CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 28 October 2016
Accepted 6 December 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; chromane; hydrogen bond; $\pi-\pi$ interactions; quantumchemical calculations; Hirshfeld surface analysis.

CCDC reference: 1521043

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of 2-oxo-2H-chromen-3-yl 4-chlorobenzoate and Hirshfeld surface analysis

Eric Ziki, ${ }^{\text {a* }}$ Siaka Sosso, ${ }^{\text {b }}$ Frédérica Mansilla-Koblavi, ${ }^{\text {a }}$ Abdoulaye Djandé ${ }^{\text {b }}$ and Rita Kakou-Yao ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and ${ }^{\text {b }}$ Laboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso. *Correspondence e-mail: eric.ziki@gmail.com

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClO}_{4}$ the dihedral angle between the coumarin ring system [maximum deviation $=0.023$ (1) \AA] and the benzene ring is $73.95(8)^{\circ}$. In the crystal, $\pi-\pi$ interactions link the dimers into a three-dimensional framework. A quantum chemical calculation is in generally good agreement with the observed structure, although the calculated dihedral angle between the ring systems (85.7%) is somewhat larger than the observed value [73.95 (8) ${ }^{\circ}$]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.

1. Chemical context

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anticancer (Lacy et al., 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998), antiviral (Borges et al., 2005), anti-malarial (Agarwal et al., 2005) and anticoagulant (Maurer et al., 1998) properties. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, (I).

2. Structural commentary

In compound (I) (Fig. 1), the coumarin ring system is, as expected, almost planar [maximum deviation $=0.023(1) \AA$] and is oriented at an angle of $73.95(8)^{\circ}$ with respect to the benzene ring. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the $\mathrm{C} 3-\mathrm{C} 2[1.335(2) \AA]$ and $\mathrm{C} 2-$ C1 $[1.456(2) \AA]$ bond lengths are shorter and longer, respectively, than those excepted for a $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ bond. This suggests that the electronic density is preferentially located in the $\mathrm{C} 2-\mathrm{C} 3$ bond at the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016; Ziki et al., 2016).

Figure 1
The molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level.

3. Supramolecular features

In the crystal, weak aromatic $\pi-\pi$ stacking interactions (Janiak, 2000) are present $[C g 1 \cdots C g 2(1-x,-y, 1-z)=$ $3.4781(10) \AA$ and $C g 2 \cdots \operatorname{Cg} 2(1-x, 1-y, 1-z)=$ 3.5644 (11) \AA, where $C g 1$ is the centroid of the coumarin pyran ring and $C g 2$ is the centroid of the coumarin benzene ring], thus forming a three-dimensional supramolecular network. A weak $\mathrm{C} 11=\mathrm{O} 4 \cdots C g 3(1-x,-y,-z)(\pi$-ring $)$ interaction between O 4 and a symmetry-related benzene ring (C6-C11, centroid Cg3) of is also present (Fig. 2).

4. Hirshfeld surface analysis

Crystal Explorer3.1 (Wolff et al., 2012) was used to generate the Hirshfeld surface and two-dimensional fingerprint (FP) plots (Rohl et al., 2008). The analysis of intramolecular and intermolecular interactions through the mapping of $d_{\text {norm }}$ is permitted by the contact distances d_{i} and d_{e} from the Hirshfeld surface to the nearest atom inside and outside, respectively. In compound (I), there are four O atoms and a Cl atom that can potentially act as acceptors for hydrogen bonds, but one of O

Figure 2
Partial packing diagram for (I), showing the $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{O} \cdots \pi$ interactions (dashed lines). The yellow dots are ring centroids. H atoms have been omitted for clarity.

Figure 3
A view of the Hirshfeld surface mapped over $d_{\text {norm }}$. The contact points (red) are labelled to indicate the atoms participating in the intermolecular interactions.
atoms and the H atom of the chlorobenzoate moiety are involved in the establishment of intramolecular hydrogen bonds. The surface mapped over $d_{\text {norm }}$ displays four red spots that correspond to areas of close contact between the surface and the neighbouring environment and is shown in Fig. 3. The contributions from different contacts were selected by partial analysis of the FP plots (Fig. 4). C. . C contacts correspond to intermolecular $\pi-\pi$ interactions.

The greatest contribution (26.5\%) is from the $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts, which appear as the highlighted red spot on the side of the surface (Figs. 3 and $4 c$). The red spots in the middle of the surface correspond to $\mathrm{C} \cdots \mathrm{C}$ contacts appearing near $d_{\mathrm{e}}=$ $d_{\mathrm{i}} \simeq 1.7$ and $1.8 \AA$ (Fig. 4d). As expected in organic compounds, the $\mathrm{H} \cdots \mathrm{H}$ contacts are important with a 24.7% contribution to Hirshfeld surface (Fig. 4b). There are also

Figure 4
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) $\mathrm{H} \cdots \mathrm{H}$, (c) $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$, (d) $\mathrm{C} \cdots \mathrm{C},(e) \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $(f) \mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$.
$\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{Cl} / \mathrm{Cl} \cdots \mathrm{H}$ contacts, which make contributions of 14.5 and 12.7%, respectively (Figs. $4 e$ and $4 f$).

5. Quantum-chemical calculations

Quantum-chemical calculations were performed and the results compared with the experimental analysis. An ab-initio Hartree-Fock (HF) method was used with the standard 6-31G basis set using the GAUSSIAN03 software package (Frisch et al., 2004; Dennington et al., 2007) to obtain the optimized molecular structure. The computational results are in good agreement with the experimental crystallographic data (see Supplementary Tables S1 and S2). The dihedral angle between the coumarin ring and the chlorobenzoate ring for the calculated structure is 85.7°, which is larger than the value of $73.95(8)^{\circ}$ for the observed structure.

6. Synthesis and crystallization

To a solution of 4-chlorobenzoyl chloride ($6.17 \times 10^{-3} \mathrm{~mol} \simeq$ 0.8 ml) in dry tetrahydrofuran (31 ml) was introduced dried triethylamine (3 molar equivalents $\simeq 2.6 \mathrm{ml}$). While stirring strongly, $6.17 \times 10^{-3} \mathrm{~mol}(1 \mathrm{~g})$ of chroman-2,3-dione was added in small portions over 30 min . The reaction mixture was then refluxed for 4 h and poured into a separating funnel containing 40 ml of chloroform. The solution was acidified with dilute hydrochlororic acid until the pH was $2-3$. The organic layer was extracted, washed with water until neutral, dried over MgSO_{4} and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and dissolved in a minimum of dichloromethane by heating under agitation. Hexane was added to this hot mixture until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. Upon cooling, yellow crystals of the title compound precipitated in a yield of 70%; m.p. $478-482 \mathrm{~K}$.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined using a riding-model approximation with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer.

References

Agarwal, A., Srivastava, K., Puri, S. K. \& Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645-4650.

Table 1
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClO}_{4}$
M_{r}	300.68
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	293
$a, b, c(\AA)$	$6.7866(4), 7.1789(3), 14.0981(5)$
$\alpha, \beta, \gamma\left(^{\circ}\right)$	$94.098(3), 93.461(4), 106.154(4)$
$V\left(\AA^{3}\right)$	$655.75(5)$
Z	2
Radiation type	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
$\mu\left(\mathrm{~mm}^{-1}\right)$	2.72
Crystal size (mm)	$0.12 \times 0.12 \times 0.08$
Data collection	Agilent SuperNova Dual Source
Diffractometer	diffractometer with an Atlas
	detector
	Multi-scan $(C r y s A l i s ~ P R O ;$
Absorption correction	Agilent, 2014)
	$0.737,0.812$
$T_{\text {min }}, T_{\text {max }}$	$7634,2409,2109$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.022
$R_{\text {int }}$	0.606
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.039,0.106,1.05$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2409
No. of reflections	190
No. of parameters	$\mathrm{H}-$ atom parameters constrained
H -atom treatment	$0.26,-0.49$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008),
SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Borges, F., Roleira, F., Milhazes, N., Santana, L. \& Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.
Dennington, R., Keith, T. \& Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. \& Borges, F. (2016). Acta Cryst. E72, 926-932.

Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3889.
Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.
Lacy, A. \& O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.
Maurer, H. H. \& Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181-195.
Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. \& Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. \& Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. \& Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
Ziki, E., Yoda, J., Djandé, A., Saba, A. \& Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.

supporting information

Acta Cryst. (2017). E73, 45-47 [https://doi.org/10.1107/S2056989016019538]

Crystal structure of 2-oxo-2H-chromen-3-yl 4-chlorobenzoate and Hirshfeld surface analysis

Eric Ziki, Siaka Sosso, Frédérica Mansilla-Koblavi, Abdoulaye Djandé and Rita Kakou-Yao

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl 4-chlorobenzoate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{ClO}_{4}$
$M_{r}=300.68$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.7866$ (4) \AA
$b=7.1789$ (3) \AA
$c=14.0981(5) \AA$
$\alpha=94.098$ (3) ${ }^{\circ}$
$\beta=93.461(4)^{\circ}$
$\gamma=106.154(4)^{\circ}$
$V=655.75(5) \AA^{3}$

Data collection

Agilent SuperNova Dual Source
diffractometer with an Atlas detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 5.3048 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\text {min }}=0.737, T_{\text {max }}=0.812$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.106$
$S=1.05$
2409 reflections
190 parameters

$$
Z=2
$$

$F(000)=308$
$D_{\mathrm{x}}=1.523 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 478 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 3886 reflections
$\theta=6.3-69.1^{\circ}$
$\mu=2.72 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.12 \times 0.12 \times 0.08 \mathrm{~mm}$

7634 measured reflections
2409 independent reflections
2109 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=69.1^{\circ}, \theta_{\text {min }}=6.3^{\circ}$
$h=-8 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=-17 \rightarrow 16$

0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0475 P)^{2}+0.1948 P\right]$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	0.1899 (3)	0.0796 (2)	0.35706 (12)	0.0446 (4)
C2	0.3804 (3)	0.0653 (2)	0.31891 (11)	0.0422 (4)
C3	0.5634 (3)	0.1322 (2)	0.36885 (11)	0.0414 (4)
H3	0.6815	0.1187	0.3424	0.050*
C4	0.5771 (2)	0.2250 (2)	0.46354 (11)	0.0384 (3)
C5	0.7616 (3)	0.3026 (2)	0.52035 (13)	0.0475 (4)
H5	0.8848	0.2943	0.4975	0.057*
C6	0.7618 (3)	0.3918 (3)	0.61044 (14)	0.0549 (5)
H6	0.8856	0.4451	0.6475	0.066*
C7	0.5794 (3)	0.4022 (3)	0.64594 (12)	0.0534 (5)
H7	0.5813	0.4628	0.7067	0.064*
C8	0.3938 (3)	0.3229 (2)	0.59161 (12)	0.0474 (4)
H8	0.2705	0.3270	0.6158	0.057*
C9	0.3956 (2)	0.2379 (2)	0.50103 (11)	0.0390 (3)
C10	0.3047 (3)	0.0312 (3)	0.15135 (12)	0.0459 (4)
C11	0.2730 (2)	-0.1155 (3)	0.06844 (12)	0.0458 (4)
C16	0.2973 (3)	-0.2994 (3)	0.07788 (13)	0.0525 (4)
H16	0.3335	-0.3326	0.1377	0.063*
C15	0.2683 (3)	-0.4333 (3)	-0.00072 (14)	0.0599 (5)
H15	0.2832	-0.5568	0.0058	0.072*
C14	0.2170 (3)	-0.3809 (4)	-0.08894 (14)	0.0626 (6)
C13	0.1904 (3)	-0.1999 (4)	-0.10068 (13)	0.0649 (6)
H13	0.1534	-0.1680	-0.1607	0.078*
C12	0.2200 (3)	-0.0667 (3)	-0.02135 (13)	0.0555 (5)
H12	0.2042	0.0564	-0.0282	0.067*
Cl1	0.18104 (10)	-0.55203 (13)	-0.18674 (4)	0.0951 (3)
O1	0.20802 (17)	0.16486 (17)	0.44814 (8)	0.0444 (3)
O2	0.0204 (2)	0.0211 (2)	0.31579 (10)	0.0637 (4)
O3	0.3603 (2)	-0.04346 (18)	0.23221 (8)	0.0516 (3)
O4	0.2900 (2)	0.1930 (2)	0.15125 (10)	0.0592 (3)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0428(9)$	$0.0444(8)$	$0.0465(9)$	$0.0127(7)$	$0.0018(7)$	$0.0042(7)$
C2	$0.0515(10)$	$0.0402(8)$	$0.0374(8)$	$0.0177(7)$	$0.0038(7)$	$0.0026(6)$
C3	$0.0424(9)$	$0.0431(8)$	$0.0433(8)$	$0.0176(7)$	$0.0101(7)$	$0.0082(7)$
C4	$0.0411(8)$	$0.0336(7)$	$0.0420(8)$	$0.0117(6)$	$0.0044(6)$	$0.0066(6)$
C5	$0.0426(9)$	$0.0461(9)$	$0.0549(10)$	$0.0139(7)$	$0.0001(7)$	$0.0097(7)$
C6	$0.0597(11)$	$0.0467(9)$	$0.0538(10)$	$0.0117(8)$	$-0.0144(8)$	$0.0049(8)$
C7	$0.0801(13)$	$0.0438(9)$	$0.0386(8)$	$0.0230(9)$	$-0.0015(8)$	$0.0018(7)$
C8	$0.0601(11)$	$0.0458(9)$	$0.0420(8)$	$0.0230(8)$	$0.0084(7)$	$0.0057(7)$
C9	$0.0417(8)$	$0.0346(7)$	$0.0428(8)$	$0.0134(6)$	$0.0045(6)$	$0.0069(6)$
C10	$0.0369(9)$	$0.0587(10)$	$0.0442(9)$	$0.0156(7)$	$0.0051(7)$	$0.0082(7)$
C11	$0.0341(8)$	$0.0648(11)$	$0.0388(8)$	$0.0140(7)$	$0.0044(6)$	$0.0048(7)$
C16	$0.0515(10)$	$0.0651(11)$	$0.0407(9)$	$0.0181(8)$	$0.0000(7)$	$0.0006(8)$
C15	$0.0541(11)$	$0.0709(12)$	$0.0519(10)$	$0.0169(9)$	$0.0015(8)$	$-0.0073(9)$
C14	$0.0401(10)$	$0.0978(16)$	$0.0434(10)$	$0.0137(10)$	$0.0043(7)$	$-0.0134(10)$
C13	$0.0437(10)$	$0.1146(19)$	$0.0370(9)$	$0.0235(11)$	$0.0029(7)$	$0.0066(10)$
C12	$0.0432(10)$	$0.0826(13)$	$0.0446(9)$	$0.0217(9)$	$0.0061(7)$	$0.0141(9)$
C11	$0.0754(4)$	$0.1412(6)$	$0.0550(3)$	$0.0214(4)$	$0.0009(3)$	$-0.0395(4)$
O1	$0.0383(6)$	$0.0504(6)$	$0.0464(6)$	$0.0160(5)$	$0.0069(5)$	$0.0012(5)$
O2	$0.0439(7)$	$0.0792(9)$	$0.0619(8)$	$0.0120(6)$	$-0.0056(6)$	$-0.0029(7)$
O3	$0.0686(8)$	$0.0544(7)$	$0.0369(6)$	$0.0280(6)$	$0.0000(5)$	$-0.0007(5)$
O4	$0.0689(9)$	$0.0586(8)$	$0.0561(8)$	$0.0273(7)$	$0.0046(6)$	$0.0092(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 2$	$1.206(2)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{C} 1-\mathrm{O} 1$	$1.366(2)$	$\mathrm{C} 9-\mathrm{O} 1$	$1.382(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.456(2)$	$\mathrm{C} 10-\mathrm{O} 4$	$1.193(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.335(2)$	$\mathrm{C} 10-\mathrm{O} 3$	$1.370(2)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.3809(19)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.479(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.435(2)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.390(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 11-\mathrm{C} 12$	$1.390(2)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.393(2)$	$\mathrm{C} 16-\mathrm{C} 15$	$1.381(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.395(2)$	$\mathrm{C} 16-\mathrm{H} 16$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.380(3)$	$\mathrm{C} 15-\mathrm{C} 14$	$1.377(3)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300	$\mathrm{C} 15-\mathrm{H} 15$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.382(3)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.381(4)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300	$\mathrm{C} 14-\mathrm{C} 11$	$1.738(2)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.385(3)$	$\mathrm{C} 13-\mathrm{C} 12$	$1.385(3)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300	$\mathrm{C} 13-\mathrm{H} 13$	0.9300
$\mathrm{C} 8-\mathrm{C} 9$	$1.378(2)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9300
		$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 4$	$122.08(16)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$118.19(16)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 4$	$120.91(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$125.73(17)$	$116.07(14)$	$\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 11$

C3-C2-C1	122.67 (15)
O3-C2-C1	116.26 (15)
C2-C3-C4	119.71 (15)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.1
C9-C4-C5	118.11 (15)
C9-C4-C3	118.07 (15)
C5-C4-C3	123.81 (15)
C6-C5-C4	120.22 (17)
C6-C5-H5	119.9
C4-C5-H5	119.9
C5-C6-C7	120.47 (17)
C5-C6-H6	119.8
C7-C6-H6	119.8
C6-C7-C8	120.40 (17)
C6-C7-H7	119.8
C8-C7-H7	119.8
C9-C8-C7	118.70 (17)
C9-C8-H8	120.6
C7-C8-H8	120.6
C8-C9-O1	117.01 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.51 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.5 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	-7.4 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	171.59 (13)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-172.69 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.9 (2)
C2-C3-C4-C9	1.5 (2)
C2-C3-C4-C5	-178.72 (15)
C9-C4-C5-C6	-1.0 (2)
C3-C4-C5-C6	179.23 (15)
C4-C5-C6-C7	1.1 (3)
C5-C6-C7-C8	0.2 (3)
C6-C7-C8-C9	-1.5 (3)
C7-C8-C9-O1	-178.39 (14)
C7-C8-C9-C4	1.6 (2)
C5-C4-C9-C8	-0.4 (2)
C3-C4-C9-C8	179.42 (14)
C5-C4-C9-O1	179.60 (13)
C3-C4-C9-O1	-0.6 (2)
$\mathrm{O} 4-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	179.25 (18)
$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	0.6 (2)

O3-C10-C11	109.86 (15)
C16-C11-C12	119.31 (18)
C16-C11-C10	121.73 (16)
C12-C11-C10	118.96 (18)
C15-C16-C11	120.64 (18)
C15-C16-H16	119.7
C11-C16-H16	119.7
C14-C15-C16	118.9 (2)
C14-C15-H15	120.5
C16-C15-H15	120.5
C15-C14-C13	121.89 (19)
C15-C14-Cl1	118.0 (2)
C13-C14-Cl1	120.05 (16)
C14-C13-C12	118.72 (18)
C14-C13-H13	120.6
C12-C13-H13	120.6
C13-C12-C11	120.5 (2)
C13-C12-H12	119.7
C11-C12-H12	119.7
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	122.54 (13)
C10-O3-C2	118.78 (14)
O4-C10-C11-C12	0.0 (3)
O3-C10-C11-C12	-178.60 (15)
C12-C11-C16-C15	-0.3 (3)
C10-C11-C16-C15	-179.53 (16)
C11-C16-C15-C14	0.7 (3)
C16-C15-C14-C13	-1.1 (3)
C16-C15-C14-Cl1	-179.94 (15)
C15-C14-C13-C12	1.1 (3)
C11-C14-C13-C12	179.94 (14)
C14-C13-C12-C11	-0.7 (3)
C16-C11-C12-C13	0.3 (3)
C10-C11-C12-C13	179.57 (16)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	-179.48 (15)
C2- $\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 9$	1.4 (2)
C8-C9-O1-C1	179.09 (14)
C4-C9-O1-C1	-0.9 (2)
O4-C10-O3-C2	6.6 (3)
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 2$	-174.68 (14)
C3-C2-O3-C10	-115.15 (18)
C1-C2-O3-C10	72.60 (19)

