

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 9 April 2018 Accepted 16 April 2018

Edited by J. Jasinsk, Keene State College, USA

Keywords: supramolecular; platinum(II); crystal structure.

CCDC reference: 1837532

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Crystal structure of bis(acetonitrile- κN)(4,4'-di-*tert*butyl-2,2'-bipyridine- $\kappa^2 N$,N')platinum(II) bis(tetrafluoridoborate) packing as head-to-head dimers

Chris Joseph,^a Vladimir N. Nesterov^b and Bradley W. Smucker^a*

^aAustin College, 900 N Grand, Sherman, TX 75090-4400, USA, and ^bUniversity of North Texas, 1155 Union Circle, Denton, TX 76203-5070, USA. *Correspondence e-mail: bsmucker@austincollege.edu

The crystal structure of a platinum(II) supramolecular building block, [Pt-(dbbpy)(NCCH₃)₂](BF₄)₂ (dbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine, C₁₈H₂₄N₂) is an example of a rare head-to-head dimer, even with the bulky *tert*-butyl groups of the bipyridine. This packing motif still enables significant π - π interactions between two pyridyl groups, and may result from the close proximity of the tetrafluoridoborate ions to the platinum(II) complexes, resulting in intramolecular H···F distances between 2.156 and 2.573 Å.

1. Chemical context

The title compound is soluble in a diverse range of solvents and possesses exchangeable acetonitrile ligands for facile incorporation of novel ligands to develop new and diverse behaviors of platinum(II) complexes. The solubility and apt geometry of the (dbbpy)platinum(II) complex make it a desirable building block for coordination-driven self-assembly of homo-metallic (Zhang, *et al.*, 2017) and hetero-metallic (Bera *et al.*, 2001) supramolecular complexes. This platinum(II) diimine can also be combined with dithiolene ligands to study methylation kinetics (Stace, *et al.*, 2016), generate charge-transfer materials (Smucker, *et al.*, 2003), or make model complexes for examining photophysical properties (Lazarides, *et al.*, 2011; Yang *et al.*, 2014).

2. Structural commentary

The platinum–nitrogen distances for the bipyridyl N1 and N2 of the +2 cation are 1.994 (4) and 1.995 (4) Å, respectively, with a bond angle of 80.5 (2)°. These are shorter than those affected by the stronger *trans*-influence of chloride in two

OPEN 👌 ACCESS

research communications

structures of the neutral (dbbpy)PtCl₂ molecule: one with Pt— N distances of 2.013 (2) and 2.011 (2) Å and a 79.79 (6)° N— Pt—N angle (Day, 2009), and the other having Pt—N distances of 2.010 (12) and 2.019 (10) Å and a 78.7 (5)° N— Pt—N angle (Achar & Catalano, 1997). The Pt—N distances of the title compound are longer than those having the weaker *trans*-influence of water in the +2 cation of [(dbbpy)Pt(O-H₂)₂](OTf)₂ (Singh *et al.*, 2008), which exhibits Pt—N distances of 1.966 (5) and 1.974 (5) Å and the resulting wider bond angle of 81.1 (2)° for N—Pt—N. The *trans*-influence of the ligand is, indeed, on par with that of the related monocation [(dbbpy)Pt(NCCH₃)(Ph)] [BAr'₄], containing a Pt—N distance of 2.000 (4) Å, located *trans* to the acetonitrile, while the phenyl ligand causes an elongation to 2.092 (4) Å for the other Pt—N bond (McKeown, *et al.*, 2011).

3. Supramolecular features

Most platinum(II) compounds containing the bulky dbbpy ligand pack as head-to-tail dimers, such as the aforementioned (dbbpy)PtCl₂ (Day, 2009; Achar & Catalano, 1997), [(dbbpy)- $Pt(OH_2)_2$ (OTf)₂ (Singh *et al.*, 2008), [(dbbpy) $Pt(NCCH_3)$ -(Ph)][BAr'₄] (Ar' = 3,5-bis(trifluoromethyl)phenyl; McKeown et al., 2011), and (dbbpy)Pt(dmid) (dmid = 1,3-dithiole-2-one-4,5-dithiolate; Smucker et al., 2003). The cations in the title compound, however, pack as head-to-head dimers (Figs. 1 and 2). In these dimers, the molecules are offset (translation by half a molecule) and slightly canted [the planes composed of all non-H atoms except the tert-butly groups for the (dbbpy)Pt(NCCH₃)₂ cation and its corresponding dimer (-x, -x) $y, \frac{1}{2} - z$) are at an angle of 10.82°], both of which accommodate the bulky tert-butyl groups of the dbbpy ligands. The intramolecular Pt-Pt distance is quite long at 4.5123 (3) Å, yet the pyridyl rings of the dbbpy are positioned for $\pi - \pi$ interactions with distances between 3.616 (5) Å $(N1 \cdots N1^{i})$ and 4.032 (7) Å (C4···C4ⁱ) [symmetry code: (i) -x, y, $\frac{1}{2} - z$]

Figure 1

Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the head-to-head dimer with selected $H \cdots F$ intermolecular distances (Å) between a BF_4^- anion and acetonitrile molecules on adjacent molecules.

Table 1

Intermolecular $H \cdots F$ distances (Å) between all eight fluorine atoms of the two BF_4^- anions.

F1···H1A	2.16	$F5^{iii} \cdot \cdot \cdot H7A^{iv}$	2.30
F1···H20B	2.43	$F5^{iii}$ ···H4 A^{iv}	2.35
F2···H9A ⁱⁱ	2.43	$F6^{iii} \cdot \cdot \cdot H20C^{i}$	2.28
F3···H9A ⁱⁱ	2.57	$F7^{iii} \cdots H20A$	2.34
$F4 \cdot \cdot \cdot H2A$	2.43 (4)	$F8^{iii} \cdots H22C$	2.34

Symmetry codes: (i) -x, y, $\frac{1}{2} - z$; (ii) x, 1 - y, $\frac{1}{2} + z$; (iii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z; (iv) x, 1 + y, z.

occurring between the two rings (Fig. 2). This atypical head-tohead packing may be partly explained through the favorable non-polar interactions between the tert-butyl groups. Another viable explanation comes through the intermolecular interactions between fluorine atoms of the BF_4^- ions and the hydrogen atoms on the pyridine and acetonitrile ligands on multiple cations. Indeed, all eight fluorine atoms of the two unique BF₄⁻ anions are in close proximity to hydrogen atoms on the cation with intermolecular H...F distances between 2.16 and 2.57 Å (Fig. 1 and Table 1). Changing the anion in related bis(acetonitrile)(diimine) platinum(II) cations seems to have a significant influence, as observed in the structures of 2,2'-bipyridine in [(bpy)Pt(NCCH₃)₂](OTf)₂ (Field *et al.*, 2003) or 1,10-phenanthroline in $[(phen)Pt(NCCh_3)_2](ClO_4)_2$ (Ha, 2010), which do not form dimers as the positions of the triflate or perchlorate anions minimize the close proximity of the two platinum-containing cations.

4. Synthesis

The synthesis of the title compound used a method which replaced the chloride from $Pt(dbbpy)Cl_2$ (Tzeng *et al.*, 2001)

Figure 2

Displacement ellipsoid plot (50% probability of all non-H atoms), illustrating the slightly canted head-to-head dimer with selected intramolecular distances shown.

with acetonitrile using excess $AgBF_4$ by following the general syntheses of (dbbpy)Pt(SO₃CF₃)₂ (Hill *et al.*, 1996) and [Pt(NCCH₃)₄](BF₄)₂ (de Renzi *et al.*, 1976).

[Pt(dbbpy)(NCCH₃)₂](BF₄)₂ A solution containing 25 mL of acetonitrile, 200.7 mg (0.2500 mmol) of Pt(dbbpy)Cl₂, and 164 mg (0.8425 mmol) of AgBF₄ was refluxed under stirring until a yellow solution formed. The solution was isolated, *via* cannula, from the AgCl precipitate and condensed under reduced pressure until ~5 mL of orange solution remained. This was combined with 25 ml of Et₂O and the resulting precipitate was washed with 3 × 20 mL Et₂O to give 206.9 mg (83.8% yield) of product. UV–vis λ max (ε Lmol⁻¹cm⁻¹): 211 (4.6 × 10⁴), 249 (4.2 × 10⁴), 306 (2.0 × 10⁴), 319 (2.4 × 10⁴) and 346 (6.0 × 10³) nm.

Yellow crystals of the title compound were grown from liquid diffusion of hexanes into a dilute acetone solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were attached to C atoms and ideally positioned (C-H = 0.95–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(CH)$ or $U_{iso}(H) = 1.2U_{eq}(CH_3)$.

Acknowledgements

X-ray data were collected at the University of North Texas using a Bruker APEXII CCD diffractometer.

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department at Austin College for Undergraduate Research).

References

- Achar, S. & Catalano, V. J. (1997). Polyhedron, 16, 1555-1561.
- Bera, J. K., Smucker, B. W., Walton, R. A. & Dunbar, K. R. (2001). *Chem. Commun.* pp. 2562–2563.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Day, M. W. (2009). CSD Communication, CCDC 246943.
- Field, J. S., Haines, R. J. & Summerton, G. C. J. (2003). J. Coord. Chem. 56, 1149–1155.
- Ha, K. (2010). Acta Cryst. E66, m389.
- Hill, G. S., Rendina, L. M. & Puddephatt, R. J. (1996). J. Chem. Soc. Dalton Trans. pp. 1809–1813.
- Lazarides, T., McCormick, T. M., Wilson, K. C., Lee, S., McCamant, D. W. & Eisenberg, R. (2011). J. Am. Chem. Soc. 133, 350–364.

Table	2		
Experi	mental	details.	

Crystal data	
Chemical formula	$[Pt(C_{18}H_{24}N_2)(C_2H_3N)_2](BF_4)_2$
M _r	719.21
Crystal system, space group	Orthorhombic, Pbcn
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	16.3409 (10), 13.0447 (8),
	25.1105 (16)
V (Å ³)	5352.6 (6)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	5.32
Crystal size (mm)	$0.14 \times 0.14 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
-	2001)
T_{\min}, T_{\max}	0.515, 0.682
No. of measured, independent and	61655, 5919, 4823
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.048
(\dot{A}^{-1}) sin θ/λ) _{max} (\dot{A}^{-1})	0.641
Refinement	
$\mathbb{R}[F^2 > 2\sigma(F^2)], w\mathbb{R}(F^2), S$	0.033, 0.113, 1.01
No. of reflections	5919
No. of parameters	342
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.39, -1.56

Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- McKeown, B. A., Gonzalez, H. E., Friedfeld, M. R., Gunnoe, T. B., Cundari, T. R. & Sabat, M. (2011). J. Am. Chem. Soc. 133, 19131– 19152.
- Renzi, A. de, Panunzi, A., Vitagliano, A. & Paiaro, G. (1976). J. Chem. Soc. Chem. Commun. pp. 47.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, A., Anandhi, U., Cinellu, M. A. & Sharp, P. R. (2008). *Dalton Trans.* pp. 2314–2327.
- Smucker, B. W., Hudson, J. M., Omary, M. A. & Dunbar, K. R. (2003). *Inorg. Chem.* **42**, 4714–4723.
- Stace, J. J., Ball, P. J., Shingade, V., Chatterjee, S., Shiveley, A., Fleeman, W. L., Staniszewski, A. J., Krause, J. A. & Connick, W. B. (2016). *Inorg. Chim. Acta*, 447, 98–104.
- Tzeng, B.-C., Chan, S.-C., Chan, M. C. W., Che, C.-M., Cheung, K.-K. & Peng, S.-M. (2001). *Inorg. Chem.* 40, 6699–6704.
- Yang, J., Kersi, D. K., Giles, L. J., Stein, B. W., Feng, C., Tichnell, C. R., Shultz, D. A. & Kirk, M. L. (2014). *Inorg. Chem.* 53, 4791– 4793.
- Zhang, Y., Fulong, C. R. P., Hauke, C. E., Crawley, M. R., Friedman, A. E. & Cook, T. R. (2017). *Chem. Eur. J.* **23**, 4532–4536.

supporting information

Acta Cryst. (2018). E74, 695-697 [https://doi.org/10.1107/S2056989018005923]

Crystal structure of bis(acetonitrile- κN)(4,4'-di-*tert*-butyl-2,2'-bipyridine- $\kappa^2 N, N'$)platinum(II) bis(tetrafluoridoborate) packing as head-to-head dimers

Chris Joseph, Vladimir N. Nesterov and Bradley W. Smucker

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2* (Bruker, 2007); data reduction: *APEX2* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2006).

F(000) = 2800 $D_x = 1.785 \text{ Mg m}^{-3}$

 $\theta = 2.2-27.1^{\circ}$ $\mu = 5.32 \text{ mm}^{-1}$ T = 100 KPlate, yellow

 $0.14 \times 0.14 \times 0.08 \ mm$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9946 reflections

Bis(acetonitrile- κN)(4,4'-di-tert-butyl-2,2'-bipyridine- $\kappa^2 N$,N')platinum(II) bis(tetrafluoridoborate)

$[Pt(C_{18}H_{24}N_2)(C_2H_3N)_2](BF_4)_2$
$M_r = 719.21$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
a = 16.3409 (10) Å
b = 13.0447 (8) Å
c = 25.1105 (16) Å
V = 5352.6 (6) Å ³
Z = 8

Data collection

Bruker APEXII CCD	61655 measured reflections
diffractometer	5919 independent reflections
Radiation source: fine-focus sealed tube	4823 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
ω scans	$\theta_{\rm max} = 27.1^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -20 \rightarrow 20$
(SADABS; Bruker, 2001)	$k = -16 \rightarrow 16$
$T_{\min} = 0.515, \ T_{\max} = 0.682$	$l = -32 \rightarrow 32$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.033$ Hydrogen site location: inferred from $wR(F^2) = 0.113$ neighbouring sites S = 1.01H-atom parameters constrained 5919 reflections $w = 1/[\sigma^2(F_0^2) + (0.080P)^2 + 5.P]$ 342 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.39 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -1.55 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х v Z0.02001 (9) Pt1 0.098683 (11) 0.487050 (15) 0.187162 (8) 0.1092 (2) N1 0.0200(8)0.3711(3)0.23845 (16) C1 0.1088(3)0.3805(4)0.29169 (19) 0.0230(10)H1A 0.1042 0.4469 0.3070 0.028* N2 0.1029(2)0.3703(3)0.13593 (17) 0.0227(9)C2 0.1149(3)0.2965(4)0.3246(2)0.0261 (11) H2A 0.1140 0.3054 0.031* 0.3622 N3 0.1005(2)0.5974(3)0.24244(18)0.0247(9)C3 0.1223(3)0.1981(4)0.30320(17)0.0188(9)N4 0.0870(2)0.5961(3)0.13214(18)0.0261(9)C4 0.1233 (3) 0.1908 (3) 0.24737 (17) 0.0203 (9) H4A 0.1280 0.1254 0.2310 0.024* C5 0.1174 (3) 0.0197 (9) 0.2771(4)0.21635 (17) C6 0.1182 (3) 0.2775 (4) 0.15764 (18) 0.0214 (10) C7 0.1341(3)0.1931(3)0.0197(9)0.12624 (17) H7A 0.1449 0.024* 0.1288 0.1425 C8 0.2010 (4) 0.07074 (18) 0.1346 (3) 0.0235 (10) C9 0.1159(3)0.2968(4)0.0501(2)0.0282(11)0.034* H9A 0.1142 0.3057 0.0125 C10 0.0999(3)0.3787(4)0.08242(19)0.0281(12)H10A 0.0864 0.4429 0.0669 0.034* 0.0224 (10) C11 0.1265(3)0.1023(4)0.33750 (18) C12 0.2078 (3) 0.0461 (4) 0.32623 (19) 0.0261 (10) H12A 0.0299 0.039* 0.2115 0.2882 H12B 0.2099 -0.01740.3470 0.039* 0.0903 0.039* H₁₂C 0.2538 0.3364 0.0306 (4) 0.3229 (2) C13 0.0557(3) 0.0274 (11) H13A 0.0624 0.0069 0.2861 0.041* H13B 0.0038 0.0675 0.3263 0.041* H13C 0.0557 -0.02850.3470 0.041* C14 0.39695 (19) 0.1207(3)0.1287(4)0.0315(12)H14A 0.0716 0.1698 0.4034 0.047* H14B 0.1693 0.1677 0.4076 0.047* H14C 0.1177 0.0653 0.4178 0.047* C15 0.1569(3)0.1088(4)0.03663 (18) 0.0249(10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C1(0.0011 (4)	0.02(2.(4)	0.0428 (2)	0.0244(12)
	0.0911 (4)	0.0262 (4)	0.0438 (2)	0.0344 (13)
HIGA	0.0875	0.0072	0.0815	0.052*
HI6B	0.1057	-0.0344	0.0227	0.052*
H16C	0.0382	0.0528	0.0317	0.052*
C17	0.2397 (3)	0.0657 (5)	0.0539 (2)	0.0389 (13)
H17A	0.2383	0.0504	0.0921	0.058*
H17B	0.2826	0.1163	0.0468	0.058*
H17C	0.2512	0.0027	0.0340	0.058*
C18	0.1638 (4)	0.1369 (4)	-0.02260 (19)	0.0379 (14)
H18A	0.1101	0.1584	-0.0359	0.057*
H18B	0.1826	0.0771	-0.0428	0.057*
H18C	0.2029	0.1932	-0.0269	0.057*
C19	0.1018 (3)	0.6625 (4)	0.2714 (2)	0.0249 (11)
C20	0.1019 (3)	0.7449 (5)	0.3107 (2)	0.0320 (13)
H20A	0.1448	0.7945	0.3019	0.048*
H20B	0.1124	0.7162	0.3461	0.048*
H20C	0.0486	0.7793	0.3106	0.048*
C21	0.0799 (3)	0.6560 (4)	0.1006 (2)	0.0282 (11)
C22	0.0702 (4)	0.7321 (4)	0.0583 (2)	0.0435 (15)
H22B	0.0863	0.7018	0.0241	0.065*
H22C	0.1049	0.7916	0.0659	0.065*
H22A	0.0129	0.7538	0.0565	0.065*
F5	0.3387 (3)	0.4742 (3)	0.18538 (12)	0.0439 (9)
F1	0.0964 (2)	0.5412 (3)	0.37735 (13)	0.0444 (9)
F6	0.4162 (2)	0.3323 (3)	0.18232 (14)	0.0466 (9)
F7	0.2907 (2)	0.3270 (3)	0.22056 (14)	0.0499 (9)
F8	0.3013 (2)	0.3445 (3)	0.13080 (14)	0.0481 (9)
F2	0.0499 (2)	0.5587 (3)	0.46122 (13)	0.0498 (9)
F3	0.1841 (2)	0.5745 (3)	0.44502 (13)	0.0519 (10)
F4	0.1237 (3)	0.4179 (3)	0.43888 (16)	0.0742 (14)
B1	0.1145 (5)	0.5186 (6)	0.4330 (2)	0.0345 (16)
B2	0.3361 (4)	0.3695 (5)	0.1792 (2)	0.0293 (13)
		- (-)	< / /	(-)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.02479 (13)	0.01503 (13)	0.02021 (13)	-0.00068 (6)	-0.00068 (7)	0.00112 (6)
N1	0.025 (2)	0.018 (2)	0.018 (2)	-0.0017 (15)	-0.0023 (15)	-0.0012 (15)
C1	0.034 (3)	0.018 (2)	0.017 (2)	-0.0026 (19)	-0.0004 (19)	-0.0040 (19)
N2	0.031 (2)	0.016 (2)	0.022 (2)	-0.0061 (15)	-0.0026 (16)	0.0006 (16)
C2	0.037 (3)	0.023 (3)	0.019 (2)	-0.001 (2)	-0.003 (2)	-0.002 (2)
N3	0.026 (2)	0.021 (2)	0.028 (2)	0.0024 (15)	-0.0013 (16)	0.0027 (18)
C3	0.021 (2)	0.018 (2)	0.018 (2)	-0.0039 (18)	0.0009 (18)	0.0024 (17)
N4	0.030 (2)	0.018 (2)	0.031 (2)	0.0031 (16)	-0.0006 (17)	-0.0011 (18)
C4	0.023 (2)	0.022 (2)	0.016 (2)	-0.0032 (18)	-0.0004 (18)	-0.0033 (18)
C5	0.022 (2)	0.019 (2)	0.018 (2)	-0.0040 (17)	0.0009 (18)	-0.0023 (17)
C6	0.022 (2)	0.022 (2)	0.020 (2)	-0.0055 (18)	-0.0032 (18)	0.0021 (18)
C7	0.023 (2)	0.017 (2)	0.019 (2)	-0.0040 (18)	-0.0039 (18)	0.0020 (17)

supporting information

C8	0.030 (3)	0.020 (2)	0.021 (2)	-0.0075 (19)	-0.002 (2)	0.0024 (18)
C9	0.044 (3)	0.027 (3)	0.013 (2)	-0.003 (2)	-0.003 (2)	0.0052 (19)
C10	0.043 (3)	0.023 (3)	0.018 (3)	-0.005 (2)	-0.008 (2)	0.0033 (19)
C11	0.029 (2)	0.022 (2)	0.017 (2)	0.002 (2)	-0.0029 (19)	0.0013 (18)
C12	0.029 (3)	0.024 (2)	0.026 (2)	0.007 (2)	0.003 (2)	0.009 (2)
C13	0.031 (3)	0.022 (2)	0.029 (3)	-0.006 (2)	0.001 (2)	0.007 (2)
C14	0.046 (3)	0.027 (3)	0.021 (3)	0.000(2)	0.000(2)	0.009 (2)
C15	0.034 (3)	0.025 (2)	0.016 (2)	-0.003 (2)	-0.0014 (19)	-0.0013 (19)
C16	0.049 (4)	0.024 (3)	0.030 (3)	0.001 (2)	-0.003 (2)	-0.007 (2)
C17	0.037 (3)	0.051 (4)	0.028 (3)	0.006 (3)	0.006 (2)	0.006 (3)
C18	0.066 (4)	0.035 (3)	0.013 (2)	0.006 (3)	-0.002 (2)	-0.003 (2)
C19	0.029 (3)	0.023 (3)	0.023 (3)	0.0030 (19)	0.002 (2)	-0.002 (2)
C20	0.041 (3)	0.022 (3)	0.032 (3)	0.001 (2)	0.000 (2)	-0.006 (2)
C21	0.032 (3)	0.023 (3)	0.029 (3)	0.008 (2)	0.005 (2)	0.005 (2)
C22	0.057 (4)	0.032 (3)	0.041 (4)	0.009 (3)	-0.006 (3)	0.022 (3)
F5	0.056 (2)	0.033 (2)	0.042 (2)	0.0095 (17)	0.0005 (15)	0.0018 (15)
F1	0.054 (2)	0.052 (2)	0.0273 (18)	0.0104 (16)	-0.0050 (14)	-0.0065 (17)
F6	0.0295 (17)	0.041 (2)	0.070 (3)	0.0038 (15)	0.0019 (15)	-0.0015 (17)
F7	0.0379 (19)	0.060 (2)	0.052 (2)	-0.0054 (16)	0.0043 (16)	0.0274 (19)
F8	0.049 (2)	0.049 (2)	0.046 (2)	-0.0100 (17)	-0.0084 (16)	-0.0111 (16)
F2	0.051 (2)	0.064 (3)	0.0348 (19)	-0.0122 (19)	0.0087 (16)	-0.0163 (17)
F3	0.046 (2)	0.074 (3)	0.0358 (19)	-0.0100 (19)	0.0048 (15)	-0.0153 (18)
F4	0.132 (4)	0.035 (2)	0.056 (3)	0.012 (2)	-0.024 (3)	-0.004 (2)
B1	0.035 (3)	0.046 (4)	0.023 (3)	0.014 (3)	-0.009 (3)	-0.026 (3)
B2	0.023 (3)	0.022 (3)	0.043 (4)	-0.005 (2)	0.003 (2)	0.005 (2)

Geometric parameters (Å, °)

Pt1—N4	1.992 (4)	C13—H13B	0.9800
Pt1—N1	1.994 (4)	С13—Н13С	0.9800
Pt1—N2	1.995 (4)	C14—H14A	0.9800
Pt1—N3	2.000 (5)	C14—H14B	0.9800
N1—C1	1.343 (6)	C14—H14C	0.9800
N1—C5	1.353 (6)	C15—C17	1.528 (7)
C1—C2	1.377 (7)	C15—C16	1.533 (7)
C1—H1A	0.9500	C15—C18	1.536 (6)
N2—C10	1.349 (6)	C16—H16A	0.9800
N2—C6	1.350 (6)	C16—H16B	0.9800
C2—C3	1.396 (7)	C16—H16C	0.9800
C2—H2A	0.9500	С17—Н17А	0.9800
N3—C19	1.118 (7)	C17—H17B	0.9800
C3—C4	1.405 (6)	С17—Н17С	0.9800
C3—C11	1.520 (6)	C18—H18A	0.9800
N4—C21	1.119 (7)	C18—H18B	0.9800
C4—C5	1.372 (6)	C18—H18C	0.9800
C4—H4A	0.9500	C19—C20	1.460 (7)
C5—C6	1.474 (6)	C20—H20A	0.9800
C6—C7	1.379 (6)	C20—H20B	0.9800

supporting information

C7—C8	1,398 (6)	C20—H20C	0.9800
C7—H7A	0.9500	C21—C22	1.462 (7)
C8—C9	1.386 (7)	C22—H22B	0.9800
C8—C15	1 521 (7)	C22—H22C	0.9800
C9—C10	1 368 (8)	C22—H22A	0.9800
C9—H9A	0.9500	F5B2	1.375(7)
C10—H10A	0.9500	F1—B1	1.575(7) 1 459(7)
C11-C13	1 532 (7)	F6—B2	$1.10^{\circ}(7)$ 1.398(7)
C11-C14	1.532 (7)	F7—B2	1.392 (6)
C_{11} C_{12}	1.535(0) 1.544(7)	F8B2	1.392(0) 1 381(7)
C12H12A	0.9800	F2B1	1.301(7) 1.374(7)
C12—H12R	0.9800	F3B1	1.37 + (7) 1 385 (8)
C12_H12D	0.9800	F4-B1	1.303(0) 1.330(8)
C12—III2C	0.9800	I I - D I	1.550 (8)
CIJ—IIIJA	0.9800		
N4—Pt1—N1	176.23 (16)	C11—C13—H13C	109.5
N4—Pt1—N2	95.81 (18)	H13A—C13—H13C	109.5
N1—Pt1—N2	80.47 (18)	H13B—C13—H13C	109.5
N4—Pt1—N3	88.22 (19)	C11—C14—H14A	109.5
N1—Pt1—N3	95.53 (18)	C11—C14—H14B	109.5
N2—Pt1—N3	175.27 (16)	H14A—C14—H14B	109.5
C1—N1—C5	119.5 (4)	C11—C14—H14C	109.5
C1—N1—Pt1	125.0 (3)	H14A—C14—H14C	109.5
C5—N1—Pt1	115.6 (3)	H14B—C14—H14C	109.5
N1—C1—C2	121.7 (5)	C8—C15—C17	110.1 (4)
N1—C1—H1A	119.2	C8—C15—C16	108.8 (4)
C2—C1—H1A	119.2	C17—C15—C16	109.2 (4)
C10—N2—C6	118.8 (4)	C8—C15—C18	112.0 (4)
C10—N2—Pt1	125.4 (4)	C17—C15—C18	107.4 (4)
C6—N2—Pt1	115.5 (3)	C16—C15—C18	109.4 (4)
C1—C2—C3	120.4 (5)	C15—C16—H16A	109.5
C1—C2—H2A	119.8	C15—C16—H16B	109.5
C3—C2—H2A	119.8	H16A—C16—H16B	109.5
C19—N3—Pt1	176.6 (4)	C15—C16—H16C	109.5
C2—C3—C4	116.7 (4)	H16A—C16—H16C	109.5
C2—C3—C11	122.8 (4)	H16B—C16—H16C	109.5
C4—C3—C11	120.6 (4)	C15—C17—H17A	109.5
C21—N4—Pt1	178.7 (5)	C15—C17—H17B	109.5
C5—C4—C3	120.6 (4)	H17A—C17—H17B	109.5
C5—C4—H4A	119.7	C15—C17—H17C	109.5
C3—C4—H4A	119.7	H17A—C17—H17C	109.5
N1—C5—C4	121.2 (4)	H17B—C17—H17C	109.5
N1—C5—C6	114.0 (4)	C15—C18—H18A	109.5
C4—C5—C6	124.8 (4)	C15—C18—H18B	109.5
N2—C6—C7	121.3 (4)	H18A—C18—H18B	109.5
N2—C6—C5	114.0 (4)	C15—C18—H18C	109.5
C7—C6—C5	124.7 (4)	H18A—C18—H18C	109.5
C6—C7—C8	120.8 (4)	H18B—C18—H18C	109.5

С6—С7—Н7А	119.6	N3—C19—C20	177.7 (6)
С8—С7—Н7А	119.6	С19—С20—Н20А	109.5
C9—C8—C7	116.0 (4)	C19—C20—H20B	109.5
C9—C8—C15	123.7 (4)	H20A—C20—H20B	109.5
C7—C8—C15	120.3 (4)	С19—С20—Н20С	109.5
C10—C9—C8	121.6 (5)	H20A—C20—H20C	109.5
С10—С9—Н9А	119.2	H20B—C20—H20C	109.5
С8—С9—Н9А	119.2	N4—C21—C22	178.4 (6)
N2—C10—C9	121.4 (5)	C21—C22—H22B	109.5
N2-C10-H10A	119.3	C21—C22—H22C	109.5
C9—C10—H10A	119.3	H22B—C22—H22C	109.5
C3—C11—C13	109.4 (4)	C21—C22—H22A	109.5
C3—C11—C14	111.3 (4)	H22B—C22—H22A	109.5
C13—C11—C14	108.9 (4)	H22C—C22—H22A	109.5
C3—C11—C12	109.0 (4)	F4—B1—F2	113.9 (7)
C13—C11—C12	108.5 (4)	F4—B1—F3	113.8 (5)
C14—C11—C12	109.7 (4)	F2—B1—F3	108.6 (4)
C11—C12—H12A	109.5	F4—B1—F1	109.1 (5)
C11—C12—H12B	109.5	F2—B1—F1	105.1 (5)
H12A—C12—H12B	109.5	F3—B1—F1	105.6 (6)
C11—C12—H12C	109.5	F5—B2—F8	110.2 (5)
H12A—C12—H12C	109.5	F5—B2—F7	109.1 (5)
H12B—C12—H12C	109.5	F8—B2—F7	110.0 (4)
C11—C13—H13A	109.5	F5—B2—F6	108.0 (5)
C11—C13—H13B	109.5	F8—B2—F6	110.7 (5)
H13A—C13—H13B	109.5	F7—B2—F6	108.7 (5)