,-y+1 / 2, z-3 / 2$.

