

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 4 August 2017 Accepted 29 August 2017

Edited by G. Smith, Queensland University of Technology, Australia

**Keywords:** 1,3-thiazin-4-one; twisted half-chair pucker; N—H···O and C—H···O interactions; crystal structure.

CCDC reference: 1571357

**Supporting information**: this article has supporting information at journals.iucr.org/e



OPEN  $\widehat{\bigcirc}$  ACCESS

## Crystal structure of (1*S*,2*S*,5*R*)-5-acetylamino-4oxo-2,3-diphenyl-1,3-thiazinan-1-ium-1-olate

### Hemant P. Yennawar,<sup>a</sup> Duncan J. Noble<sup>b</sup> and Lee J. Silverberg<sup>b\*</sup>

<sup>a</sup>Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA, and <sup>b</sup>Pennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA. \*Correspondence e-mail: ljs43@psu.edu

The asymmetric unit of the enantiomerically pure title compound,  $C_{18}H_{18}N_2O_3S$ , comprises two independent molecules (A and B) having almost identical conformations. When overlayed, the alignment-r.m.s. deviation value is 0.30 Å. The six-membered heterocycle has a twisted half-chair conformation in both molecules. The O atom on the S atom of the ring is pseudo-axial on the thiazine ring and *trans* to both a phenyl group substituent and the acetamide group in each case. The two benzene rings in each molecule are almost orthogonal to each other, with interplanar dihedral angles of 83.79 (17) and 86.95 (16)°. The acetamide group is pseudo-equatorial and a phenyl ring is pseudo-axial on the thiazine ring. Both molecules show a weak intramolecular  $C-H \cdots O$  interaction between H-atom donors of one of the phenyl rings and the acetamide group. In the crystal, an intermolecular  $N-H\cdots O(\text{thiazine})$  hydrogen bond links B molecules along the  $2_1$  (b) screw axis and, in addition, an N-H···O(acetamide) hydrogen bond links A and B molecules across a. A two-dimensional layered structure lying parallel to (001) is generated, also involving weak intermolecular  $C-H \cdots O$  interactions.

#### 1. Chemical context

The 1,3-thiazin-4-ones are a group of six-membered heterocycles with a wide range of biological activity (Ryabukhin et al., 1996). Surrey's research (Surrey et al., 1958; Surrey, 1963a,b) resulted in the discovery of two drugs, the antianxiety and muscle relaxant chlormezanone [2-(4-chlorophenyl)-3-methyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one 1,1dioxide] (O'Neil, 2006; Tanaka & Horayama, 2005) and muscle relaxant dichloromezanone [2-(3,4-dichlorophenyl)-3methyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4-one 1,1-dioxide] (Elks & Ganellin, 1990). These sulfones showed greater activity than the sulfides from which they were synthesized (Surrey et al., 1958). Surrey also prepared a variety of other sulfoxides and sulfones of 3-alkyl-2-aryl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-ones (Surrey, 1963a,b). We have reported previously the crystal structure of the first N-aryl sulfoxide in this family, racemic 2,3-diphenyl-2,3,5,6-tetrahydro-4H-1,3thiazin-4-one 1-oxide (Yennawar et al., 2016).

A sulfoxide typically has an S–O bond that is between a double bond and a single bond, with one of the lone pairs that was on the sulfide coordinating to the O atom, while O atom contributes electrons from a lone pair to a *d* orbital of the S atom. The geometry of a sulfoxide is pyramidal, with a high energy barrier for inversion, making it possible to isolate stable enantiomers (Bentley, 2005). Herein, we report the crystal structure of the sulfoxide of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide (Yennawar, Singh & Silverberg, 2015), C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub>S, prepared using the method

## research communications

| Table  | 1                                   |  |
|--------|-------------------------------------|--|
| Hydrog | gen-bond geometry (Å, $^{\circ}$ ). |  |

| $D - H \cdots A$                         | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|------------------------------------------|----------|-------------------------|--------------|------------------|
| $N2A - H2A \cdots O2B^{i}$               | 0.91 (3) | 2.25 (3)                | 3.137 (3)    | 164 (2)          |
| $N2B - H2B \cdot \cdot \cdot O1B^{ii}$   | 0.79 (3) | 2.14 (3)                | 2.916 (3)    | 168 (3)          |
| $C10A - H10A \cdots O3A$                 | 0.93     | 2.42                    | 3.259 (3)    | 149              |
| $C10B - H10B \cdots O3B$                 | 0.93     | 2.44                    | 3.232 (4)    | 143              |
| $C4B - H4BB \cdot \cdot \cdot O2A^{iii}$ | 0.97     | 2.25                    | 3.116 (3)    | 148              |
|                                          |          |                         |              |                  |

Symmetry codes: (i) x + 1, y, z; (ii) -x,  $y + \frac{1}{2}$ , -z; (iii) -x + 1,  $y + \frac{1}{2}$ , -z.

we have reported previously for the oxidation of other 2,3diphenyl-1,3-thiazin-4-ones (Yennawar *et al.*, 2016; Yennawar, Noble *et al.*, 2017) and 1,3-thiazolidinones (Yennawar, Hullihen *et al.*, 2015; Cannon *et al.*, 2015). The oxidation of the confirmed enantiopure sulfide N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015), derived from *N*-acetyl-L-cysteine, yielded a single stereoisomer as the only product.



#### 2. Structural commentary

The crystal structure of the title compound has two independent homochiral molecules (A and B) in the asymmetric unit (Fig. 1), which have almost identical conformational features, having an alignment–r.m.s. deviation value of 0.3 Å. Both have



Figure 1

The molecular structures of the two independent molecules (A and B) in the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate intramolecular  $C-H \cdots O$  interactions. the thiazine rings in a twisted half-chair configuration, with puckering amplitudes = 0.6753 (19)/0.653 (2) Å and  $\theta$  =  $131.05 (17)/135.66 (18)^{\circ}$  in molecules A/B, respectively (Cremer & Pople, 1975). The O atom on the S atom of the ring is pseudo-axial on the thiazine ring and *trans* to both the 2-phenyl group and the acetamide group in each case. The two phenyl rings in each molecule are almost orthogonal to one another, with dihedral angles of 83.79 (17) and 86.95 (16)° in molecules A and B, respectively. The acetamide group is pseudo-equatorial and the 2-phenyl group is pseudo-axial on the thiazine ring. A weak intramolecular C-H···O hydrogen bond between the 2-phenyl ring and the O atom of the acetamide group is seen in both molecules (C10A-H···O3A and C10B-H···O3B), as detailed in Table 1.

We reported previously the crystal structure of the starting sulfide, N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide 0.375-hydrate (Yennawar, Singh & Silverberg, 2015), which also had two independent homochiral molecules in the asymmetric unit. However, they were not identical: in one molecule, the thiazine ring was in a half-chair conformation in which the 2-phenyl ring was nearly pseudo-axial and the acetamide group was nearly pseudo-equatorial. The other molecule had the thiazine ring in a boat conformation in which both substituents were pseudo-equatorial.





Crystal packing diagram with red dotted lines for intermolecular N– $H \cdots O$  contacts between 2<sub>1</sub>-related molecules, forming helical chains along the *b*-axis direction, as well as the interaction with an independent molecule. Blue dotted lines represent the intramolecular C– $H \cdots O$  contacts.

| Table  | 2      |          |
|--------|--------|----------|
| Experi | mental | details. |

| Crystal data                                                             |                                                                              |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Chemical formula                                                         | $C_{18}H_{18}N_2O_3S$                                                        |
| $M_{\rm r}$                                                              | 342.40                                                                       |
| Crystal system, space group                                              | Monoclinic, P2 <sub>1</sub>                                                  |
| Temperature (K)                                                          | 298                                                                          |
| a, b, c (Å)                                                              | 12.872 (6), 10.139 (5), 13.460 (6)                                           |
| $\beta$ (°)                                                              | 103.104 (9)                                                                  |
| $V(\text{\AA}^3)$                                                        | 1710.8 (14)                                                                  |
| Ζ                                                                        | 4                                                                            |
| Radiation type                                                           | Μο Κα                                                                        |
| $\mu \text{ (mm}^{-1})$                                                  | 0.21                                                                         |
| Crystal size (mm)                                                        | $0.23 \times 0.20 \times 0.19$                                               |
| Data collection                                                          |                                                                              |
| Diffractometer                                                           | Bruker SCD area detector                                                     |
| Absorption correction                                                    | Multi-scan ( <i>SADABS</i> ; Bruker, 2016)                                   |
| $T_{\min}, T_{\max}$                                                     | 0.309, 0.900                                                                 |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 15296, 8079, 6949                                                            |
| R <sub>int</sub>                                                         | 0.031                                                                        |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.666                                                                        |
| Refinement                                                               |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.049, 0.128, 1.02                                                           |
| No. of reflections                                                       | 8079                                                                         |
| No. of parameters                                                        | 443                                                                          |
| No. of restraints                                                        | 1                                                                            |
| H-atom treatment                                                         | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )      | 0.37, -0.27                                                                  |
| Absolute structure                                                       | Flack (1983), 4160 Friedel pairs                                             |
| Absolute structure parameter                                             | 0.07 (6)                                                                     |

Computer programs: SMART (Bruker, 2016), SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

#### 3. Supramolecular features

In the crystal, the *B* molecule and its 2<sub>1</sub>-related symmetry neighbours form a continuous hydrogen-bonded chain along the *b*-cell direction through N-H···O interactions involving the acetamide N atom and the thiazin-1-ium-1-olate O atoms [N2*B*-H···O1*B*<sup>ii</sup>; symmetry code: (ii)  $-x, y + \frac{1}{2}, -z$ ; Table 1] (Fig. 2). Molecules *A* and *B* interact, wherein the O atom in the 4-position of molecule *B* accepts a proton from the acetamide N atom of molecule *A* [N2*A*-H···O1*B*<sup>i</sup>; symmetry code: (i) x + 1, y, z]. The sulfoxide O atom of molecule *A* does not participate in any hydrogen bonding. A two-dimensional sheet structure lying parallel to (001) is generated. No benzene ring in either of the molecules participates in face-to-face  $\pi$ - $\pi$ stacking interactions.

#### 4. Database survey

Crystal structures of a number of 1,3-thiazolidin-4-one 1-oxides have been reported (Wang *et al.*, 2010; Johnson *et al.*, 1983; Chen *et al.*, 2011; Colombo *et al.*, 2008; Yennawar, Hullihen *et al.*, 2015) and the structure of chlormezanone [2-(4-chlorophenyl)-3-methyl-2,3,5,6-tetrahydro-4H-1,3-thiazin-4-one 1,1-dioxide] has also been reported (Tanaka & Horayama, 2005). We have reported previously the crystal

structure of 2,3-diphenyl-2,3,5,6-tetrahydro-4*H*-1,3-thiazin-4one 1-oxide (Yennawar *et al.*, 2016). We have also reported recently the crystal structures of 2,3-diphenyl-2,3-dihydro-4*H*-1,3-benzothiazin-4-one 1-oxide (Yennawar, Fox *et al.*, 2017) and 2,3-diphenyl-2,3-dihydro-4*H*-pyrido[3,2-*e*][1,3]thiazin-4one 1-oxide (Yennawar, Noble *et al.*, 2017).

#### 5. Synthesis and crystallization

A 5 ml round-bottomed flask was charged with 53.9 mg of N-[(2S,5R)-4-oxo-2,3-diphenyl-1,3-thiazinan-5-yl]acetamide 0.375-hydrate, whose configuration was established previously (Yennawar, Singh & Silverberg, 2015), and 1.4 ml of methanol and stirred. A solution of 79.5 mg of Oxone<sup>®</sup> and 1 ml of distilled water was added dropwise and the mixture was stirred until the reaction was complete, as determined by thin-layer chromatography (TLC). The solids were dissolved by the addition of 5 ml of distilled water. The solution was extracted with 10 ml of dichloromethane. The organic layer was washed with 5 ml of distilled water and then with 5 ml of saturated sodium chloride. The solution was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum giving a crude solid. This was chromatographed on flash silica gel, eluting with a gradient of 0-60% acetone in ethyl acetate, giving 55.8 mg of product [98.6% yield; m.p. 449–452 K;  $R_{\rm F} = 0.20$  (30% acetone/70% ethyl acetate)]. Crystals suitable for X-ray crystallography were grown by slow evaporation from propan-2-ol.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms, excepting those on N atoms, were placed geometrically and allowed to ride on their parent C atoms during refinement, with C—H distances of 0.93 (aromatic), 0.96 (methyl), 0.97 or (methylene) and 0.98 Å (methyl), and with  $U_{iso}(H) = 1.2U_{eq}$ (aromatic or methylene C) or  $1.5U_{eq}$ (methyl C). H atoms on N atoms were located in a difference Fourier map and were refined isotropically. The absolute configuration for the chiral centres in the molecule was determined as (1S,2S,5R) (for the arbitrarily numbered atoms C1A/B,C3A/B), with a Flack absolute structure parameter (Flack, 1983) of 0.07 (6) for 4160 Friedel pairs.

#### **Funding information**

Funding for this research was provided by: National Science Foundation (grant No. CHEM-0131112 for the X-ray diffractometer); Penn State Schuylkill.

#### References

- Bentley, R. (2005). Chem. Soc. Rev. 34, 609-624.
- Bruker (2016). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). *Int. J. Chem.* **7**(2), 73–84.
- Chen, H., Zai-Hong, G., Qing-Mei, Y. & Xiao-Liu, L. (2011). *Chin. J. Org. Chem.* **31**, 249–255.

## research communications

- Colombo, A., Fernàndez, J. C., Fernández-Forner, D., de la Figuera, N., Albericio, F. & Forns, P. (2008). *Tetrahedron Lett.* **49**, 1569–1572.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &
- Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Elks, J. & Ganellin, C. R. (1990). Editors. Dictionary of Drugs, p. 382.
- Cambridge, UK: Chapman and Hall.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, M. R., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem. 48, 494–499.
- O'Neil, M. J. (2006). Editor. *The Merck Index*, 14th ed., p. 349, Whitehouse Station, NJ: Merck & Co. Inc.
- Ryabukhin, Y. I., Korzhavina, O. B. & Suzdalev, K. F. (1996). Adv. Heterocycl. Chem. 66, 131–190.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Surrey, A. R. (1963a). US Patent 3082209.

- Surrey, A. R. (1963b). US Patent 3093639.
- Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.
- Tanaka, R. & Horayama, N. (2005). X-Ray Struct. Anal. Online, 21, x57–x58.
- Wang, Q., Xu, Z. & Sun, Y. (2010). Acta Cryst. E66, 01422.
- Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73, 1189–1191.
- Yennawar, H. P., Noble, D. J., Yang, Z. & Silverberg, L. J. (2017). *IUCrData*, **2**, x171112.
- Yennawar, H. P., Singh, H. & Silverberg, L. J. (2015). Acta Cryst. E71, 62–64.
- Yennawar, H. P., Tierney, J., Hullihen, P. D. & Silverberg, L. J. (2015). *Acta Cryst.* E**71**, 264–267.
- Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.

Acta Cryst. (2017). E73, 1417-1420 [https://doi.org/10.1107/S2056989017012488]

Crystal structure of (1*S*,2*S*,5*R*)-5-acetylamino-4-oxo-2,3-diphenyl-1,3-thiazinan-1-ium-1-olate

### Hemant P. Yennawar, Duncan J. Noble and Lee J. Silverberg

**Computing details** 

Data collection: *SMART* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

(15,25,5R)-5-Acetylamino-4-oxo-2,3-diphenyl-1,3-thiazinan-1-ium-1-olate

Crystal data

 $C_{18}H_{18}N_2O_3S$   $M_r = 342.40$ Monoclinic, P2<sub>1</sub> a = 12.872 (6) Å b = 10.139 (5) Å c = 13.460 (6) Å  $\beta = 103.104$  (9)° V = 1710.8 (14) Å<sup>3</sup> Z = 4F(000) = 720

#### Data collection

Bruker SCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2016)  $T_{\min} = 0.309, T_{\max} = 0.900$ 

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.049$  $wR(F^2) = 0.128$ S = 1.028079 reflections 443 parameters 1 restraint  $D_x = 1.329 \text{ Mg m}^{-3}$ Melting point = 449–452 K Mo *Ka* radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7433 reflections  $\theta = 2.5-28.2^{\circ}$  $\mu = 0.21 \text{ mm}^{-1}$ T = 298 KBlock, colorless  $0.23 \times 0.20 \times 0.19 \text{ mm}$ 

15296 measured reflections 8079 independent reflections 6949 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.031$  $\theta_{max} = 28.2^\circ, \ \theta_{min} = 2.0^\circ$  $h = -16 \rightarrow 17$  $k = -13 \rightarrow 13$  $l = -17 \rightarrow 17$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0745P)^{2}]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$   $\Delta \rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 4160 Friedel pairs Absolute structure parameter: 0.07 (6)

Special details

**Experimental**. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of  $\omega$  scans each set at different  $\varphi$  and/or  $2\theta$  angles and each scan (10 s exposure) covering -0.300° degrees in  $\omega$ . The crystal to detector distance was 5.82 cm.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | У           | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|-------------|--------------|-----------------------------|--|
| C1A  | 0.79355 (19) | 0.2939 (3)  | 0.48969 (16) | 0.0397 (5)                  |  |
| H1A  | 0.7893       | 0.2095      | 0.5241       | 0.048*                      |  |
| C2A  | 0.86711 (19) | 0.3246 (3)  | 0.33058 (17) | 0.0393 (5)                  |  |
| C3A  | 0.93950 (18) | 0.4386 (2)  | 0.37719 (15) | 0.0344 (5)                  |  |
| H3A  | 1.0109       | 0.4009      | 0.4010       | 0.041*                      |  |
| C4A  | 0.91189 (19) | 0.5047 (2)  | 0.46957 (15) | 0.0356 (5)                  |  |
| H4AA | 0.8426       | 0.5468      | 0.4499       | 0.043*                      |  |
| H4AB | 0.9645       | 0.5718      | 0.4964       | 0.043*                      |  |
| C5A  | 0.69426 (19) | 0.3706 (3)  | 0.49564 (17) | 0.0431 (5)                  |  |
| C6A  | 0.6572 (2)   | 0.3596 (4)  | 0.5857 (2)   | 0.0598 (8)                  |  |
| H6A  | 0.6895       | 0.3011      | 0.6365       | 0.072*                      |  |
| C7A  | 0.5723 (3)   | 0.4365 (5)  | 0.5981 (2)   | 0.0759 (11)                 |  |
| H7A  | 0.5479       | 0.4297      | 0.6579       | 0.091*                      |  |
| C8A  | 0.5243 (3)   | 0.5217 (5)  | 0.5243 (3)   | 0.0763 (10)                 |  |
| H8A  | 0.4674       | 0.5728      | 0.5340       | 0.092*                      |  |
| C9A  | 0.5592 (2)   | 0.5335 (4)  | 0.4343 (2)   | 0.0636 (8)                  |  |
| H9A  | 0.5262       | 0.5926      | 0.3841       | 0.076*                      |  |
| C10A | 0.6433 (2)   | 0.4567 (3)  | 0.4200 (2)   | 0.0497 (6)                  |  |
| H10A | 0.6658       | 0.4627      | 0.3592       | 0.060*                      |  |
| C11A | 0.7454 (2)   | 0.1476 (2)  | 0.34101 (17) | 0.0398 (5)                  |  |
| C16A | 0.7794 (2)   | 0.0238 (3)  | 0.3750 (2)   | 0.0563 (7)                  |  |
| H16A | 0.8400       | 0.0136      | 0.4273       | 0.068*                      |  |
| C15A | 0.7227 (3)   | -0.0862 (3) | 0.3309 (3)   | 0.0719 (10)                 |  |
| H15A | 0.7447       | -0.1701     | 0.3546       | 0.086*                      |  |
| C14A | 0.6350 (3)   | -0.0716 (4) | 0.2531 (3)   | 0.0709 (10)                 |  |
| H14A | 0.5983       | -0.1455     | 0.2228       | 0.085*                      |  |
| C13A | 0.6014 (3)   | 0.0507 (4)  | 0.2197 (3)   | 0.0734 (10)                 |  |
| H13A | 0.5411       | 0.0602      | 0.1671       | 0.088*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C12A | 0.6561 (2)   | 0.1616 (4)   | 0.2634 (2)   | 0.0588 (7)   |
|------|--------------|--------------|--------------|--------------|
| H12A | 0.6325       | 0.2453       | 0.2403       | 0.071*       |
| C17A | 0.8618 (2)   | 0.5983 (3)   | 0.2465 (2)   | 0.0487 (6)   |
| C18A | 0.8817 (3)   | 0.7020 (4)   | 0.1734 (3)   | 0.0784 (11)  |
| H18A | 0.9497       | 0.7427       | 0.1999       | 0.118*       |
| H18B | 0.8266       | 0.7676       | 0.1648       | 0.118*       |
| H18C | 0.8814       | 0.6621       | 0.1087       | 0.118*       |
| N1A  | 0.80481 (17) | 0.26229 (19) | 0.38641 (14) | 0.0384 (4)   |
| N2A  | 0.94797 (16) | 0.5352 (2)   | 0.29910 (14) | 0.0392 (4)   |
| H2A  | 1.014 (2)    | 0.561 (3)    | 0.2912 (19)  | 0.036 (7)*   |
| 01A  | 1.00529 (16) | 0.2968 (2)   | 0.56800 (15) | 0.0581 (5)   |
| O2A  | 0.87065 (18) | 0.2840 (2)   | 0.24629 (13) | 0.0615 (6)   |
| O3A  | 0.77158 (16) | 0.5727 (3)   | 0.25622 (17) | 0.0702 (7)   |
| S1A  | 0.91010 (5)  | 0.38151 (6)  | 0.56562 (4)  | 0.04051 (15) |
| C1B  | 0.22990 (19) | 0.4488 (2)   | 0.06076 (17) | 0.0389 (5)   |
| H1B  | 0.2075       | 0.3562       | 0.0584       | 0.047*       |
| C2B  | 0.16558 (17) | 0.6316 (2)   | 0.16162 (17) | 0.0357 (5)   |
| C3B  | 0.13964 (19) | 0.7241 (3)   | 0.06778 (18) | 0.0410 (5)   |
| H3B  | 0.0625       | 0.7164       | 0.0407       | 0.049*       |
| C4B  | 0.1904 (2)   | 0.6890 (3)   | -0.02038(17) | 0.0418 (5)   |
| H4BA | 0.2672       | 0.6983       | 0.0009       | 0.050*       |
| H4BB | 0.1649       | 0.7488       | -0.0769      | 0.050*       |
| C5B  | 0.34898 (18) | 0.4469 (3)   | 0.06755 (16) | 0.0377 (5)   |
| C6B  | 0.3913 (2)   | 0.3500 (3)   | 0.0150 (2)   | 0.0528 (7)   |
| H6B  | 0.3468       | 0.2870       | -0.0229      | 0.063*       |
| C7B  | 0.4994 (3)   | 0.3473 (3)   | 0.0189 (2)   | 0.0615 (8)   |
| H7B  | 0.5269       | 0.2836       | -0.0177      | 0.074*       |
| C8B  | 0.5669 (2)   | 0.4381 (4)   | 0.0764 (2)   | 0.0578 (7)   |
| H8B  | 0.6397       | 0.4350       | 0.0791       | 0.069*       |
| C9B  | 0.5264 (2)   | 0.5332 (3)   | 0.1298 (2)   | 0.0499 (6)   |
| H9B  | 0.5721       | 0.5941       | 0.1692       | 0.060*       |
| C10B | 0.4174 (2)   | 0.5390 (3)   | 0.12537 (18) | 0.0424 (5)   |
| H10B | 0.3903       | 0.6043       | 0.1609       | 0.051*       |
| C11B | 0.2058 (2)   | 0.4150 (2)   | 0.23392 (18) | 0.0419 (5)   |
| C12B | 0.2934 (3)   | 0.4162 (4)   | 0.3126 (2)   | 0.0722 (10)  |
| H12B | 0.3466       | 0.4787       | 0.3143       | 0.087*       |
| C13B | 0.3032 (4)   | 0.3236 (5)   | 0.3903 (3)   | 0.0893 (13)  |
| H13B | 0.3635       | 0.3232       | 0.4436       | 0.107*       |
| C14B | 0.2239 (3)   | 0.2330 (4)   | 0.3880 (3)   | 0.0775 (11)  |
| H14B | 0.2307       | 0.1705       | 0.4397       | 0.093*       |
| C15B | 0.1358 (3)   | 0.2339 (3)   | 0.3110 (3)   | 0.0669 (9)   |
| H15B | 0.0818       | 0.1729       | 0.3107       | 0.080*       |
| C16B | 0.1249 (2)   | 0.3260 (3)   | 0.2317 (2)   | 0.0505 (6)   |
| H16B | 0.0644       | 0.3268       | 0.1787       | 0.061*       |
| C17B | 0.2575 (2)   | 0.9072 (3)   | 0.13509 (19) | 0.0458 (6)   |
| C18B | 0.2671 (4)   | 1.0542 (3)   | 0.1506 (3)   | 0.0763 (10)  |
| H18D | 0.3007       | 1.0727       | 0.2204       | 0.114*       |
| H18E | 0.1974       | 1.0932       | 0.1342       | 0.114*       |

| H18F | 0.3095       | 1.0903       | 0.1069        | 0.114*       |  |
|------|--------------|--------------|---------------|--------------|--|
| N1B  | 0.19754 (16) | 0.5070 (2)   | 0.14898 (14)  | 0.0381 (4)   |  |
| N2B  | 0.15836 (19) | 0.8610(2)    | 0.09612 (17)  | 0.0469 (5)   |  |
| H2B  | 0.110 (2)    | 0.910 (3)    | 0.089 (2)     | 0.042 (8)*   |  |
| O1B  | 0.04145 (15) | 0.5076 (3)   | -0.06247 (17) | 0.0666 (6)   |  |
| O2B  | 0.14719 (15) | 0.66808 (19) | 0.24289 (14)  | 0.0484 (4)   |  |
| O3B  | 0.33503 (15) | 0.83467 (19) | 0.15418 (15)  | 0.0530 (5)   |  |
| S1B  | 0.15756 (5)  | 0.52300 (7)  | -0.06050 (4)  | 0.04663 (17) |  |
|      |              |              |               |              |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C1A  | 0.0472 (13) | 0.0435 (13) | 0.0292 (10) | -0.0069 (11) | 0.0101 (9)   | -0.0013 (9)  |
| C2A  | 0.0442 (12) | 0.0432 (13) | 0.0316 (10) | -0.0011 (10) | 0.0108 (9)   | -0.0049 (9)  |
| C3A  | 0.0338 (11) | 0.0389 (12) | 0.0300 (10) | -0.0003 (9)  | 0.0065 (8)   | -0.0027 (9)  |
| C4A  | 0.0397 (11) | 0.0343 (12) | 0.0319 (9)  | 0.0014 (9)   | 0.0062 (9)   | -0.0056 (8)  |
| C5A  | 0.0441 (12) | 0.0518 (14) | 0.0355 (11) | -0.0110 (12) | 0.0135 (10)  | -0.0064 (11) |
| C6A  | 0.0595 (16) | 0.083 (2)   | 0.0409 (13) | -0.0101 (16) | 0.0195 (12)  | -0.0040 (14) |
| C7A  | 0.0571 (18) | 0.125 (3)   | 0.0529 (16) | -0.0064 (19) | 0.0280 (15)  | -0.0207 (19) |
| C8A  | 0.0464 (17) | 0.110 (3)   | 0.073 (2)   | 0.0079 (19)  | 0.0156 (15)  | -0.025 (2)   |
| C9A  | 0.0417 (14) | 0.084 (2)   | 0.0621 (16) | 0.0076 (16)  | 0.0050 (12)  | -0.0074 (17) |
| C10A | 0.0429 (13) | 0.0638 (18) | 0.0428 (12) | -0.0026 (13) | 0.0106 (10)  | -0.0038 (12) |
| C11A | 0.0426 (13) | 0.0425 (13) | 0.0367 (11) | -0.0081 (11) | 0.0137 (9)   | -0.0063 (10) |
| C16A | 0.0598 (17) | 0.0445 (15) | 0.0607 (16) | -0.0018 (14) | 0.0055 (13)  | -0.0077 (13) |
| C15A | 0.100 (3)   | 0.0442 (18) | 0.076 (2)   | -0.0166 (17) | 0.029 (2)    | -0.0106 (14) |
| C14A | 0.084 (2)   | 0.070 (2)   | 0.0665 (19) | -0.0399 (19) | 0.0320 (19)  | -0.0292 (17) |
| C13A | 0.062 (2)   | 0.094 (3)   | 0.0601 (18) | -0.0213 (19) | 0.0051 (15)  | -0.0221 (18) |
| C12A | 0.0604 (18) | 0.0622 (19) | 0.0468 (14) | -0.0062 (14) | -0.0028 (13) | -0.0074 (13) |
| C17A | 0.0390 (13) | 0.0625 (18) | 0.0442 (13) | -0.0003 (12) | 0.0085 (11)  | 0.0123 (12)  |
| C18A | 0.0573 (18) | 0.097 (3)   | 0.081 (2)   | 0.0043 (19)  | 0.0149 (17)  | 0.050 (2)    |
| N1A  | 0.0482 (11) | 0.0372 (11) | 0.0311 (9)  | -0.0086 (9)  | 0.0115 (8)   | -0.0076 (7)  |
| N2A  | 0.0349 (10) | 0.0446 (12) | 0.0388 (9)  | -0.0033 (9)  | 0.0102 (8)   | 0.0027 (9)   |
| O1A  | 0.0572 (11) | 0.0548 (12) | 0.0561 (11) | 0.0131 (10)  | -0.0005 (9)  | 0.0087 (9)   |
| O2A  | 0.0785 (14) | 0.0743 (14) | 0.0388 (9)  | -0.0276 (12) | 0.0280 (10)  | -0.0233 (9)  |
| O3A  | 0.0353 (10) | 0.103 (2)   | 0.0692 (13) | -0.0017 (10) | 0.0059 (9)   | 0.0341 (13)  |
| S1A  | 0.0493 (3)  | 0.0405 (3)  | 0.0289 (2)  | 0.0010 (3)   | 0.0029 (2)   | -0.0018 (2)  |
| C1B  | 0.0428 (12) | 0.0363 (12) | 0.0386 (11) | -0.0073 (10) | 0.0114 (10)  | -0.0046 (9)  |
| C2B  | 0.0284 (10) | 0.0408 (12) | 0.0396 (11) | -0.0031 (9)  | 0.0111 (9)   | 0.0040 (9)   |
| C3B  | 0.0320 (11) | 0.0487 (14) | 0.0423 (12) | 0.0031 (10)  | 0.0083 (9)   | 0.0088 (10)  |
| C4B  | 0.0400 (12) | 0.0535 (15) | 0.0296 (10) | -0.0044 (11) | 0.0030 (9)   | 0.0073 (10)  |
| C5B  | 0.0390 (12) | 0.0417 (13) | 0.0334 (10) | 0.0012 (10)  | 0.0099 (9)   | 0.0018 (9)   |
| C6B  | 0.0530 (15) | 0.0572 (18) | 0.0474 (14) | 0.0036 (13)  | 0.0099 (11)  | -0.0136 (12) |
| C7B  | 0.0560 (16) | 0.070 (2)   | 0.0626 (17) | 0.0151 (15)  | 0.0223 (14)  | -0.0136 (15) |
| C8B  | 0.0397 (14) | 0.074 (2)   | 0.0604 (16) | 0.0124 (14)  | 0.0134 (12)  | 0.0068 (15)  |
| C9B  | 0.0410 (13) | 0.0488 (15) | 0.0568 (14) | -0.0004 (12) | 0.0047 (11)  | 0.0037 (13)  |
| C10B | 0.0423 (12) | 0.0381 (13) | 0.0465 (12) | 0.0000 (10)  | 0.0093 (10)  | -0.0022 (10) |
| C11B | 0.0459 (13) | 0.0422 (14) | 0.0414 (12) | 0.0020 (10)  | 0.0178 (10)  | 0.0077 (9)   |
| C12B | 0.070 (2)   | 0.082 (3)   | 0.0588 (17) | -0.0207 (17) | 0.0013 (15)  | 0.0301 (17)  |

| C13B | 0.096 (3)   | 0.104 (3)   | 0.061 (2)   | -0.010 (2)   | 0.0021 (19) | 0.040 (2)    |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| C14B | 0.090 (3)   | 0.075 (2)   | 0.075 (2)   | 0.011 (2)    | 0.034 (2)   | 0.0384 (19)  |
| C15B | 0.067 (2)   | 0.0498 (18) | 0.097 (2)   | 0.0029 (15)  | 0.046 (2)   | 0.0232 (17)  |
| C16B | 0.0485 (14) | 0.0436 (15) | 0.0639 (17) | 0.0020 (12)  | 0.0224 (13) | 0.0070 (12)  |
| C17B | 0.0572 (16) | 0.0417 (15) | 0.0410 (12) | 0.0062 (12)  | 0.0160 (11) | 0.0010 (10)  |
| C18B | 0.098 (3)   | 0.0469 (19) | 0.084 (2)   | 0.0031 (17)  | 0.021 (2)   | -0.0066 (16) |
| N1B  | 0.0428 (10) | 0.0384 (11) | 0.0360 (9)  | -0.0021 (8)  | 0.0148 (8)  | 0.0055 (8)   |
| N2B  | 0.0459 (12) | 0.0432 (13) | 0.0541 (12) | 0.0160 (11)  | 0.0163 (10) | 0.0089 (10)  |
| O1B  | 0.0388 (10) | 0.0814 (16) | 0.0722 (13) | -0.0158 (11) | -0.0029 (9) | -0.0075 (12) |
| O2B  | 0.0558 (11) | 0.0522 (11) | 0.0435 (9)  | 0.0023 (8)   | 0.0246 (8)  | 0.0015 (8)   |
| O3B  | 0.0478 (10) | 0.0490 (11) | 0.0607 (11) | 0.0041 (8)   | 0.0093 (9)  | -0.0076 (8)  |
| S1B  | 0.0416 (3)  | 0.0590 (4)  | 0.0362 (3)  | -0.0103 (3)  | 0.0023 (2)  | -0.0070 (3)  |
|      |             |             |             |              |             |              |

### Geometric parameters (Å, °)

| C1A—H1A   | 0.9800    | C1B—H1B   | 0.9800    |
|-----------|-----------|-----------|-----------|
| C1A—C5A   | 1.514 (4) | C1B—C5B   | 1.515 (3) |
| C1A—N1A   | 1.465 (3) | C1B—N1B   | 1.468 (3) |
| C1A—S1A   | 1.841 (3) | C1B—S1B   | 1.846 (3) |
| C2A—C3A   | 1.527 (3) | C2B—C3B   | 1.547 (3) |
| C2A—N1A   | 1.371 (3) | C2B—N1B   | 1.351 (3) |
| C2A—O2A   | 1.217 (3) | C2B—O2B   | 1.227 (3) |
| СЗА—НЗА   | 0.9800    | C3B—H3B   | 0.9800    |
| C3A—C4A   | 1.524 (3) | C3B—C4B   | 1.521 (3) |
| C3A—N2A   | 1.459 (3) | C3B—N2B   | 1.445 (4) |
| C4A—H4AA  | 0.9700    | C4B—H4BA  | 0.9700    |
| C4A—H4AB  | 0.9700    | C4B—H4BB  | 0.9700    |
| C4A—S1A   | 1.801 (2) | C4B—S1B   | 1.788 (3) |
| C5A—C6A   | 1.404 (3) | C5B—C6B   | 1.392 (4) |
| C5A—C10A  | 1.388 (4) | C5B—C10B  | 1.394 (4) |
| С6А—Н6А   | 0.9300    | C6B—H6B   | 0.9300    |
| C6A—C7A   | 1.383 (5) | C6B—C7B   | 1.380 (4) |
| C7A—H7A   | 0.9300    | C7B—H7B   | 0.9300    |
| C7A—C8A   | 1.355 (6) | C7B—C8B   | 1.377 (5) |
| C8A—H8A   | 0.9300    | C8B—H8B   | 0.9300    |
| C8A—C9A   | 1.389 (5) | C8B—C9B   | 1.374 (4) |
| С9А—Н9А   | 0.9300    | С9В—Н9В   | 0.9300    |
| C9A—C10A  | 1.382 (4) | C9B—C10B  | 1.392 (4) |
| C10A—H10A | 0.9300    | C10B—H10B | 0.9300    |
| C11A—C16A | 1.372 (4) | C11B—C12B | 1.361 (4) |
| C11A—C12A | 1.375 (4) | C11B—C16B | 1.372 (4) |
| C11A—N1A  | 1.449 (3) | C11B—N1B  | 1.460 (3) |
| C16A—H16A | 0.9300    | C12B—H12B | 0.9300    |
| C16A—C15A | 1.390 (5) | C12B—C13B | 1.389 (5) |
| C15A—H15A | 0.9300    | C13B—H13B | 0.9300    |
| C15A—C14A | 1.362 (6) | C13B—C14B | 1.369 (6) |
| C14A—H14A | 0.9300    | C14B—H14B | 0.9300    |
| C14A—C13A | 1.356 (6) | C14B—C15B | 1.353 (5) |

| C13A—H13A                       | 0.9300      | C15B—H15B                          | 0.9300            |
|---------------------------------|-------------|------------------------------------|-------------------|
| C13A—C12A                       | 1.385 (5)   | C15B—C16B                          | 1.401 (4)         |
| C12A—H12A                       | 0.9300      | C16B—H16B                          | 0.9300            |
| C17A—C18A                       | 1.502 (4)   | C17B—C18B                          | 1.505 (4)         |
| C17A—N2A                        | 1.336 (3)   | C17B—N2B                           | 1.350 (4)         |
| C17A - O3A                      | 1 226 (3)   | C17B-O3B                           | 1 219 (3)         |
| C18A - H18A                     | 0.9600      | C18B—H18D                          | 0.9600            |
| C18A - H18B                     | 0.9600      | C18B—H18E                          | 0.9600            |
| $C_{18A}$ H18C                  | 0.9600      | C18B H18E                          | 0.9600            |
| N2A H2A                         | 0.9000      | N2P H2P                            | 0.9000            |
| NZA - HZA                       | 0.91(3)     |                                    | 0.79(3)           |
| UIA—SIA                         | 1.491 (2)   | 016-516                            | 1.497 (2)         |
| C5A—C1A—H1A                     | 106.6       | C5B—C1B—H1B                        | 106.0             |
| C5A—C1A—S1A                     | 108.30 (17) | C5B—C1B—S1B                        | 111.05 (15)       |
| N1A—C1A—H1A                     | 106.6       | N1B—C1B—H1B                        | 106.0             |
| N1A—C1A—C5A                     | 115.4 (2)   | N1B—C1B—C5B                        | 115.16 (19)       |
| N1A—C1A—S1A                     | 112.87 (15) | N1B—C1B—S1B                        | 111.87 (17)       |
| S1A—C1A—H1A                     | 106.6       | S1B—C1B—H1B                        | 106.0             |
| N1A—C2A—C3A                     | 120.12 (19) | N1B-C2B-C3B                        | 118.6 (2)         |
| $O^2A - C^2A - C^3A$            | 119 4 (2)   | $O^2B$ — $C^2B$ — $C^3B$           | 1197(2)           |
| O2A - C2A - N1A                 | 120.3(2)    | O2B = C2B = 03B<br>O2B = C2B = N1B | 121.3(2)          |
| $C_{2A}$ $C_{3A}$ $H_{3A}$      | 106.2       | $C^2B$ $C^2B$ $H^3B$               | 105.6             |
| $C_{4A} = C_{3A} = C_{2A}$      | 115 76 (18) | C4B - C3B - C2B                    | 105.0<br>116.3(2) |
| C4A - C3A - H3A                 | 106.2       | C4B = C3B = C2B                    | 105.6             |
| $N_{A} C_{A} C_{A} C_{A}$       | 110.2       | N2P C2P C2P                        | 105.0             |
| N2A - C3A - C2A                 | 106.2       | N2D = C2D = H2D                    | 112.0 (2)         |
| NZA - C3A - G4A                 | 100.2       | N2B = C3B = H3B                    | 103.0             |
| $N_{2A} = C_{3A} = C_{4A}$      | 111.2 (2)   | N2D - C3D - C4D                    | 110.8 (2)         |
| $C_{A}$ $C_{A}$ $H_{A}$ $H_{A}$ | 109.9       | C3B - C4B - H4BA                   | 109.7             |
| $C_{3A}$ — $C_{4A}$ — $H_{4AB}$ | 109.9       | $C_{3B}$ — $C_{4B}$ — $H_{4BB}$    | 109.7             |
| C3A—C4A—SIA                     | 108.90 (16) | C3B—C4B—SIB                        | 109.99 (17)       |
| H4AA—C4A—H4AB                   | 108.3       | H4BA—C4B—H4BB                      | 108.2             |
| SIA—C4A—H4AA                    | 109.9       | S1B—C4B—H4BA                       | 109.7             |
| S1A—C4A—H4AB                    | 109.9       | S1B—C4B—H4BB                       | 109.7             |
| C6A—C5A—C1A                     | 117.5 (3)   | C6B—C5B—C1B                        | 119.1 (2)         |
| C10A—C5A—C1A                    | 123.3 (2)   | C6B—C5B—C10B                       | 119.1 (2)         |
| C10A—C5A—C6A                    | 119.1 (3)   | C10B—C5B—C1B                       | 121.8 (2)         |
| С5А—С6А—Н6А                     | 120.2       | C5B—C6B—H6B                        | 119.9             |
| C7A—C6A—C5A                     | 119.5 (3)   | C7B—C6B—C5B                        | 120.1 (3)         |
| С7А—С6А—Н6А                     | 120.2       | C7B—C6B—H6B                        | 119.9             |
| С6А—С7А—Н7А                     | 119.6       | C6B—C7B—H7B                        | 119.6             |
| C8A—C7A—C6A                     | 120.8 (3)   | C8B—C7B—C6B                        | 120.7 (3)         |
| C8A—C7A—H7A                     | 119.6       | C8B—C7B—H7B                        | 119.6             |
| C7A—C8A—H8A                     | 119.6       | C7B—C8B—H8B                        | 120.1             |
| C7A—C8A—C9A                     | 120.7 (3)   | C9B—C8B—C7B                        | 119.8 (3)         |
| C9A—C8A—H8A                     | 119.6       | C9B—C8B—H8B                        | 120.1             |
| С8А—С9А—Н9А                     | 120.3       | C8B—C9B—H9B                        | 119.8             |
| C10A—C9A—C8A                    | 119.4 (3)   | C8B—C9B—C10B                       | 120.4 (3)         |
| С10А—С9А—Н9А                    | 120.3       | C10B—C9B—H9B                       | 119.8             |

| 119.8       | C5B-C10B-H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 120.5 (3)   | C9B—C10B—C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.8       | C9B-C10B-H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.8 (3)   | C12B—C11B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.7 (2)   | C12B—C11B—N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.5 (3)   | C16B—C11B—N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.8 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.2       | C11B—C12B—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.6 (3)   | C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.2       | C13B—C12B—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.9       | C12B—C13B—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.3 (3)   | C14B—C13B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.8 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.9       | C14B—C13B—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.0       | C13B—C14B—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.0 (3)   | C15B—C14B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.0       | C15B—C14B—H14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.7       | C14B—C15B—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.6 (3)   | C14B—C15B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119.7       | C16B—C15B—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.7 (3)   | C11B—C16B—C15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.5 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.2       | C11B—C16B—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120.2       | C15B—C16B—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 116.0 (2)   | N2B-C17B-C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116.0 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 121.6 (3)   | O3B—C17B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 122.0 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 122.4 (2)   | O3B—C17B—N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.9 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 109.5       | C17B—C18B—H18D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.5       | C17B—C18B—H18E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.5       | C17B—C18B—H18F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.5       | H18D—C18B—H18E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.5       | H18D—C18B—H18F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 109.5       | H18E—C18B—H18F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 127.96 (19) | C2B—N1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128.89 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 117.19 (18) | C2B—N1B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 117.93 (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 114.79 (18) | C11B—N1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120.0 (16)  | C3B—N2B—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 121.0 (2)   | C17B—N2B—C3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.5 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 118.6 (16)  | C17B—N2B—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 94.46 (11)  | C4B—S1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94.54 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 107.22 (13) | O1B—S1B—C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.93 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 105.71 (11) | O1B—S1B—C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 105.70 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 119.8 $120.5$ (3) $119.8$ $119.8$ (3) $119.7$ (2) $120.5$ (3) $120.2$ $119.6$ (3) $120.2$ $119.9$ $120.3$ (3) $119.9$ $120.0$ $120.0$ (3) $120.0$ $120.0$ (3) $120.0$ $119.7$ $120.6$ (3) $119.7$ $120.6$ (3) $119.7$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.2$ $120.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ </td <td>119.8<math>C5B-C10B-H10B</math>120.5 (3)<math>C9B-C10B-C5B</math>119.8<math>C9B-C10B-H10B</math>119.8 (3)<math>C12B-C11B-C16B</math>119.7 (2)<math>C12B-C11B-N1B</math>120.5 (3)<math>C16B-C11B-N1B</math>120.2<math>C11B-C12B-H12B</math>119.6 (3)<math>C11B-C12B-H12B</math>119.6 (3)<math>C11B-C12B-H12B</math>119.6 (3)<math>C11B-C12B-H12B</math>119.9<math>C12B-C13B-H13B</math>120.2<math>C13B-C12B-H12B</math>119.9<math>C12B-C13B-H13B</math>120.3 (3)<math>C14B-C13B-C12B</math>119.9<math>C14B-C13B-H13B</math>120.0<math>C13B-C14B-H14B</math>120.0<math>C15B-C14B-H14B</math>120.0<math>C15B-C14B-H14B</math>120.0<math>C15B-C14B-H15B</math>120.0<math>C15B-C16B-H15B</math>120.0<math>C15B-C16B-H15B</math>120.6 (3)<math>C14B-C15B-H15B</math>120.6 (3)<math>C14B-C15B-H15B</math>120.7<math>C16B-C15B-H15B</math>120.8<math>C11B-C16B-H16B</math>120.2<math>C15B-C16B-H16B</math>120.2<math>C15B-C16B-H16B</math>120.2<math>C15B-C17B-C18B</math>121.6 (3)<math>O3B-C17B-C18B</math>122.4 (2)<math>O3B-C17B-N2B</math>109.5<math>C17B-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C18B-H18F</math>109.5<math>H18D-C1</math></td> | 119.8 $C5B-C10B-H10B$ 120.5 (3) $C9B-C10B-C5B$ 119.8 $C9B-C10B-H10B$ 119.8 (3) $C12B-C11B-C16B$ 119.7 (2) $C12B-C11B-N1B$ 120.5 (3) $C16B-C11B-N1B$ 120.2 $C11B-C12B-H12B$ 119.6 (3) $C11B-C12B-H12B$ 119.6 (3) $C11B-C12B-H12B$ 119.6 (3) $C11B-C12B-H12B$ 119.9 $C12B-C13B-H13B$ 120.2 $C13B-C12B-H12B$ 119.9 $C12B-C13B-H13B$ 120.3 (3) $C14B-C13B-C12B$ 119.9 $C14B-C13B-H13B$ 120.0 $C13B-C14B-H14B$ 120.0 $C15B-C14B-H14B$ 120.0 $C15B-C14B-H14B$ 120.0 $C15B-C14B-H15B$ 120.0 $C15B-C16B-H15B$ 120.0 $C15B-C16B-H15B$ 120.6 (3) $C14B-C15B-H15B$ 120.6 (3) $C14B-C15B-H15B$ 120.7 $C16B-C15B-H15B$ 120.8 $C11B-C16B-H16B$ 120.2 $C15B-C16B-H16B$ 120.2 $C15B-C16B-H16B$ 120.2 $C15B-C17B-C18B$ 121.6 (3) $O3B-C17B-C18B$ 122.4 (2) $O3B-C17B-N2B$ 109.5 $C17B-C18B-H18F$ 109.5 $H18D-C18B-H18F$ 109.5 $H18D-C1$ |

Hydrogen-bond geometry (Å, °)

| D—H···A                       | D—H      | H···A    | D····A    | D—H··· $A$ |  |
|-------------------------------|----------|----------|-----------|------------|--|
| $N2A$ — $H2A$ ···O2 $B^{i}$   | 0.91 (3) | 2.25 (3) | 3.137 (3) | 164 (2)    |  |
| $N2B$ — $H2B$ ····O1 $B^{ii}$ | 0.79 (3) | 2.14 (3) | 2.916 (3) | 168 (3)    |  |
| C10A—H10A····O3A              | 0.93     | 2.42     | 3.259 (3) | 149        |  |

|                                                          |      |      | supportin | ting information |  |
|----------------------------------------------------------|------|------|-----------|------------------|--|
| C10B—H10B…O3B                                            | 0.93 | 2.44 | 3.232 (4) | 143              |  |
| C4 <i>B</i> —H4 <i>BB</i> ····O2 <i>A</i> <sup>iii</sup> | 0.97 | 2.25 | 3.116 (3) | 148              |  |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, *y*+1/2, –*z*; (iii) –*x*+1, *y*+1/2, –*z*.