CRYSTALLOGRAPHIC COMMUNICATIONS

Received 26 September 2015 Accepted 2 October 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; 4,4'-bipyridyl; 4alkoxybenzoic acid; hydrogen-bonded liquid crystal

CCDC references: 1429203; 1429204; 1429205 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of three co-crystals of 4,4'-bipyridyl with 4-alkoxybenzoic acids: 4-ethoxybenzoic acid—4,4'-bipyridyl (2/1), 4-*n*-propoxybenzoic acid—4,4'-bipyridyl (2/1) and 4-*n*-butoxybenzoic acid—4,4'-bipyridyl (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The crystal structures of three hydrogen-bonded co-crystals of 4-alkoxybenzoic acid-4,4'-bipyridyl (2/1), namely, $2C_9H_{10}O_3 \cdot C_{10}H_8N_2$, (I), $2C_{10}H_{12}O_3 \cdot C_{10}H_8N_2$, (II) and $2C_{11}H_{14}O_3 \cdot C_{10}H_8N_2$, (III), have been determined at 93 K. Although the structure of (I) has been determined in the space group $P2_1$ with Z = 4 [Lai *et al.* (2008). *J. Struct. Chem.* **49**, 1137–1140], the present study shows that the space group is $P2_1/n$ with Z = 4. In each crystal, the components are linked by O– $H \cdot \cdot \cdot N$ hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 unit of (I) adopts nearly pseudo- C_2 symmetry, *viz.* twofold rotation around an axis passing through the mid-point of the central C–C bond of 4,4'-bipyridyl, while the units of (II) and (III), except for the terminal alkyl chains, have pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked *via* C–H···O hydrogen bonds, forming sheet, double-tape and tape structures, respectively.

1. Chemical context

The 4-alkoxybenzoic acid-4.4'-bipyridyl (2/1) system, in which the two acids and the base are held together by intermolecular O-H···N hydrogen bonds, shows thermotropic liquid crystallinity (Kato et al., 1990, 1993; Grunert et al., 1997). The compounds of 4-methoxy-, 4-ethoxy- and 4-n-propoxybenzoic acid show nematic phases, while the compound of 4-n-butoxybenzoic acid exhibits a smectic A phase and then a nematic phase with increasing temperature (Kato et al., 1990, 1993). The crystal structure of 4-methoxybenzoic acid-4,4'-bipyridyl (2/1) was reported recently (Mukherjee & Desiraju, 2014; Ramon et al., 2014). Although the structure of 4-ethoxybenzoic acid-4,4'-bipyridyl (2/1) in space group $P2_1$ was also reported (Lai et al., 2008), the molecular structure is distorted probably due to the wrong choice of space group. In the present study, we have analysed the structure of 4-ethoxybenzoic acid-4,4'-bipyridyl (2/1), (I), as well as the structures of 4-n-propoxybenzoic acid-4,4'-bipyridyl (2/1), (II), and 4-nbutoxybenzoic acid-4,4'-bipyridyl(2/1), (III).

(II) R = n-propyl (III) R = n-butyl CrossMark

Figure 1

The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The $O-H \cdot \cdot N$ hydrogen bonds are indicated by dashed lines.

Figure 2

The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The $O-H \cdots N$ hydrogen bonds are indicated by dashed lines.

The molecular structure of compound (III), showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The $O-H \cdots N$ hydrogen bonds are indicated by dashed lines.

2. Structural commentary

The molecular structure of (I) is shown in Fig. 1. Compound (I) crystallizes in the space group $P2_1/n$ with Z = 4. For the structure (space group $P2_1$) previously determined by Lai *et al.* (2008), ADDSYM in PLATON (Spek, 2009) detected missed symmetry elements, viz. a centre of inversion and a glide plane. The molecular structures of (II) and (III) are shown in Figs. 2 and 3, respectively. The asymmetric units each comprise two crystallographically independent 4-alkoxybenzoic acid molecules and one 4,4'-bipyridyl molecule, and the two acids and the base are held together by $O-H \cdots N$ hydrogen bonds (Tables 1, 2 and 3), forming a linear hydrogen-bonded 2:1 aggregate. Similar to the reported structure of the 2:1 unit of 4-methoxybenzoic acid-4,4'-bipyridyl (2/1) (Mukherjee & Desiraju, 2014; Ramon et al., 2014), the 2:1 unit of (I) also adopts nearly pseudo- C_2 symmetry, viz. twofold rotation around an axis passing through the mid-point of the central C21-C26 bond of the 4,4'-bipyridyl molecule. On the other hand, the 2:1 units of (II) and (III), except for the terminal alkyl chains, have pseudo-inversion symmetry.

The dihedral angles between the pyridine rings of 4,4'bipyridyl are 27.95 (5), 28.84 (4) and 38.76 (12)° for (I), (II) and (III), respectively. The pyridine ring and the carboxyl group hydrogen-bonded to it are twisted slightly to each other. The dihedral angles between the N1/C19–C23 and O1/O2/C7 planes, and the N2/C24–C28 and O4/O5/C16 planes are 6.54 (11) and 10.31 (11)°, respectively, in (I), those between the N1/C21–C25 and O1/O2/C7 planes, and the N2/C26–C30 and O4/O5/C17 planes are 12.13 (10) and 13.96 (10)°, respectively, in (II), and those between the N1/C23–C27 and O1/O2/C7 planes, and the N2/C28–C32 and O4/O5/C18 planes are 13.7 (3) and 8.5 (3)°, respectively, in (III).

The molecular structures of the ethoxy- and propoxybenzoic acids in (I) and (II) are approximately planar. The dihedral angles made by the benzene ring with the carboxyl group and the alkoxy group in each ethoxybenzoic acid in (I) are 9.60 (10), 1.13 (11), 4.48 (9) and 7.57 (9) $^{\circ}$, respectively, between the C1-C6 and O1/O2/C7 planes, the C10-C15 and O4/O5/C16 planes, the C1-C6 and O3/C8/C9 planes, and the C10-C15 and O6/C17/C18 planes. The corresponding dihedral angles in (II) are 2.42 (10), 2.48 (10), 2.96 (7) and 5.82 (7)°, respectively, between the C1-C6 and O1/O2/C7 planes, the C11-C16 and O4/O5/C17 planes, the C1-C6 and O3/C8/C9/ C10 planes, and the C11-C16 and O6/C18/C19/C20 planes. The butoxybenzoic acid molecules in (III) are also planar, except for the terminal ethyl groups which deviate from the molecular plane with dihedral angles of 66.6 (3) and 60.7 (3) $^{\circ}$, respectively, between the C4/O3/C8 and C9/C10/C11planes, and the C15/O6/C19 and C20/C21/C22 planes. The dihedral angles made by the benzene ring with the carboxyl group and the alkoxy group are 5.6 (3), 5.4 (3), 5.2 (2) and 4.3 $(2)^{\circ}$, respectively, between the C1-C6 and O1/O2/C7 planes, the

research communications

Figure 4

A partial packing diagram of compound (I), showing the sheet structure formed by $O-H \cdots N$ and $C-H \cdots O$ hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{3}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.]

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for (I).

Cg1 and Cg2 are the centroids of the C1-C6 and C10-C15 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1···N1	0.942 (19)	1.72 (2)	2.6587 (11)	177.2 (19)
$O4-H4\cdots N2$	0.948 (19)	1.690 (19)	2.6312 (11)	171.4 (19)
$C12-H12\cdots O2^{i}$	0.95	2.43	3.3712 (11)	172
C14-H14···O1 ⁱⁱ	0.95	2.56	3.2288 (11)	128
C24−H24···O3 ⁱⁱ	0.95	2.57	3.4407 (12)	153
$C9-H9A\cdots Cg2^{iii}$	0.98	2.68	3.6450 (11)	169
$C18-H18C\cdots Cg1^{iv}$	0.98	2.67	3.6253 (11)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{3}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x - 2, y, z + 1; (iv) x + 2, y, z - 1.

Table 2

Hydrogen-bond geometry (Å, °) for (II).

Cg1 and Cg2 are the centroids of the C1-C6 and C11-C16 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O1 - H1 \cdots N1$	1.03 (2)	1.61 (2)	2.6407 (10)	174.3 (19)
$O4-H4\cdots N2$	1.01(2)	1.67(2)	2.6728 (11)	173.9 (18)
$C3-H3\cdots O5^{i}$	0.95	2.57	3.3981 (11)	146
C25−H25···O3 ⁱⁱ	0.95	2.57	3.4581 (11)	156
$C9-H9B\cdots Cg2^{iii}$	0.99	2.84	3.6750 (1)	142
C19-H19 $A \cdots Cg1^{iv}$	0.99	2.72	3.5781 (1)	146

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z; (iii) x - 2, y, z - 1; (iv) x + 2, y, z + 1.

Table	3					
Hydro	gen-bond	geometry	(Å,	°)	for	(III).

Cg1 and Cg2 are the centroids of the C1-C6 and C12-C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1−H1···N1	1.04 (3)	1.56 (3)	2.600 (3)	173 (3)
$O4-H4\cdots N2$	1.00(4)	1.64 (4)	2.636 (3)	172 (4)
$C24-H24\cdots O5^{i}$	0.95	2.47	3.408 (3)	171
$C29-H29\cdots O2^{ii}$	0.95	2.53	3.456 (3)	164
$C2-H2\cdots Cg2^{iii}$	0.95	2.98	3.754 (3)	139
$C8-H8B\cdots Cg2^{iv}$	0.99	2.68	3.518 (3)	143
$C19-H19B\cdots Cg1^{v}$	0.99	2.77	3.586 (3)	140

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) -x, -y + 1, -z; (iv) -x + 1, -y, -z; (v) -x + 1, -y + 1, -z.

C12–C17 and O4/O5/C18 planes, the C1–C6 and O3/C8/C9 planes, and the C11–C16 and O6/C19/C20 planes.

3. Supramolecular features

In the crystal of (I), the 2:1 units are linked by C-H···O hydrogen bonds (Table 1), forming a sheet structure parallel to (103) (Fig. 4). In addition, the units are stacked in a column through π - π interactions between the acid and base rings along the *a* axis (Fig. 5). The centroid-centroid distances between the C1-C6 and N1/C19-C23(x - 1, y, z) rings, and between the C10-C15 and N2/C24-C28 (x + 1, y, z) rings are

A partial packing diagram of compound (I), showing the column structure formed by π - π stacking interactions (dashed lines). H atoms not involved in the O-H···N hydrogen bonds have been omitted. [Symmetry codes: (iii) x + 1, y, z; (iv) x - 1, y, z.]

Figure 6

A partial packing diagram of compound (II), showing the double-tape structure formed by $C-H\cdots O$ interactions. H atoms not involved in the $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) have been omitted. [Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z.]

Figure 7

A partial packing diagram of compound (III), showing the tape structure formed by $C-H\cdots O$ interactions. H atoms not involved in the $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) have been omitted. [Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z.]

Figure 8

A packing diagram of compound (III) viewed along the *a* axis, showing a layer aggregate. H atoms not involved in the $O-H \cdots N$ hydrogen bonds (dashed lines) have been omitted.

research communications

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$2C_{9}H_{10}O_{3} \cdot C_{10}H_{8}N_{2}$	$2C_{10}H_{12}O_3 \cdot C_{10}H_8N_2$	$2C_{11}H_{14}O_3 \cdot C_{10}H_8N_2$
M_r	488.52	516.57	544.63
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	93	93	93
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.1090 (2), 20.9348 (5), 12.8738 (4)	10.7592 (4), 10.8838 (3), 11.6462 (4)	7.6645 (10), 8.5087 (13), 22.606 (3)
$lpha,eta,\gamma(^\circ)$	90, 102.9429 (10), 90	86.6411 (11), 89.2313 (13), 73.8867 (12)	80.498 (3), 86.486 (3), 80.082 (3)
$V(Å^3)$	2392.60 (11)	1307.95 (8)	1431.5 (4)
Z	4	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.10	0.09	0.09
Crystal size (mm)	$0.28 \times 0.25 \times 0.10$	$0.50\times0.40\times0.10$	$0.53 \times 0.41 \times 0.11$
Data collection			
Diffractometer	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDIIr
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	28629, 6941, 6004	15909, 7507, 5980	12433, 5612, 3432
R _{int}	0.035	0.069	0.075
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.703	0.703	0.617
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.127, 1.04	0.047, 0.135, 1.04	0.069, 0.193, 1.01
No. of reflections	6941	7507	5610
No. of parameters	335	354	371
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{})$	0.39, -0.37	0.35, -0.32	0.24, -0.41

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare et al., 1994), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

3.7052 (5) and 3.7752 (6) Å, respectively. $C-H\cdots\pi$ interactions (Table 1) are also observed between the columns and between the sheets.

In the crystal of (II) and (III), the 2:1 units are linked by $C-H\cdots O$ interactions (Tables 2 and 3), forming a doubletape structure along the *a* axis (Fig. 6) and a tape structure along the *b* axis (Fig. 7), respectively. Between the tapes in (II) and (III) $C-H\cdots \pi$ interactions are observed (Tables 2 and 3). A packing diagram of (III) viewed along the *a* axis, which is approximately perpendicular to the mean plane of the 2:1 unit, is shown in Fig. 8. The units are arranged into a layer parallel to the *bc* plane, which leads to a smectic structure. On the other hand, no such a layer structure is observed in compounds (I) and (II), which form nematic liquid phases.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) for cocrystals of 4,4'-bipyridyl with 4-alkoxybenzoic acid gave five structures (refcodes: NOPXIZ, ORASAC, RIRGUV, YAKVAI and YANCUM), except for 4-methoxybenzoic acid– 4,4'-bipyridyl (2/1) and 4-ethoxybenzoic acid–4,4'-bipyridyl (2/1). Of these compounds, NOPXIZ, 4-[(*S*)-(–)-2-methylbutoxy]benzoic acid–4,4'-bipyridyl (2/10, shows smectic A and nematic phases (Grunert *et al.*, 1997).

5. Synthesis and crystallization

Single crystals of compound (I) were obtained by slow evaporation from an acetone solution (150 ml) of 4,4'-bipyridyl (70 mg) with 4-ethoxybenzoic acid (150 mg) at room temperature. Crystals of compounds (II) and (III) were obtained from ethanol solutions of 4,4'-bipyridyl with 4-*n*propoxybenzoic acid and 4-*n*-butoxybenzoic acid, respectively, at room temperature [ethanol solution (150 ml) of 4,4'-bipyridyl (65 mg) and 4-*n*-propoxybenzoic acid (150 mg) for (II), and ethanol solution (150 ml) of 4,4'-bipyridyl (60 mg) and 4-*n*-butoxybenzoic acid (150 mg) for (III)].

Liquid crystalline phases of these compounds were confirmed by measurements of DSC (differential scanning calorimetry) and polarizing microscope. DSC measurements were performed by using Perkin Elmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of 10 K min⁻¹. Phase transition temperatures (K) and enthalpies (kJ mol⁻¹) determined by DSC are as follows:

(I) 373 (2) [5.4 (4)] $K_1 \rightarrow K_2$, 424 (1) [50 (3)] $K_2 \rightarrow N$, 442 (1) [7.2 (6)] $N \rightarrow I$;

 $\begin{array}{l} (II) \ 365 \ (1) \ [2.9 \ (6)] \ K_1 \rightarrow \ K_2, \ 369 \ (1) \ [3.9 \ (2)] \ K_2 \rightarrow \ K_3, \\ 417 \ (1) \ [39 \ (1)] \ K_3 \rightarrow \ N, \ 430 \ (1) \ [5.7 \ (2)] \ N \rightarrow \ I; \end{array}$

 $\begin{array}{l} (\mathrm{III}) \; 358 \; (1) \; [2.5 \; (2)] \; K_1 \rightarrow K_2, \; 386 \; (1) \; [0.30 \; (3)] \; K_2 \rightarrow K_3, \\ 403 \; (1) \; [11.1 \; (5)] \; K_3 \rightarrow K_4, \; 407 \; (1) \; [24.5 \; (6)] \; K_4 \rightarrow S_A, \; 425 \; (1) \\ [2.2 \; (6)] \; S_A \rightarrow N, \; 432 \; (1) \; [6.4 \; (1)] \; N \rightarrow \mathrm{I}. \end{array}$

 K_i , S_A , N and I denote crystal, smectic A, nematic and isotropic phases, respectively. The observed transition temperatures and enthalpies from the solid phase to the liquid crystalline phase are in good agreement with those reported Kato *et al.* (1990, 1993). Some unreported thermal anomalies, 373 (2) K for (I), 365 (1) and 369 (1) K for (II), and 358 (1) and 386 (1) K for (III), were also observed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. For all compounds, C-bound H atoms were positioned geometrically with C-H = 0.95-0.99 Å and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The O-bound H atoms were located in a difference Fourier map and refined freely [refined O-H = 0.942 (19)-1.04 (3) Å].

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.
- Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). *Chem. Mater.* **5**, 1094–1100.
- Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). *Chem. Lett.* pp. 2003–2006.
- Lai, L.-L., Lee, L.-J., Luo, D.-W., Liu, Y.-H. & Wang, Y. (2008). J. Struct. Chem. 49, 1137–1140.
- Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.
- Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). *CrystEngComm*, **16**, 5802–5810.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Acta Cryst. (2015). E71, 1290–1295

Acta Cryst. (2015). E71, 1290-1295 [https://doi.org/10.1107/S2056989015018435]

Crystal structures of three co-crystals of 4,4'-bipyridyl with 4-alkoxybenzoic acids: 4-ethoxybenzoic acid–4,4'-bipyridyl (2/1), 4-*n*-propoxybenzoic acid–4,4'-bipyridyl (2/1) and 4-*n*-butoxybenzoic acid–4,4'-bipyridyl (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida

Computing details

For all compounds, data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006). Program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994) for (I); *SHELXS97* (Sheldrick, 2008) for (II), (III). For all compounds, program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010) and *PLATON* (Spek, 2009).

(I) 4-Ethoxybenzoic acid-4,4'-bipyridyl (2/1)

Crystal data

 $2C_9H_{10}O_3 \cdot C_{10}H_8N_2$ $M_r = 488.52$ Monoclinic, $P2_1/n$ a = 9.1090 (2) Å b = 20.9348 (5) Å c = 12.8738 (4) Å $\beta = 102.9429$ (10)° V = 2392.60 (11) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans 28629 measured reflections 6941 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.127$ S = 1.046941 reflections 335 parameters 0 restraints F(000) = 1032.00 $D_x = 1.356 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 23666 reflections $\theta = 3.0-30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 93 KNeedle, colorless $0.28 \times 0.25 \times 0.10 \text{ mm}$

6004 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 30.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -28 \rightarrow 29$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0817P)^{2} + 0.3767P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

		1 1	1 1 1		
	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.33398 (8)	0.30866 (3)	0.77777 (6)	0.02333 (16)	
O2	-0.37344 (8)	0.40959 (3)	0.72097 (6)	0.02177 (15)	
03	-0.92113 (7)	0.36336 (3)	0.94659 (6)	0.01856 (14)	
O4	0.74748 (8)	0.35124 (3)	0.34692 (6)	0.02249 (16)	
05	0.77838 (8)	0.45585 (3)	0.38227 (6)	0.02363 (16)	
06	1.33565 (7)	0.38813 (3)	0.17479 (6)	0.01967 (15)	
N1	-0.10882 (9)	0.31350 (4)	0.67751 (7)	0.02016 (17)	
N2	0.51947 (9)	0.35033 (4)	0.44136 (7)	0.02191 (17)	
C1	-0.54350 (10)	0.36269 (4)	0.81521 (7)	0.01557 (17)	
C2	-0.57223 (10)	0.31282 (4)	0.88043 (7)	0.01700 (17)	
H2	-0.5048	0.2777	0.8950	0.020*	
C3	-0.69860 (10)	0.31438 (4)	0.92393 (8)	0.01764 (17)	
H3	-0.7169	0.2806	0.9686	0.021*	
C4	-0.79903 (10)	0.36588 (4)	0.90180 (7)	0.01553 (17)	
C5	-0.77115 (10)	0.41585 (4)	0.83675 (7)	0.01658 (17)	
Н5	-0.8388	0.4509	0.8216	0.020*	
C6	-0.64371 (10)	0.41374 (4)	0.79445 (7)	0.01672 (17)	
H6	-0.6246	0.4478	0.7505	0.020*	
C7	-0.40997 (10)	0.36318 (4)	0.76677 (7)	0.01667 (17)	
C8	-1.02432 (10)	0.41622 (4)	0.92520 (8)	0.01880 (18)	
H8A	-1.0723	0.4179	0.8482	0.023*	
H8B	-0.9696	0.4568	0.9453	0.023*	
C9	-1.14267 (11)	0.40745 (5)	0.98921 (8)	0.02217 (19)	
H9A	-1.0945	0.4070	1.0653	0.033*	
H9B	-1.1954	0.3669	0.9695	0.033*	
H9C	-1.2150	0.4427	0.9744	0.033*	
C10	0.95579 (10)	0.40171 (4)	0.30216 (7)	0.01621 (17)	
C11	1.04428 (10)	0.45571 (4)	0.30003 (8)	0.01774 (17)	
H11	1.0160	0.4949	0.3273	0.021*	
C12	1.17334 (10)	0.45373 (4)	0.25886 (8)	0.01782 (18)	
H12	1.2328	0.4910	0.2585	0.021*	
C13	1.21379 (10)	0.39607 (4)	0.21808 (7)	0.01639 (17)	
C14	1.12647 (10)	0.34139 (4)	0.22033 (8)	0.01837 (18)	
H14	1.1544	0.3022	0.1928	0.022*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C15	0.99956 (10)	0.34406 (4)	0.26245 (8)	0.01753 (17)
H15	0.9416	0.3065	0.2645	0.021*
C16	0.81942 (10)	0.40630 (5)	0.34748 (7)	0.01747 (17)
C17	1.43238 (10)	0.44212 (5)	0.17318 (8)	0.02026 (19)
H17A	1.4830	0.4543	0.2468	0.024*
H17B	1.3729	0.4791	0.1388	0.024*
C18	1.54764 (11)	0.42313 (5)	0.11099 (8)	0.0229 (2)
H18A	1.5998	0.3843	0.1421	0.034*
H18B	1.6209	0.4578	0.1139	0.034*
H18C	1.4970	0.4150	0.0366	0.034*
C19	-0.09136 (10)	0.36667 (5)	0.62319 (8)	0.01935 (18)
H19	-0.1662	0.3990	0.6159	0.023*
C20	0.03056 (10)	0.37669 (5)	0.57728 (7)	0.01765 (17)
H20	0.0388	0.4153	0.5402	0.021*
C21	0.14130 (10)	0.32950 (4)	0.58603 (7)	0.01586 (17)
C22	0.12277 (10)	0.27418 (5)	0.64248 (8)	0.01962 (18)
H22	0.1954	0.2409	0.6508	0.024*
C23	-0.00263 (11)	0.26821 (5)	0.68641 (8)	0.02095 (19)
H23	-0.0137	0.2303	0.7245	0.025*
C24	0.46423 (11)	0.29264 (5)	0.45714 (9)	0.0242 (2)
H24	0.5105	0.2559	0.4352	0.029*
C25	0.34301 (11)	0.28424 (5)	0.50393 (9)	0.0228 (2)
H25	0.3080	0.2424	0.5140	0.027*
C26	0.27224 (10)	0.33746 (4)	0.53636 (7)	0.01618 (17)
C27	0.32923 (10)	0.39752 (4)	0.51958 (8)	0.01849 (18)
H27	0.2847	0.4352	0.5400	0.022*
C28	0.45223 (11)	0.40137 (5)	0.47250 (8)	0.02086 (19)
H28	0.4906	0.4425	0.4619	0.025*
H1	-0.254 (2)	0.3118 (9)	0.7426 (17)	0.059 (5)*
H4	0.663 (2)	0.3549 (10)	0.3782 (17)	0.066 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0216 (3)	0.0188 (3)	0.0345 (4)	0.0023 (3)	0.0167 (3)	0.0000 (3)
O2	0.0200 (3)	0.0207 (3)	0.0274 (4)	-0.0013 (3)	0.0114 (3)	0.0013 (3)
O3	0.0148 (3)	0.0197 (3)	0.0238 (3)	0.0017 (2)	0.0099 (2)	0.0022 (2)
O4	0.0194 (3)	0.0226 (3)	0.0293 (4)	-0.0033 (3)	0.0136 (3)	-0.0007 (3)
O5	0.0217 (3)	0.0227 (3)	0.0293 (4)	0.0038 (3)	0.0117 (3)	-0.0003 (3)
O6	0.0165 (3)	0.0182 (3)	0.0276 (4)	-0.0019 (2)	0.0120 (3)	-0.0021 (3)
N1	0.0170 (3)	0.0235 (4)	0.0220 (4)	-0.0013 (3)	0.0086 (3)	-0.0038 (3)
N2	0.0168 (3)	0.0281 (4)	0.0228 (4)	0.0005 (3)	0.0088 (3)	0.0003 (3)
C1	0.0141 (4)	0.0167 (4)	0.0167 (4)	-0.0013 (3)	0.0053 (3)	-0.0030 (3)
C2	0.0152 (4)	0.0166 (4)	0.0198 (4)	0.0006 (3)	0.0052 (3)	-0.0012 (3)
C3	0.0163 (4)	0.0169 (4)	0.0207 (4)	-0.0003 (3)	0.0062 (3)	0.0019 (3)
C4	0.0134 (4)	0.0176 (4)	0.0165 (4)	-0.0009(3)	0.0054 (3)	-0.0019 (3)
C5	0.0161 (4)	0.0157 (4)	0.0189 (4)	0.0009 (3)	0.0059 (3)	-0.0003 (3)
C6	0.0173 (4)	0.0165 (4)	0.0175 (4)	-0.0010 (3)	0.0061 (3)	-0.0007 (3)

C7	0.0150 (4)	0.0179 (4)	0.0181 (4)	-0.0015 (3)	0.0058 (3)	-0.0043 (3)
C8	0.0169 (4)	0.0185 (4)	0.0228 (4)	0.0022 (3)	0.0082 (3)	-0.0003 (3)
C9	0.0175 (4)	0.0280 (5)	0.0230 (5)	0.0027 (4)	0.0087 (3)	0.0021 (4)
C10	0.0148 (4)	0.0179 (4)	0.0168 (4)	0.0010 (3)	0.0051 (3)	0.0023 (3)
C11	0.0177 (4)	0.0159 (4)	0.0209 (4)	0.0019 (3)	0.0070 (3)	0.0005 (3)
C12	0.0164 (4)	0.0156 (4)	0.0227 (4)	-0.0010 (3)	0.0070 (3)	0.0012 (3)
C13	0.0142 (4)	0.0176 (4)	0.0183 (4)	0.0008 (3)	0.0056 (3)	0.0018 (3)
C14	0.0179 (4)	0.0150 (4)	0.0240 (4)	0.0009 (3)	0.0084 (3)	-0.0001 (3)
C15	0.0171 (4)	0.0159 (4)	0.0209 (4)	-0.0009(3)	0.0069 (3)	0.0016 (3)
C16	0.0153 (4)	0.0207 (4)	0.0172 (4)	0.0015 (3)	0.0053 (3)	0.0026 (3)
C17	0.0181 (4)	0.0192 (4)	0.0260 (5)	-0.0034 (3)	0.0104 (4)	-0.0015 (3)
C18	0.0187 (4)	0.0272 (5)	0.0255 (5)	-0.0047 (4)	0.0108 (4)	-0.0055 (4)
C19	0.0159 (4)	0.0230 (4)	0.0201 (4)	0.0026 (3)	0.0061 (3)	-0.0022 (3)
C20	0.0159 (4)	0.0205 (4)	0.0174 (4)	0.0009 (3)	0.0057 (3)	-0.0007 (3)
C21	0.0134 (4)	0.0196 (4)	0.0153 (4)	-0.0008 (3)	0.0047 (3)	-0.0034 (3)
C22	0.0173 (4)	0.0200 (4)	0.0233 (4)	0.0022 (3)	0.0084 (3)	0.0000 (3)
C23	0.0204 (4)	0.0212 (4)	0.0237 (4)	-0.0006 (3)	0.0102 (4)	0.0007 (3)
C24	0.0212 (4)	0.0241 (4)	0.0313 (5)	0.0035 (4)	0.0141 (4)	-0.0014 (4)
C25	0.0218 (4)	0.0194 (4)	0.0313 (5)	0.0000 (4)	0.0147 (4)	-0.0019 (4)
C26	0.0139 (4)	0.0197 (4)	0.0160 (4)	0.0009 (3)	0.0055 (3)	-0.0010 (3)
C27	0.0186 (4)	0.0194 (4)	0.0191 (4)	0.0006 (3)	0.0077 (3)	-0.0007 (3)
C28	0.0201 (4)	0.0227 (4)	0.0218 (4)	-0.0028 (3)	0.0090 (3)	0.0000 (3)

Geometric parameters (Å, °)

01—C7	1.3259 (11)	C10—C16	1.4891 (12)
01—H1	0.942 (19)	C11—C12	1.3941 (12)
O2—C7	1.2208 (12)	C11—H11	0.9500
O3—C4	1.3637 (10)	C12—C13	1.3984 (13)
O3—C8	1.4380 (11)	C12—H12	0.9500
O4—C16	1.3252 (12)	C13—C14	1.3979 (12)
O4—H4	0.948 (19)	C14—C15	1.3836 (12)
O5—C16	1.2213 (12)	C14—H14	0.9500
O6—C13	1.3592 (10)	C15—H15	0.9500
O6—C17	1.4361 (11)	C17—C18	1.5092 (13)
N1-C23	1.3409 (13)	C17—H17A	0.9900
N1-C19	1.3429 (13)	C17—H17B	0.9900
N2-C28	1.3370 (13)	C18—H18A	0.9800
N2-C24	1.3412 (14)	C18—H18B	0.9800
C1—C6	1.3920 (12)	C18—H18C	0.9800
C1—C2	1.4006 (13)	C19—C20	1.3859 (12)
C1—C7	1.4860 (12)	C19—H19	0.9500
C2—C3	1.3887 (12)	C20—C21	1.3983 (12)
C2—H2	0.9500	C20—H20	0.9500
C3—C4	1.4012 (12)	C21—C22	1.3974 (13)
С3—Н3	0.9500	C21—C26	1.4835 (12)
C4—C5	1.3984 (12)	C22—C23	1.3892 (12)
C5—C6	1.3890 (12)	C22—H22	0.9500

С5—Н5	0.9500	С23—Н23	0.9500
С6—Н6	0.9500	C24—C25	1.3825 (13)
C8—C9	1.5077 (13)	C24—H24	0.9500
C8—H8A	0.9900	C_{25} C_{26}	1 3971 (13)
C8 H8B	0.9900	C25 H25	0.9500
	0.9900	C25—1125	1.205((12))
C9—H9A	0.9800	$C_{20} = C_{27}$	1.3936 (13)
C9—H9B	0.9800	C27—C28	1.3905 (12)
С9—Н9С	0.9800	С27—Н27	0.9500
C10—C11	1.3923 (12)	C28—H28	0.9500
C10—C15	1.4030 (12)		
C7—O1—H1	109.2 (12)	C15—C14—C13	120.28 (8)
C4—O3—C8	116.70 (7)	C15—C14—H14	119.9
C16—O4—H4	112.0 (13)	C13—C14—H14	119.9
C13—O6—C17	118.02 (7)	C14—C15—C10	120.54 (8)
C23—N1—C19	117.60 (8)	C14—C15—H15	119.7
C28—N2—C24	117.50 (8)	C10-C15-H15	119.7
C6-C1-C2	119.00 (8)	O5-C16-O4	123.31 (8)
C6-C1-C7	118 51 (8)	05-016-010	123 32 (8)
C_{2} C_{1} C_{7}	122 49 (8)	04-C16-C10	123.32(0) 113.37(8)
$C_2 C_1 C_7$	122.49(0) 120.48(8)	06 C17 C18	107.60 (8)
$C_2 = C_2 = C_1$	120.46 (6)	06 C17 U17A	107.00 (8)
$C_3 = C_2 = H_2$	119.0	$C_{12} = C_{12} = H_{12}$	110.2
CI = C2 = H2	119.8		110.2
C2—C3—C4	119.90 (8)	06—C17—H17B	110.2
С2—С3—Н3	120.0	C18—C17—H17B	110.2
С4—С3—Н3	120.0	H17A—C17—H17B	108.5
O3—C4—C5	123.84 (8)	C17—C18—H18A	109.5
O3—C4—C3	116.20 (8)	C17—C18—H18B	109.5
C5—C4—C3	119.96 (8)	H18A—C18—H18B	109.5
C6—C5—C4	119.40 (8)	C17—C18—H18C	109.5
С6—С5—Н5	120.3	H18A—C18—H18C	109.5
C4—C5—H5	120.3	H18B—C18—H18C	109.5
C5-C6-C1	121 25 (8)	N1-C19-C20	123 18 (8)
C5-C6-H6	119.4	N1H19	118.4
C_1 C_6 H_6	110.4	C_{20} C_{10} H_{10}	118.4
$C_1 = C_0 = 110$	112.4	$C_{20} = C_{10} = C_{20}$	110.42 (0)
02 - 07 - 01	123.00(8)	C19 - C20 - C21	119.42 (9)
	123.05 (8)	C19—C20—H20	120.3
	113.95 (8)	C21—C20—H20	120.3
03	108.56 (8)	C22—C21—C20	117.29 (8)
O3—C8—H8A	110.0	C22—C21—C26	121.30 (8)
С9—С8—Н8А	110.0	C20—C21—C26	121.41 (8)
O3—C8—H8B	110.0	C23—C22—C21	119.50 (8)
С9—С8—Н8В	110.0	С23—С22—Н22	120.2
H8A—C8—H8B	108.4	C21—C22—H22	120.2
С8—С9—Н9А	109.5	N1—C23—C22	123.01 (9)
С8—С9—Н9В	109.5	N1—C23—H23	118.5
Н9А—С9—Н9В	109.5	С22—С23—Н23	118.5
С8—С9—Н9С	109.5	N2-C24-C25	122.95 (9)

Н9А—С9—Н9С	109.5	N2—C24—H24	118.5
H9B—C9—H9C	109.5	C25—C24—H24	118.5
C11—C10—C15	118.58 (8)	C24—C25—C26	119.73 (9)
C11—C10—C16	119.52 (8)	C24—C25—H25	120.1
C15—C10—C16	121.89 (8)	C26—C25—H25	120.1
C10-C11-C12	121.64 (8)	C27—C26—C25	117.37 (8)
C10-C11-H11	119.2	C27—C26—C21	122.05 (8)
C12—C11—H11	119.2	C25—C26—C21	120.57 (8)
C11—C12—C13	118.94 (8)	C28—C27—C26	118.92 (8)
C11—C12—H12	120.5	C28—C27—H27	120.5
C13—C12—H12	120.5	С26—С27—Н27	120.5
O6—C13—C14	115.41 (8)	N2—C28—C27	123.53 (9)
O6—C13—C12	124.58 (8)	N2—C28—H28	118.2
C14—C13—C12	120.01 (8)	C27—C28—H28	118.2
C6—C1—C2—C3	-0.16 (13)	C11—C10—C15—C14	-1.18 (14)
C7—C1—C2—C3	-179.95 (8)	C16—C10—C15—C14	179.68 (8)
C1—C2—C3—C4	0.57 (14)	C11—C10—C16—O5	1.11 (14)
C8—O3—C4—C5	-0.72 (13)	C15—C10—C16—O5	-179.75 (9)
C8—O3—C4—C3	179.48 (8)	C11—C10—C16—O4	-178.52 (8)
C2—C3—C4—O3	179.25 (8)	C15-C10-C16-O4	0.62 (13)
C2—C3—C4—C5	-0.56 (14)	C13—O6—C17—C18	-173.89 (8)
O3—C4—C5—C6	-179.65 (8)	C23—N1—C19—C20	-0.45 (14)
C3—C4—C5—C6	0.14 (14)	N1-C19-C20-C21	0.69 (14)
C4—C5—C6—C1	0.28 (14)	C19—C20—C21—C22	-0.57 (13)
C2-C1-C6-C5	-0.27 (14)	C19—C20—C21—C26	178.73 (8)
C7—C1—C6—C5	179.53 (8)	C20—C21—C22—C23	0.28 (14)
C6—C1—C7—O2	9.58 (13)	C26—C21—C22—C23	-179.03 (9)
C2-C1-C7-O2	-170.62 (9)	C19—N1—C23—C22	0.13 (15)
C6-C1-C7-O1	-170.43 (8)	C21—C22—C23—N1	-0.05 (15)
C2-C1-C7-O1	9.37 (13)	C28—N2—C24—C25	-0.27 (16)
C4—O3—C8—C9	-174.93 (8)	N2-C24-C25-C26	0.41 (17)
C15—C10—C11—C12	0.53 (14)	C24—C25—C26—C27	-0.13 (15)
C16—C10—C11—C12	179.70 (8)	C24—C25—C26—C21	179.56 (9)
C10-C11-C12-C13	0.48 (14)	C22—C21—C26—C27	-152.77 (9)
C17—O6—C13—C14	-178.14 (8)	C20—C21—C26—C27	27.95 (13)
C17—O6—C13—C12	1.77 (13)	C22—C21—C26—C25	27.55 (13)
C11—C12—C13—O6	179.23 (9)	C20—C21—C26—C25	-151.72 (10)
C11—C12—C13—C14	-0.87 (14)	C25—C26—C27—C28	-0.26 (14)
O6-C13-C14-C15	-179.85 (8)	C21—C26—C27—C28	-179.94 (9)
C12—C13—C14—C15	0.24 (14)	C24—N2—C28—C27	-0.16 (15)
C13-C14-C15-C10	0.80 (14)	C26—C27—C28—N2	0.43 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
O1—H1…N1	0.942 (19)	1.72 (2)	2.6587 (11)	177.2 (19)

0.948 (19)	1.690 (19)	2.6312 (11)	171.4 (19)
0.95	2.43	3.3712 (11)	172
0.95	2.56	3.2288 (11)	128
0.95	2.57	3.4407 (12)	153
0.98	2.68	3.6450 (11)	169
0.98	2.67	3.6253 (11)	164
	0.948 (19) 0.95 0.95 0.95 0.98 0.98	0.948 (19)1.690 (19)0.952.430.952.560.952.570.982.680.982.67	0.948 (19)1.690 (19)2.6312 (11)0.952.433.3712 (11)0.952.563.2288 (11)0.952.573.4407 (12)0.982.683.6450 (11)0.982.673.6253 (11)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+3/2, -y+1/2, z-1/2; (iii) x-2, y, z+1; (iv) x+2, y, z-1.

(II) 4-n-Propoxybenzoic acid-4,4'-bipyridyl (2/1)

Crystal data

$2C_{10}H_{12}O_3 \cdot C_{10}H_8N_2$	Z = 2
$M_r = 516.57$	F(000) = 548.00
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.312 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.7592 (4) Å	Mo Ka radiation, $\lambda = 0.71075$ Å
b = 10.8838 (3) Å	Cell parameters from 13551 reflections
c = 11.6462 (4) Å	$\theta = 3.0 - 30.0^{\circ}$
$\alpha = 86.6411 (11)^{\circ}$	$\mu = 0.09 \mathrm{~mm^{-1}}$
$\beta = 89.2313 (13)^{\circ}$	T = 93 K
$\gamma = 73.8867 (12)^{\circ}$	Block, colorless
V = 1307.95 (8) Å ³	$0.50 \times 0.40 \times 0.10 \text{ mm}$
Data collection	

5980 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.069$
$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 3.0^\circ$
$h = -15 \rightarrow 15$
$k = -13 \rightarrow 15$
$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.047$ and constrained refinement $wR(F^2) = 0.135$ $w = 1/[\sigma^2(F_0^2) + (0.090P)^2]$ S = 1.04where $P = (F_0^2 + 2F_c^2)/3$ 7507 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$ 354 parameters $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL-2014/7, direct methods $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Secondary atom site location: difference Fourier Extinction coefficient: 0.019 (4) map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.21741 (6)	0.84171 (6)	-0.00993 (6)	0.02370 (16)	
O2	0.26015 (7)	0.62711 (6)	0.01082 (6)	0.02497 (16)	
O3	-0.31475 (6)	0.79522 (6)	-0.19102 (6)	0.02084 (15)	
04	1.32849 (7)	0.66282 (6)	0.36794 (6)	0.02574 (16)	
05	1.28863 (7)	0.87599 (6)	0.33722 (6)	0.02456 (15)	
O6	1.86048 (6)	0.70388 (6)	0.55057 (5)	0.01982 (14)	
N1	0.44816 (7)	0.80971 (7)	0.08178 (6)	0.01957 (16)	
N2	1.08835 (7)	0.69161 (7)	0.29159 (6)	0.01975 (16)	
C1	0.05619 (8)	0.74854 (8)	-0.06643 (7)	0.01587 (16)	
C2	-0.02538 (8)	0.86942 (8)	-0.09987 (7)	0.01713 (16)	
H2	0.0038	0.9435	-0.0934	0.021*	
C3	-0.14819 (8)	0.88217 (8)	-0.14234 (7)	0.01796 (17)	
Н3	-0.2024	0.9644	-0.1660	0.022*	
C4	-0.19207 (8)	0.77306 (8)	-0.15022 (7)	0.01676 (17)	
C5	-0.11202 (8)	0.65191 (8)	-0.11692 (7)	0.01732 (16)	
Н5	-0.1416	0.5779	-0.1222	0.021*	
C6	0.01143 (8)	0.64099 (8)	-0.07598 (7)	0.01671 (16)	
H6	0.0665	0.5586	-0.0541	0.020*	
C7	0.18746 (8)	0.73163 (8)	-0.01851 (7)	0.01780 (17)	
C8	-0.36390 (8)	0.68649 (8)	-0.20224 (7)	0.01802 (17)	
H8A	-0.3609	0.6385	-0.1270	0.022*	
H8B	-0.3108	0.6283	-0.2576	0.022*	
C9	-0.50170 (9)	0.73524 (9)	-0.24460 (8)	0.02173 (18)	
H9B	-0.5034	0.7767	-0.3228	0.026*	
H9A	-0.5522	0.7999	-0.1931	0.026*	
C10	-0.56236 (9)	0.62384 (9)	-0.24724 (10)	0.0281 (2)	
H10A	-0.6465	0.6532	-0.2862	0.042*	
H10B	-0.5742	0.5925	-0.1684	0.042*	
H10C	-0.5053	0.5544	-0.2889	0.042*	
C11	1.49360 (8)	0.75522 (8)	0.41394 (7)	0.01674 (16)	
C12	1.57341 (9)	0.63400 (8)	0.44879 (7)	0.01858 (17)	
H12	1.5434	0.5605	0.4418	0.022*	
C13	1.69517 (9)	0.62010 (8)	0.49316 (7)	0.01892 (17)	
H13	1.7485	0.5373	0.5164	0.023*	
C14	1.74023 (8)	0.72791 (8)	0.50403 (7)	0.01712 (17)	
C15	1.66235 (9)	0.84947 (8)	0.46796 (7)	0.01804 (17)	
H15	1.6927	0.9229	0.4740	0.022*	
C16	1.54008 (8)	0.86179 (8)	0.42315 (7)	0.01771 (17)	
H16	1.4873	0.9443	0.3984	0.021*	
C17	1.36100 (9)	0.77237 (8)	0.36890 (7)	0.01841 (17)	
C18	1.91667 (8)	0.80929 (8)	0.55338 (7)	0.01815 (17)	
H18A	1.8635	0.8761	0.6016	0.022*	
H18B	1.9206	0.8477	0.4747	0.022*	
C19	2.05137 (9)	0.75818 (9)	0.60313 (8)	0.02037 (18)	
H19B	2.1028	0.6888	0.5564	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19A	2.0465	0.7220	0.6825	0.024*
C20	2.11746 (9)	0.86578 (9)	0.60422 (9)	0.0277 (2)
H20A	2.0643	0.9360	0.6475	0.042*
H20B	2.1277	0.8972	0.5251	0.042*
H20C	2.2027	0.8330	0.6408	0.042*
C21	0.52853 (9)	0.69053 (9)	0.08870 (8)	0.02069 (18)
H21	0.4970	0.6220	0.0666	0.025*
C22	0.65531 (8)	0.66285 (8)	0.12658 (8)	0.01907 (17)
H22	0.7088	0.5771	0.1302	0.023*
C23	0.70378 (8)	0.76194 (8)	0.15928 (7)	0.01608 (16)
C24	0.61977 (8)	0.88583 (8)	0.15197 (7)	0.01863 (17)
H24	0.6488	0.9563	0.1730	0.022*
C25	0.49411 (8)	0.90534 (8)	0.11387 (7)	0.01989 (17)
H25	0.4380	0.9900	0.1103	0.024*
C26	1.02841 (8)	0.80376 (8)	0.23616 (7)	0.02020 (18)
H26	1.0730	0.8678	0.2273	0.024*
C27	0.90438 (8)	0.83033 (8)	0.19124 (7)	0.01839 (17)
H27	0.8655	0.9110	0.1527	0.022*
C28	0.83731 (8)	0.73745 (8)	0.20317 (7)	0.01565 (16)
C29	0.90043 (8)	0.62059 (8)	0.26043 (7)	0.01836 (17)
H29	0.8586	0.5544	0.2701	0.022*
C30	1.02416 (9)	0.60203 (8)	0.30285 (7)	0.02023 (18)
H30	1.0656	0.5222	0.3417	0.024*
H1	0.305 (2)	0.8292 (19)	0.0308 (18)	0.088 (6)*
H4	1.240 (2)	0.6740 (19)	0.3337 (16)	0.082 (6)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0188 (3)	0.0171 (3)	0.0356 (4)	-0.0057 (3)	-0.0076 (3)	0.0000 (3)
O2	0.0195 (3)	0.0176 (3)	0.0355 (4)	-0.0016 (2)	-0.0077 (3)	0.0014 (3)
03	0.0148 (3)	0.0155 (3)	0.0318 (3)	-0.0040(2)	-0.0071 (2)	0.0017 (2)
04	0.0198 (3)	0.0180 (3)	0.0396 (4)	-0.0060 (3)	-0.0084 (3)	0.0027 (3)
05	0.0202 (3)	0.0193 (3)	0.0314 (3)	-0.0018 (3)	-0.0051 (3)	0.0043 (3)
06	0.0175 (3)	0.0163 (3)	0.0255 (3)	-0.0048 (2)	-0.0064 (2)	0.0022 (2)
N1	0.0156 (3)	0.0211 (4)	0.0216 (3)	-0.0048 (3)	-0.0021 (3)	0.0009 (3)
N2	0.0166 (3)	0.0199 (3)	0.0219 (3)	-0.0035 (3)	-0.0022 (3)	-0.0019 (3)
C1	0.0154 (4)	0.0154 (4)	0.0163 (3)	-0.0036 (3)	-0.0007 (3)	0.0006 (3)
C2	0.0171 (4)	0.0139 (3)	0.0207 (4)	-0.0049 (3)	-0.0016 (3)	0.0000 (3)
C3	0.0165 (4)	0.0132 (3)	0.0229 (4)	-0.0025 (3)	-0.0028 (3)	0.0018 (3)
C4	0.0143 (4)	0.0161 (4)	0.0188 (4)	-0.0028 (3)	-0.0019 (3)	0.0007 (3)
C5	0.0178 (4)	0.0139 (4)	0.0205 (4)	-0.0049 (3)	-0.0018 (3)	0.0003 (3)
C6	0.0168 (4)	0.0134 (3)	0.0186 (3)	-0.0024 (3)	-0.0017 (3)	0.0012 (3)
C7	0.0167 (4)	0.0173 (4)	0.0190 (4)	-0.0041 (3)	-0.0011 (3)	-0.0008 (3)
C8	0.0172 (4)	0.0164 (4)	0.0206 (4)	-0.0051 (3)	-0.0024 (3)	0.0003 (3)
C9	0.0169 (4)	0.0194 (4)	0.0287 (4)	-0.0052 (3)	-0.0052 (3)	0.0013 (3)
C10	0.0205 (4)	0.0241 (4)	0.0409 (5)	-0.0080 (4)	-0.0064 (4)	-0.0010 (4)
C11	0.0161 (4)	0.0166 (4)	0.0168 (3)	-0.0036 (3)	-0.0004 (3)	0.0003 (3)

C12	0.0196 (4)	0.0153 (4)	0.0209 (4)	-0.0052 (3)	-0.0017 (3)	0.0005 (3)
C13	0.0196 (4)	0.0136 (4)	0.0220 (4)	-0.0024 (3)	-0.0031 (3)	0.0017 (3)
C14	0.0163 (4)	0.0168 (4)	0.0170 (3)	-0.0027 (3)	-0.0011 (3)	0.0005 (3)
C15	0.0189 (4)	0.0146 (4)	0.0203 (4)	-0.0042 (3)	-0.0012 (3)	0.0000 (3)
C16	0.0177 (4)	0.0148 (4)	0.0187 (4)	-0.0016 (3)	-0.0006 (3)	0.0010 (3)
C17	0.0176 (4)	0.0185 (4)	0.0179 (4)	-0.0034 (3)	-0.0003 (3)	0.0006 (3)
C18	0.0178 (4)	0.0161 (4)	0.0206 (4)	-0.0051 (3)	-0.0021 (3)	0.0010 (3)
C19	0.0177 (4)	0.0193 (4)	0.0239 (4)	-0.0052 (3)	-0.0035 (3)	0.0017 (3)
C20	0.0213 (4)	0.0252 (4)	0.0376 (5)	-0.0091 (4)	-0.0056 (4)	0.0043 (4)
C21	0.0184 (4)	0.0204 (4)	0.0240 (4)	-0.0064 (3)	-0.0024 (3)	-0.0019 (3)
C22	0.0163 (4)	0.0164 (4)	0.0238 (4)	-0.0031 (3)	-0.0019 (3)	-0.0010 (3)
C23	0.0142 (4)	0.0172 (4)	0.0160 (3)	-0.0035 (3)	0.0002 (3)	0.0010 (3)
C24	0.0174 (4)	0.0158 (4)	0.0223 (4)	-0.0042 (3)	-0.0012 (3)	-0.0003 (3)
C25	0.0164 (4)	0.0180 (4)	0.0235 (4)	-0.0025 (3)	-0.0016 (3)	0.0025 (3)
C26	0.0171 (4)	0.0214 (4)	0.0227 (4)	-0.0066 (3)	-0.0014 (3)	0.0006 (3)
C27	0.0167 (4)	0.0167 (4)	0.0213 (4)	-0.0043 (3)	-0.0016 (3)	0.0018 (3)
C28	0.0138 (4)	0.0164 (4)	0.0161 (3)	-0.0030 (3)	0.0000 (3)	-0.0017 (3)
C29	0.0169 (4)	0.0157 (4)	0.0219 (4)	-0.0036 (3)	-0.0018 (3)	-0.0002 (3)
C30	0.0180 (4)	0.0175 (4)	0.0235 (4)	-0.0021 (3)	-0.0037 (3)	-0.0002 (3)

Geometric parameters (Å, °)

01—C7	1.3335 (10)	C11—C17	1.4853 (12)
O1—H1	1.03 (2)	C12—C13	1.3802 (12)
O2—C7	1.2208 (11)	С12—Н12	0.9500
O3—C4	1.3612 (10)	C13—C14	1.4010 (11)
O3—C8	1.4368 (10)	С13—Н13	0.9500
O4—C17	1.3331 (11)	C14—C15	1.3993 (12)
O4—H4	1.01 (2)	C15—C16	1.3904 (12)
O5—C17	1.2190 (11)	С15—Н15	0.9500
O6—C14	1.3603 (10)	C16—H16	0.9500
O6—C18	1.4397 (10)	C18—C19	1.5109 (11)
N1—C25	1.3430 (11)	C18—H18A	0.9900
N1—C21	1.3430 (12)	C18—H18B	0.9900
N2-C30	1.3420 (11)	C19—C20	1.5301 (12)
N2—C26	1.3433 (12)	С19—Н19В	0.9900
C1—C6	1.3944 (11)	С19—Н19А	0.9900
C1—C2	1.4004 (12)	C20—H20A	0.9800
C1—C7	1.4848 (11)	С20—Н20В	0.9800
C2—C3	1.3848 (11)	C20—H20C	0.9800
С2—Н2	0.9500	C21—C22	1.3851 (12)
C3—C4	1.4023 (11)	C21—H21	0.9500
С3—Н3	0.9500	C22—C23	1.3950 (11)
C4—C5	1.3963 (12)	С22—Н22	0.9500
C5—C6	1.3886 (11)	C23—C24	1.3981 (11)
С5—Н5	0.9500	C23—C28	1.4790 (11)
С6—Н6	0.9500	C24—C25	1.3840 (12)
C8—C9	1.5084 (11)	C24—H24	0.9500

C8—H8A	0.9900	C25—H25	0.9500
C8—H8B	0.9900	C26—C27	1.3875 (11)
C9-C10	1 5301 (12)	С26—Н26	0.9500
	0.0000	C_{20} C_{20} C_{20}	1.2055(11)
С9—П9В	0.9900	C27—C28	1.3933 (11)
С9—Н9А	0.9900	С27—Н27	0.9500
C10—H10A	0.9800	C28—C29	1.3990 (12)
C10—H10B	0.9800	C29—C30	1.3834 (11)
C10—H10C	0.9800	C29—H29	0.9500
C11—C16	1 3946 (11)	C30—H30	0.9500
	1.3940(11) 1.4002(12)	0.50 1150	0.9500
CII—CI2	1.4002 (12)		
C7 01 U1	112 5 (11)	C1(C15 C14	110.27 (9)
C/—OI—HI	112.5 (11)	016-015-014	119.37 (8)
C4—O3—C8	117.72 (6)	C16—C15—H15	120.3
C17—O4—H4	113.0 (11)	C14—C15—H15	120.3
C14—O6—C18	117.65 (6)	C15—C16—C11	121.16 (8)
C25—N1—C21	117.73 (7)	C15—C16—H16	119.4
C30-N2-C26	117 69 (7)	C11—C16—H16	119.4
C_{6}	118 87 (7)	05-017-04	123 34 (8)
C6-C1-C7	110.07(7)	05	123.60 (8)
C_{1}	117.01(7) 122.11(7)	04 C17 C11	123.00(0)
$C_2 = C_1 = C_1$	122.11(7)		113.00 (7)
C3_C2_C1	120.70(7)	06-018-019	107.89 (7)
C3—C2—H2	119.6	O6—C18—H18A	110.1
C1—C2—H2	119.6	C19—C18—H18A	110.1
C2—C3—C4	119.63 (7)	O6—C18—H18B	110.1
С2—С3—Н3	120.2	C19—C18—H18B	110.1
С4—С3—Н3	120.2	H18A—C18—H18B	108.4
03-C4-C5	124 21 (8)	C18 - C19 - C20	110.05(7)
$O_3 = C_4 = C_3$	124.21(0) 115.45(7)	$C_{10} = C_{10} = C_{20}$	100.6
03-04-03	113.43 (7)		109.6
C5-C4-C3	120.34 (8)	С20—С19—Н19В	109.6
C6—C5—C4	119.14 (8)	C18—C19—H19A	109.6
С6—С5—Н5	120.4	С20—С19—Н19А	109.6
C4—C5—H5	120.4	H19B—C19—H19A	108.2
C5—C6—C1	121.31 (8)	C19—C20—H20A	109.5
С5—С6—Н6	119.3	C19—C20—H20B	109.5
C1-C6-H6	119.3	$H_{20}A = C_{20} = H_{20}B$	109.5
C^{2} C^{2} C^{3} C^{1}	122 50 (9)	C10 C20 H20C	109.5
02 - 07 - 01	123.30 (8)		109.5
	123.11 (8)	$H_{20}A - C_{20} - H_{20}C$	109.5
01	113.39 (7)	H20B—C20—H20C	109.5
03—C8—C9	107.90 (7)	N1—C21—C22	123.03 (8)
O3—C8—H8A	110.1	N1—C21—H21	118.5
С9—С8—Н8А	110.1	C22—C21—H21	118.5
O3—C8—H8B	110.1	C21—C22—C23	119.47 (8)
С9—С8—Н8В	110.1	C21—C22—H22	120.3
H8A—C8—H8B	108.4	С23—С22—Н22	120.3
C8—C9—C10	109.79 (7)	C22—C23—C24	117.30 (8)
C8-C9-H9B	109 7	C^{22} C^{23} C^{28}	121 74 (8)
C_{10} C_{0} HOB	100 7	C_{24} C_{23} C_{28}	120.04 (8)
C_{10} C_{2} C_{10} U_{10}	109.7	$C_{27} = C_{23} = C_{20}$	120.74 (0)
Со-Су-НУА	109./	U23-U24-U23	119.07(8)

С10—С9—Н9А	109.7	C25—C24—H24	120.2
H9B—C9—H9A	108.2	C23—C24—H24	120.2
C9-C10-H10A	109.5	N1—C25—C24	122.80 (8)
C9-C10-H10B	109.5	N1—C25—H25	118.6
H10A—C10—H10B	109.5	C24—C25—H25	118.6
C9-C10-H10C	109.5	N2-C26-C27	123.00 (8)
H10A - C10 - H10C	109.5	$N_2 = C_2 = C_2 + C_2 $	118 5
H10B-C10-H10C	109.5	C_{27} C_{26} H_{26}	118.5
$C_{16} - C_{11} - C_{12}$	118 80 (8)	$C_{26} - C_{27} - C_{28}$	119.40 (8)
C_{16} $-C_{11}$ $-C_{17}$	119 71 (7)	$C_{26} = C_{27} = H_{27}$	120.3
C_{12} C_{11} C_{17}	121 49 (8)	$C_{20} = C_{27} = H_{27}$	120.3
$C_{12} = C_{11} = C_{11}$	120.75 (8)	$C_{20} = C_{20} = C_{20} = C_{20}$	120.3 117.37(7)
$C_{13} = C_{12} = C_{11}$	110.6	$C_{27} = C_{28} = C_{23}$	117.57(7)
$C_{11} = C_{12} = H_{12}$	119.0	$C_{27} = C_{28} = C_{23}$	121.57(8) 121.05(8)
$C_{12} = C_{12} = C_{14}$	119.0	$C_{29} = C_{28} = C_{23}$	121.05 (8)
C12 - C13 - C14	120.08 (8)	C_{30} C_{29} C_{28}	119.34 (8)
$C_{12} - C_{13} - H_{13}$	120.0	$C_{30} = C_{29} = H_{29}$	120.2
C14 - C15 - H15	120.0	$N_{20} = C_{20} = C_{20}$	120.2
06 - C14 - C13	124.82(7)	$N_2 = C_{30} = C_{29}$	123.00 (8)
00-014-013	113.30(7)	$N_2 = C_{30} = H_{30}$	118.5
013-014-013	119.82 (8)	C29—C30—H30	118.5
C6—C1—C2—C3	-0.36(13)	C12—C11—C16—C15	-1.18(13)
C7—C1—C2—C3	-178.83 (7)	C17—C11—C16—C15	178.18 (7)
C1—C2—C3—C4	1.02 (13)	C16—C11—C17—O5	0.98 (13)
C8—O3—C4—C5	-1.09(12)	C12—C11—C17—O5	-179.69 (8)
C8—O3—C4—C3	179.21 (7)	C16—C11—C17—O4	-178.26(7)
$C_2 - C_3 - C_4 - O_3$	178.88 (7)	C12-C11-C17-O4	1.08 (12)
$C_2 - C_3 - C_4 - C_5$	-0.84(13)	C14—O6—C18—C19	-177.34(7)
03-C4-C5-C6	-179.70(7)	06-C18-C19-C20	178.05 (7)
C3-C4-C5-C6	-0.01(13)	C_{25} N1 - C_{21} - C_{22}	-0.30(13)
C4—C5—C6—C1	0.69 (13)	N1—C21—C22—C23	-0.11(14)
$C_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-C_{-$	-0.51(13)	C_{21} C_{22} C_{23} C_{24}	0.12(12)
C7-C1-C6-C5	178.01 (7)	C_{21} C_{22} C_{23} C_{28}	178.42 (8)
C6-C1-C7-O2	1 75 (13)	C^{22} C^{23} C^{24} C^{25}	0.27(12)
$C_{2} - C_{1} - C_{7} - O_{2}^{2}$	-17978(8)	C_{28} C_{23} C_{24} C_{25} C_{25}	-178.04(8)
C6-C1-C7-O1	-17775(7)	$C_{21} N_{1} C_{25} C_{24}$	0.72(13)
$C_{2} - C_{1} - C_{7} - O_{1}$	0.72(12)	C_{23} C_{24} C_{25} N_1	-0.72(13)
C4-O3-C8-C9	178 04 (7)	C_{30} N2 C_{26} C_{27}	0.30(13)
03-C8-C9-C10	-17477(7)	N_{2}^{2} C_{26}^{26} C_{27}^{27} C_{28}^{28}	-0.11(13)
$C_{16} - C_{11} - C_{12} - C_{13}$	0.99(13)	$C_{26} = C_{27} = C_{28} = C_{29}$	-0.23(12)
C_{17} C_{11} C_{12} C_{13}	-17835(8)	$C_{26} = C_{27} = C_{28} = C_{23}$	178 56 (8)
C11 - C12 - C13 - C14	0 13 (13)	$C_{22} = C_{23} = C_{28} = C_{27}$	152 95 (9)
C18 - 06 - C14 - C15	-5.96(12)	C_{24} C_{23} C_{28} C_{27}	-28.82(12)
C18 - C14 - C13	174 06 (7)	$C_{22} = C_{23} = C_{28} = C_{29}$	-28.31(12)
C_{12} C_{13} C_{14} C_{15}	178 89 (7)	C_{24} C_{23} C_{28} C_{29}	149.93 (8)
$C_{12} = C_{13} = C_{14} = C_{15}$	-1.09(13)	C_{27} C_{28} C_{29} C_{20} C_{20}	0.37(12)
06-C14-C15-C16	-179 08 (7)	C_{23} C_{28} C_{29} C_{30}	-178 42 (8)
$C_{13} = C_{14} = C_{15} = C_{16}$	1/9.00(7) 0.01(13)	$C_{25} = C_{20} = C_{29} = C_{30}$	-0.15(12)
13 - 14 - 13 - 10	0.71 (13)	C20-N2-C30-C29	0.15 (15)

	C14—C15—C16—C11	0.23 (13)	C28-C29-C30-N2	-0.19 (13)	
--	-----------------	-----------	----------------	------------	--

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
01—H1…N1	1.03 (2)	1.61 (2)	2.6407 (10)	174.3 (19)	
O4—H4…N2	1.01 (2)	1.67 (2)	2.6728 (11)	173.9 (18)	
C3—H3…O5 ⁱ	0.95	2.57	3.3981 (11)	146	
C25—H25…O3 ⁱⁱ	0.95	2.57	3.4581 (11)	156	
C9—H9 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.99	2.84	3.6750(1)	142	
C19—H19 A ···Cg1 ^{iv}	0.99	2.72	3.5781 (1)	146	

Z = 2

F(000) = 580.00 $D_x = 1.264 \text{ Mg m}^{-3}$

 $\theta = 3.2 - 30.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 93 K

Platelet, colorless $0.53 \times 0.41 \times 0.11 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å Cell parameters from 9788 reflections

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*; (iii) *x*-2, *y*, *z*-1; (iv) *x*+2, *y*, *z*+1.

(III) 4-n-Butoxybenzoic acid-4,4'-bipyridyl (2/1)

Crystal data

$2C_{11}H_{14}O_3 \cdot C_{10}H_8N_2$
$M_r = 544.63$
Triclinic, $P\overline{1}$
<i>a</i> = 7.6645 (10) Å
<i>b</i> = 8.5087 (13) Å
c = 22.606 (3) Å
$\alpha = 80.498 \ (3)^{\circ}$
$\beta = 86.486 \ (3)^{\circ}$
$\gamma = 80.082 \ (3)^{\circ}$
V = 1431.5 (4) Å ³

Data collection

Rigaku R-AXIS RAPIDII	3432 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.075$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
ω scans	$h = -8 \rightarrow 9$
12433 measured reflections	$k = -10 \rightarrow 10$
5612 independent reflections	$l = -27 \rightarrow 27$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.193$ S = 1.015610 reflections 371 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0965P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.41$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.1390 (2)	-0.1143 (2)	-0.18237 (8)	0.0358 (4)	
02	0.3054 (2)	-0.3129 (2)	-0.12317 (8)	0.0399 (5)	
03	0.1632 (2)	-0.6711 (2)	-0.33646 (8)	0.0347 (4)	
04	0.2363 (2)	0.7005 (2)	0.21058 (8)	0.0380 (5)	
05	0.3659 (3)	0.8609 (3)	0.13954 (8)	0.0433 (5)	
06	0.3442 (2)	1.2321 (2)	0.36266 (7)	0.0336 (4)	
N1	0.1708 (3)	0.0497 (3)	-0.09736 (10)	0.0375 (5)	
N2	0.2511 (3)	0.5220 (3)	0.12499 (9)	0.0343 (5)	
C1	0.2120 (3)	-0.3677 (3)	-0.21459 (10)	0.0288 (5)	
C2	0.1061 (3)	-0.3154 (3)	-0.26457 (11)	0.0318 (6)	
H2	0.0429	-0.2080	-0.2710	0.038*	
C3	0.0926 (3)	-0.4186 (3)	-0.30463 (11)	0.0325 (6)	
H3	0.0206	-0.3821	-0.3385	0.039*	
C4	0.1843 (3)	-0.5760 (3)	-0.29530 (11)	0.0306 (5)	
C5	0.2917 (3)	-0.6282 (3)	-0.24626 (11)	0.0329 (6)	
H5	0.3555	-0.7354	-0.2399	0.040*	
C6	0.3055 (3)	-0.5231 (3)	-0.20661 (11)	0.0323 (6)	
H6	0.3804	-0.5586	-0.1734	0.039*	
C7	0.2243 (3)	-0.2636 (3)	-0.16939 (11)	0.0323 (6)	
C8	0.2479 (3)	-0.8367 (3)	-0.32529 (12)	0.0338 (6)	
H8A	0.2005	-0.8918	-0.2872	0.041*	
H8B	0.3771	-0.8427	-0.3219	0.041*	
C9	0.2121 (3)	-0.9175 (4)	-0.37668 (11)	0.0352 (6)	
H9A	0.2542	-1.0350	-0.3663	0.042*	
H9B	0.0824	-0.9016	-0.3814	0.042*	
C10	0.2976 (3)	-0.8574 (4)	-0.43586 (12)	0.0381 (6)	
H10A	0.4271	-0.8701	-0.4313	0.046*	
H10B	0.2521	-0.7409	-0.4475	0.046*	
C11	0.2622 (4)	-0.9474 (4)	-0.48561 (13)	0.0474 (7)	
H11A	0.3074	-1.0629	-0.4745	0.071*	
H11B	0.3221	-0.9055	-0.5230	0.071*	
H11C	0.1343	-0.9319	-0.4914	0.071*	
C12	0.3175 (3)	0.9341 (3)	0.23705 (11)	0.0300 (5)	
C13	0.2420 (3)	0.9052 (3)	0.29435 (11)	0.0300 (5)	
H13	0.1816	0.8155	0.3053	0.036*	
C14	0.2538 (3)	1.0058 (3)	0.33557 (11)	0.0301 (5)	
H14	0.2019	0.9852	0.3747	0.036*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C15	0.3423 (3)	1.1382 (3)	0.31945 (11)	0.0305 (5)
C16	0.4185 (3)	1.1671 (3)	0.26282 (11)	0.0325 (6)
H16	0.4781	1.2572	0.2518	0.039*
C17	0.4079 (3)	1.0642 (3)	0.22178 (11)	0.0320 (6)
H17	0.4629	1.0829	0.1830	0.038*
C18	0.3088 (3)	0.8303 (3)	0.19068 (11)	0.0323 (6)
C19	0.4228 (3)	1.3756 (3)	0.34655 (12)	0.0375 (6)
H19A	0.3595	1.4478	0.3129	0.045*
H19B	0.5485	1.3469	0.3337	0.045*
C20	0.4099 (3)	1.4595 (4)	0.40073 (12)	0.0376 (6)
H20A	0.4719	1.5539	0.3912	0.045*
H20B	0.4720	1.3845	0.4340	0.045*
C21	0.2211 (3)	1.5162 (4)	0.42172 (12)	0.0372 (6)
H21A	0.1552	1.5829	0.3875	0.045*
H21B	0.1624	1.4210	0.4354	0.045*
C22	0.2123 (4)	1.6142 (4)	0.47241 (13)	0.0452 (7)
H22A	0.2700	1.5464	0.5075	0.068*
H22B	0.0881	1.6524	0.4830	0.068*
H22C	0.2731	1.7070	0.4596	0.068*
C23	0.2365 (4)	-0.0184 (4)	-0.04412 (13)	0.0472 (7)
H23	0.2711	-0.1324	-0.0368	0.057*
C24	0.2571 (4)	0.0681 (4)	0.00093 (12)	0.0421 (7)
H24	0.3000	0.0144	0.0388	0.051*
C25	0.2135 (3)	0.2354 (3)	-0.01037 (11)	0.0307 (5)
C26	0.1489 (3)	0.3070 (3)	-0.06606 (11)	0.0332 (6)
H26	0.1191	0.4211	-0.0756	0.040*
C27	0.1286 (3)	0.2094 (3)	-0.10754 (12)	0.0347 (6)
H27	0.0819	0.2593	-0.1453	0.042*
C28	0.2950 (3)	0.5728 (4)	0.06786 (11)	0.0365 (6)
H28	0.3359	0.6735	0.0581	0.044*
C29	0.2834 (3)	0.4853 (3)	0.02218 (11)	0.0329 (6)
H29	0.3116	0.5271	-0.0182	0.040*
C30	0.2296 (3)	0.3348 (3)	0.03651 (11)	0.0298 (5)
C31	0.1889 (3)	0.2808 (3)	0.09596 (11)	0.0334 (6)
H31	0.1551	0.1775	0.1075	0.040*
C32	0.1978 (3)	0.3784 (3)	0.13857 (11)	0.0332 (6)
H32	0.1648	0.3420	0.1790	0.040*
H1	0.160 (4)	-0.054 (4)	-0.1475 (15)	0.060 (9)*
H4	0.242 (5)	0.642 (5)	0.1754 (16)	0.065 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0412 (10)	0.0304 (11)	0.0354 (10)	-0.0006 (8)	-0.0033 (8)	-0.0091 (8)
02	0.0485 (11)	0.0369 (12)	0.0331 (10)	0.0009 (9)	-0.0080 (8)	-0.0085 (8)
03	0.0326 (9)	0.0333 (11)	0.0377 (10)	0.0069 (8)	-0.0063 (7)	-0.0156 (8)
O4	0.0436 (10)	0.0351 (12)	0.0371 (10)	-0.0067 (8)	-0.0014 (8)	-0.0110 (9)
O5	0.0581 (12)	0.0399 (13)	0.0319 (10)	-0.0076 (10)	0.0004 (9)	-0.0064 (9)

06	0.0371 (9)	0.0322 (11)	0.0333 (9)	-0.0080 (8)	0.0011 (7)	-0.0089 (8)
N1	0.0455 (12)	0.0327 (14)	0.0337 (12)	-0.0007 (10)	-0.0019 (9)	-0.0092 (10)
N2	0.0328 (10)	0.0357 (14)	0.0340 (11)	0.0000 (9)	-0.0018 (9)	-0.0097 (10)
C1	0.0261 (11)	0.0307 (15)	0.0292 (12)	-0.0020 (10)	0.0019 (9)	-0.0074 (10)
C2	0.0290 (11)	0.0315 (15)	0.0338 (13)	0.0009 (10)	-0.0018 (10)	-0.0079 (11)
C3	0.0280 (11)	0.0358 (16)	0.0321 (13)	0.0023 (11)	-0.0042 (10)	-0.0071 (11)
C4	0.0250 (11)	0.0340 (15)	0.0327 (13)	0.0001 (10)	-0.0016 (9)	-0.0100 (11)
C5	0.0329 (12)	0.0283 (15)	0.0357 (13)	0.0050 (10)	-0.0041 (10)	-0.0088 (11)
C6	0.0293 (11)	0.0369 (16)	0.0304 (12)	-0.0021 (11)	-0.0018 (10)	-0.0078 (11)
C7	0.0324 (12)	0.0317 (15)	0.0328 (13)	-0.0040 (11)	0.0008 (10)	-0.0074 (11)
C8	0.0357 (12)	0.0288 (15)	0.0360 (14)	0.0005 (11)	0.0002 (10)	-0.0088 (11)
C9	0.0351 (12)	0.0359 (16)	0.0360 (13)	-0.0052 (11)	0.0022 (10)	-0.0115 (12)
C10	0.0383 (13)	0.0402 (17)	0.0365 (14)	-0.0050 (12)	0.0019 (11)	-0.0111 (12)
C11	0.0518 (16)	0.054 (2)	0.0385 (15)	-0.0066 (15)	0.0001 (13)	-0.0161 (14)
C12	0.0268 (11)	0.0271 (14)	0.0351 (13)	0.0014 (10)	-0.0069 (10)	-0.0060 (11)
C13	0.0261 (11)	0.0291 (14)	0.0331 (13)	0.0000 (10)	-0.0030 (10)	-0.0043 (11)
C14	0.0280 (11)	0.0326 (15)	0.0296 (12)	-0.0038 (10)	-0.0021 (10)	-0.0053 (11)
C15	0.0265 (11)	0.0289 (15)	0.0353 (13)	-0.0004 (10)	-0.0035 (10)	-0.0058 (11)
C16	0.0312 (12)	0.0315 (15)	0.0338 (13)	-0.0040 (11)	-0.0019 (10)	-0.0035 (11)
C17	0.0290 (11)	0.0341 (15)	0.0309 (13)	-0.0009 (10)	-0.0023 (10)	-0.0037 (11)
C18	0.0333 (12)	0.0297 (15)	0.0317 (13)	0.0019 (11)	-0.0065 (10)	-0.0035 (11)
C19	0.0354 (13)	0.0357 (17)	0.0442 (15)	-0.0095 (12)	0.0020 (11)	-0.0120 (12)
C20	0.0351 (13)	0.0387 (17)	0.0419 (15)	-0.0062 (12)	-0.0037 (11)	-0.0135 (12)
C21	0.0377 (13)	0.0335 (16)	0.0397 (14)	0.0009 (11)	-0.0032 (11)	-0.0101 (12)
C22	0.0491 (16)	0.0396 (18)	0.0474 (16)	-0.0021 (13)	0.0005 (13)	-0.0149 (14)
C23	0.071 (2)	0.0278 (16)	0.0404 (15)	0.0043 (14)	-0.0095 (14)	-0.0083 (13)
C24	0.0577 (17)	0.0306 (16)	0.0344 (14)	0.0049 (13)	-0.0063 (12)	-0.0055 (12)
C25	0.0292 (11)	0.0310 (15)	0.0314 (13)	-0.0004 (10)	0.0003 (10)	-0.0086 (11)
C26	0.0368 (13)	0.0280 (15)	0.0337 (13)	0.0002 (11)	-0.0044 (10)	-0.0061 (11)
C27	0.0351 (13)	0.0339 (16)	0.0340 (13)	0.0014 (11)	-0.0027 (10)	-0.0087 (11)
C28	0.0382 (13)	0.0349 (16)	0.0377 (14)	-0.0058 (12)	-0.0014 (11)	-0.0093 (12)
C29	0.0327 (12)	0.0326 (15)	0.0327 (13)	-0.0018 (11)	0.0012 (10)	-0.0071 (11)
C30	0.0273 (11)	0.0295 (14)	0.0314 (12)	0.0026 (10)	-0.0020 (9)	-0.0086 (11)
C31	0.0346 (12)	0.0316 (15)	0.0326 (13)	-0.0004 (11)	-0.0004 (10)	-0.0064 (11)
C32	0.0323 (12)	0.0324 (15)	0.0312 (13)	0.0036 (11)	0.0003 (10)	-0.0042 (11)

Geometric parameters (Å, °)

01—C7	1.319 (3)	C12—C18	1.489 (3)	
O1—H1	1.04 (3)	C13—C14	1.382 (3)	
O2—C7	1.225 (3)	C13—H13	0.9500	
O3—C4	1.363 (3)	C14—C15	1.399 (3)	
O3—C8	1.435 (3)	C14—H14	0.9500	
O4—C18	1.322 (3)	C15—C16	1.376 (3)	
O4—H4	1.00 (4)	C16—C17	1.392 (3)	
O5—C18	1.214 (3)	C16—H16	0.9500	
O6—C15	1.362 (3)	C17—H17	0.9500	
O6—C19	1.438 (3)	C19—C20	1.506 (3)	

N1—C27	1.325 (4)	C19—H19A	0.9900
N1—C23	1.335 (4)	C19—H19B	0.9900
N2—C28	1.334 (3)	C20—C21	1.518 (4)
N2—C32	1.337 (3)	C20—H20A	0.9900
C1—C6	1.381 (4)	C20—H20B	0.9900
C1—C2	1.398 (3)	C21—C22	1.516 (4)
C1—C7	1.475 (3)	C21—H21A	0.9900
C2—C3	1.381 (3)	C21—H21B	0.9900
С2—Н2	0.9500	C22—H22A	0.9800
C3—C4	1.390 (4)	C22—H22B	0.9800
С3—Н3	0.9500	C22—H22C	0.9800
C4—C5	1.389 (3)	C23—C24	1.382 (4)
C5—C6	1.387 (3)	C23—H23	0.9500
С5—Н5	0.9500	C24—C25	1.389 (4)
С6—Н6	0.9500	C24—H24	0.9500
C8-C9	1 505 (3)	C_{25} C_{26}	1 386 (3)
C8—H8A	0.9900	$C_{25} = C_{20}$	1.300(3) 1 483(3)
C8—H8B	0.9900	$C_{25} = C_{30}$	1.103(3) 1.383(3)
C_{9}	1 504 (4)	C26—C27	0.9500
	0.0000	C27 H27	0.9500
C_{0} HOR	0.9900	C_{2}^{2} C_{2}^{2} C_{2}^{2}	1.384(3)
	1 523 (3)	C_{28} H_{28}	0.0500
	0.0000	$C_{20} = C_{20}$	1.304(4)
	0.9900	$C_{29} = C_{30}$	0.0500
	0.9900	C29—R29	0.9300
CII—HIIA	0.9800	C_{30}	1.382(3)
CII—HIIB	0.9800	$C_{31} = C_{32}$	1.383 (3)
CII—HIIC	0.9800	C31—H31	0.9500
	1.387 (3)	С32—Н32	0.9500
C12—C17	1.390 (3)		
С7—О1—Н1	107 (2)	C15—C16—C17	119.9 (2)
C4—O3—C8	117.16 (19)	C15—C16—H16	120.1
C18—O4—H4	105 (2)	С17—С16—Н16	120.1
C15—O6—C19	117.34 (19)	C12—C17—C16	120.5 (2)
C27—N1—C23	117.5 (2)	С12—С17—Н17	119.7
C28—N2—C32	118.2 (2)	C16—C17—H17	119.7
C6—C1—C2	118.9 (2)	O5—C18—O4	123.1 (2)
C6—C1—C7	118.8 (2)	O5—C18—C12	123.0 (2)
C2—C1—C7	122.3 (2)	O4—C18—C12	113.9 (2)
C3—C2—C1	120.5 (2)	O6—C19—C20	108.0 (2)
C3—C2—H2	119.7	O6—C19—H19A	110.1
C1—C2—H2	119.7	С20—С19—Н19А	110.1
C2—C3—C4	120.0 (2)	O6—C19—H19B	110.1
С2—С3—Н3	120.0	C20—C19—H19B	110.1
С4—С3—Н3	120.0	H19A—C19—H19B	108.4
03-C4-C5	123.5 (2)	C19—C20—C21	113.9 (2)
03-C4-C3	116.6 (2)	C19—C20—H20A	108.8
C5—C4—C3	119.9 (2)	C21—C20—H20A	108.8

C6—C5—C4	119.6 (2)	С19—С20—Н20В	108.8
С6—С5—Н5	120.2	C21—C20—H20B	108.8
С4—С5—Н5	120.2	H20A—C20—H20B	107.7
C1—C6—C5	121.1 (2)	C22—C21—C20	112.6 (2)
C1—C6—H6	119.5	C22—C21—H21A	109.1
С5—С6—Н6	119.5	C20—C21—H21A	109.1
O2—C7—O1	122.9 (2)	C22—C21—H21B	109.1
O2—C7—C1	122.4 (2)	C20—C21—H21B	109.1
01-C7-C1	114.7 (2)	$H_{21}A - C_{21} - H_{21}B$	107.8
03-08-09	108.3(2)	C_{21} C_{22} H_{22A}	109.5
$O_3 - C_8 - H_8 A$	110.0	$C_{21} = C_{22} = H_{22R}$	109.5
C9-C8-H8A	110.0	$H_{22} = H_{22} = H$	109.5
$O_3 C_8 H_{8B}$	110.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
	110.0	$H_{22} = H_{22} = H_{22} C$	109.5
	108.4	$H_{22} = C_{22} = H_{22} C_{22}$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.4	N1 C22 C24	109.5 122.5(2)
$C_{10} = C_{9} = C_{8}$	114.0 (2)	N1-C22-U22	123.3 (3)
C_{10} C_{9} H_{0A}	108.0	$N1 = C_{23} = H_{23}$	110.5
$C_8 - C_9 - H_9 A$	108.6	C24—C23—H23	118.3
C10-C9-H9B	108.6	$C_{23} = C_{24} = C_{25}$	118.5 (3)
C8—C9—H9B	108.6	C23—C24—H24	120.7
Н9А—С9—Н9В	107.5	С25—С24—Н24	120.7
C9—C10—C11	112.5 (2)	C26—C25—C24	118.2 (2)
C9—C10—H10A	109.1	C26—C25—C30	120.8 (2)
C11—C10—H10A	109.1	C24—C25—C30	121.0 (2)
C9—C10—H10B	109.1	C27—C26—C25	118.9 (3)
C11—C10—H10B	109.1	С27—С26—Н26	120.6
H10A—C10—H10B	107.8	C25—C26—H26	120.6
C10-C11-H11A	109.5	N1—C27—C26	123.4 (2)
C10-C11-H11B	109.5	N1—C27—H27	118.3
H11A—C11—H11B	109.5	С26—С27—Н27	118.3
C10-C11-H11C	109.5	N2-C28-C29	122.9 (2)
H11A—C11—H11C	109.5	N2—C28—H28	118.5
H11B—C11—H11C	109.5	C29—C28—H28	118.5
C13—C12—C17	119.2 (2)	C28—C29—C30	118.8 (2)
C13—C12—C18	123.0 (2)	С28—С29—Н29	120.6
C17—C12—C18	117.7 (2)	С30—С29—Н29	120.6
C14—C13—C12	120.5 (2)	C31—C30—C29	118.0 (2)
C14—C13—H13	119.7	$C_{31} - C_{30} - C_{25}$	120.5(2)
C12—C13—H13	119.7	$C_{29} = C_{30} = C_{25}$	120.0(2) 121.5(2)
C13 - C14 - C15	119.8 (2)	C_{30} C_{31} C_{32}	1195(2)
C_{13} C_{14} H_{14}	120.1	C_{30} C_{31} H_{31}	120.3
C_{15} C_{14} H_{14}	120.1	C_{32} C_{31} H_{31}	120.3
06 C15 C16	120.1 124.4(2)	$N_2 C_{32} C_{31}$	120.5 122.5(2)
06 - C15 - C14	124.4(2)	$N_2 = C_{32} = C_{31}$	122.3 (2)
$C_{15} = C_{15} = C_{14}$	110.0(2) 120.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.7
010-013-014	120.0 (2)	031-032-1132	110./
C6—C1—C2—C3	1.2 (3)	C18—C12—C17—C16	179.0 (2)
C7—C1—C2—C3	-177.4 (2)	C15—C16—C17—C12	1.4 (4)

C1—C2—C3—C4	0.2 (4)	C13—C12—C18—O5	175.6 (2)
C8—O3—C4—C5	4.5 (3)	C17—C12—C18—O5	-5.2 (4)
C8—O3—C4—C3	-176.1 (2)	C13—C12—C18—O4	-5.6 (3)
C2—C3—C4—O3	179.5 (2)	C17—C12—C18—O4	173.5 (2)
C2—C3—C4—C5	-1.1 (4)	C15—O6—C19—C20	179.9 (2)
O3—C4—C5—C6	180.0 (2)	O6—C19—C20—C21	-62.8 (3)
C3—C4—C5—C6	0.5 (4)	C19—C20—C21—C22	-174.4 (2)
C2-C1-C6-C5	-1.8 (3)	C27—N1—C23—C24	2.1 (4)
C7—C1—C6—C5	176.9 (2)	N1-C23-C24-C25	-2.6 (5)
C4—C5—C6—C1	0.9 (4)	C23—C24—C25—C26	1.0 (4)
C6—C1—C7—O2	-4.7 (4)	C23—C24—C25—C30	178.9 (3)
C2-C1-C7-O2	174.0 (2)	C24—C25—C26—C27	0.8 (4)
C6-C1-C7-O1	176.3 (2)	C30—C25—C26—C27	-177.1 (2)
C2-C1-C7-O1	-5.1 (3)	C23—N1—C27—C26	-0.2 (4)
C4—O3—C8—C9	-178.40 (19)	C25—C26—C27—N1	-1.3 (4)
O3—C8—C9—C10	66.9 (3)	C32—N2—C28—C29	1.6 (4)
C8—C9—C10—C11	178.0 (2)	N2-C28-C29-C30	-2.3 (4)
C17—C12—C13—C14	1.0 (4)	C28—C29—C30—C31	0.5 (4)
C18—C12—C13—C14	-179.8 (2)	C28—C29—C30—C25	179.6 (2)
C12—C13—C14—C15	0.1 (4)	C26—C25—C30—C31	140.9 (3)
C19—O6—C15—C16	3.6 (4)	C24—C25—C30—C31	-37.0 (3)
C19—O6—C15—C14	-175.7 (2)	C26—C25—C30—C29	-38.2 (3)
C13—C14—C15—O6	178.8 (2)	C24—C25—C30—C29	144.0 (3)
C13—C14—C15—C16	-0.5 (4)	C29—C30—C31—C32	1.8 (4)
O6—C15—C16—C17	-179.5 (2)	C25—C30—C31—C32	-177.3 (2)
C14—C15—C16—C17	-0.3 (4)	C28—N2—C32—C31	0.9 (4)
C13—C12—C17—C16	-1.8 (4)	C30—C31—C32—N2	-2.6 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
01—H1…N1	1.04 (3)	1.56 (3)	2.600 (3)	173 (3)
O4—H4…N2	1.00 (4)	1.64 (4)	2.636 (3)	172 (4)
C24—H24…O5 ⁱ	0.95	2.47	3.408 (3)	171
C29—H29…O2 ⁱⁱ	0.95	2.53	3.456 (3)	164
C2— $H2$ ··· $Cg2$ ⁱⁱⁱ	0.95	2.98	3.754 (3)	139
$C8 - H8B - Cg2^{iv}$	0.99	2.68	3.518 (3)	143
C19—H19 <i>B</i> ··· <i>Cg</i> 1 ^v	0.99	2.77	3.586 (3)	140

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*, -*y*+1, -*z*; (iv) -*x*+1, -*y*, -*z*; (v) -*x*+1, -*y*+1, -*z*.