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The asymmetric unit of the centrosymmetric title salt, C17H17F6N2O+
�C2Cl3O2

�,

comprises a single ion-pair. The hydroxy-O and ammonium-N atoms lie to the

same side of the cation, a disposition maintained by a charge-assisted

ammonium-N—H� � �O(hydroxy) hydrogen bond [the Oh—Cm—Cm–Na (h =

hydroxy, m = methine, a = ammonium) torsion angle is 58.90 (19)�]. The

piperidin-1-ium group is approximately perpendicular to the quinolinyl residue

[Cq—Cm—Cm–Na (q = quinolinyl) is �178.90 (15)�] so that the cation, to a first

approximation, has the shape of the letter L. The most prominent feature of the

supramolecular association in the crystal is the formation of chains along the

a-axis direction, being stabilized by charge-assisted hydrogen-bonds. Thus,

ammonium-N+—H� � �O�(carboxylate) hydrogen bonds are formed whereby

two ammonium cations bridge a pair of carboxylate-O atoms, leading to eight-

membered {� � �O� � �HNH}2 synthons. The resulting four-ion aggregates are

linked into the supramolecular chain via charge-assisted hydroxyl-O—

H� � �O�(carboxylate) hydrogen bonds. The connections between the chains,

leading to a three-dimensional architecture, are of the type C—X� � ��, for X = Cl

and F. The analysis of the calculated Hirshfeld surface points to the importance

of X� � �H contacts to the surface (X = F, 25.4% and X = Cl, 19.7%) along with a

significant contribution from O� � �H hydrogen-bonds (10.2%). Conversely,

H� � �H contacts, at 12.4%, make a relatively small contribution to the surface.

1. Chemical context

Kryptoracemic behaviour is an interesting but rare phenom-

enon whereby enantiomeric molecules crystallize in one of the

65 Sohncke space groups. Sohncke space groups lack an

inversion centre, a rotatory inversion axis, a glide plane or a

mirror plane, implying Z0 would usually be greater than 1

(unless the molecule lies on a rotation axis) and in which

enantiomeric molecules, when present, are related by a non-

crystallographic symmetry, e.g. a non-crystallographic centre

of inversion. Reviews of this phenomenon have appeared for

organic compounds (Fábián & Brock, 2010) and for coordi-

nation complexes (Bernal & Watkins, 2015). For organic

molecules, kryptoracemic behaviour is uncommon and is

found in only 0.1% of structures (Fábián & Brock, 2010). It is

therefore of interest that pharmacologically relevant

(Gonçalves et al., 2012) mefloquine/derivatives, for which

there are about 30 structures included in the Cambridge

Structural Database (Groom et al., 2016), present two exam-

ples of kryptoracemates (Jotani et al., 2016; Wardell, Wardell et

ISSN 2056-9890

http://crossmark.crossref.org/dialog/?doi=10.1107/S2056989018016389&domain=pdf&date_stamp=2018-11-22


al., 2016). In order to investigate reasons for this seemingly

high propensity towards kryptoracemic behaviour in meflo-

quine derivatives, crystallographic studies of different meflo-

quinium salts have subsequently been performed (Wardell et

al., 2018) and in a continuation of these, herein the crystal and

molecular structures of the title salt, (I), isolated from the 1:1

crystallization of racemic mefloquine and trichloroacetic acid

are described. This is complemented by an analysis of its

calculated Hirshfeld surface.

2. Structural commentary

The two ions comprising the asymmetric unit of salt (I) are

shown in Fig. 1. The crystal of (I) is racemic. Each cation

contains two chiral centres and the illustrated cation in the

arbitrarily chosen asymmetric unit is S at C12 and R at C13, i.e.

conforming to the [(�)-erythro-mefloquinium] isomer. That

protonation from the carboxylic acid to the base occurred

during co-crystallization is readily seen in the equivalence of

the C18. . .O2, O3 bond lengths, i.e. 1.238 (3) and 1.245 (3) Å,

respectively. The formation of the piperidin-1-ium cation is

supported by the pattern of hydrogen bonding involving the

ammonium-N—H H atoms. Indeed, an intramolecular

ammonium-N+—H� � �O(hydroxy) hydrogen bond is formed

ensuring the hydroxyl-O1 and ammonium-N2 atoms are

orientated to the same side of the cation with the O1—C12—

C13—N2 torsion angle of 58.90 (19)� angle indicating a + syn-

clinal relationship. The r.m.s. deviation for the 10 atoms

comprising the quinolinyl residue is 0.0147 Å, with the hy-

droxy-O1 [�0.299 (3) Å] and ammonium-N2 [1.490 (4) Å]

atoms lying to either side of the plane. The dihedral angle of

74.00 (5)� formed between the fused ring system and the best

plane through the piperidin-1-ium ring indicates that, overall,

the molecule has the shape of the letter L. This is confirmed by

the +syn-clinal C3—C12—C13—C17 torsion angle of

60.1 (2)�.

In the anion, the r.m.s. deviation through the C2O2 atoms is

0.0131 Å with the Cl3 atom lying to one side of the plane

[deviation = 1.7153 (3) Å] whereas the Cl1 [�0.9341 (3) Å]

and Cl2 [�0.6170 (4) Å] atoms lie to the other side.

3. Supramolecular features

The presence of charge-assisted hydrogen bonds between the

constituent ions lead to linear, supramolecular chains along

the a-axis direction in the crystal of (I), Table 1 and Fig. 2(a).

The most prominent feature of the packing is the formation of

centrosymmetric, eight-membered {� � �O� � �HNH}2 synthons,

which arise as a result of ammonium-N+—H� � �O�(carboxyl-

ate) hydrogen bonds whereby two ammonium cations bridge,

via both hydrogen atoms, a pair of carboxylate-O2 atoms. The

four-ion aggregates are linked into the chain via charge-

assisted hydroxyl-O—H� � �O�(carboxylate) hydrogen bonds.

These lead to larger centrosymmetric agglomerates, i.e. 18-

membered {� � �OCO� � �HOC2NH}2 synthons. The connections

between the chains are of the type C—X� � ��, for X = Cl and F.
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Figure 1
The molecular structures of the two ions comprising the asymmetric unit
of (I) showing the atom-labelling scheme and displacement ellipsoids at
the 70% probability level. The dashed line signifies an N—H� � �O
hydrogen bond.

Table 1
Hydrogen-bond geometry (Å, �).

Cg1 and Cg2 are the centroids of the C4–C9 and N1/C1–C4/C9 rings,
respectively.

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N2—H1N� � �O1 0.88 (2) 2.42 (2) 2.734 (3) 102 (2)
N2—H1N� � �O2i 0.88 (2) 1.99 (2) 2.769 (3) 146 (2)
O1—H1O� � �O3ii 0.83 (2) 1.89 (2) 2.702 (2) 165 (2)
N2—H2N� � �O2 0.88 (2) 2.00 (2) 2.869 (2) 173 (2)
N2—H2N� � �O3 0.88 (2) 2.47 (2) 3.043 (3) 124 (1)
C19—Cl3� � �Cg1iii 1.78 (1) 3.61 (1) 4.709 (3) 118 (1)
C10—F1� � �Cg2iv 1.34 (1) 3.07 (1) 4.395 (2) 171 (1)
C10—F2� � �Cg1ii 1.34 (1) 3.44 (1) 3.788 (2) 95 (1)
C10—F3� � �Cg1ii 1.32 (1) 3.24 (1) 3.788 (2) 104 (1)

Symmetry codes: (i) �xþ 1;�y;�z þ 1; (ii) x� 1; y; z; (iii) �xþ 1;�yþ 1;�zþ 1;
(iv) �x;�y;�zþ 2.



Such interactions are inherently weak, providing energies of

stabilization less than 4 kcal mol�1, with those for interactions

involving chloride atoms being greater than those with

fluoride (Tsuzuki et al., 2016). In the crystal of (I), C—

Cl� � ��(C6-quinolinyl) interactions are formed whereby the

C—Cl bond is approximately parallel to the C6 ring. Each of

the fluoride atoms bound to the C10 atom participates in a C—

F� � �� contact as these CF3 groups lie in regions flanked by

quinolinyl residues. Two of the contacts are as for the chloride

atom, i.e. side on, whereas the other is best described as an

end-on C—F� � �� contact as the angle subtended at the F1

atom is 170.95 (14)�. The aforementioned interactions

combine to form a three-dimensional architecture. A view of

the unit-cell contents is shown in Fig. 2(b).

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for the title salt (I) were

performed in accord with an earlier publication on a related

organic salt (Jotani et al., 2018). This analysis provides a

convenient means to describe the formation of the salt

through the charge-assisted N—H� � �O hydrogen bonds and

C—H� � �O contacts, and the influence of weak interactions

involving halide substituents in the crystal. The pair of over-

lapping bright-red spots near the ammonium-H2N atom and

carboxylate-O2 and O3 atoms of the anion on the Hirshfeld
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Figure 3
Views of the Hirshfeld surface of (I) mapped over dnorm in the range
�0.171 to +1.475 a.u. for the (a) cation and (b) anion, highlighting N—
H� � �O and C—H� � �O contacts as black dashed lines.

Table 2
Summary of short interatomic contacts (Å) in (I)a.

Contact Distance Symmetry operation

C1� � �F1 3.130 (2) �x, �y, 2 � z
C7� � �F3 3.127 (3) 1 + x, y, z
O3� � �H13 2.49 x, y, z
F1� � �F2 2.8618 (18) �1 � x, �y, 2 � z
F1� � �H17B 2.58 �x, �y, 2 � z
F5� � �Cl1 3.2065 (16) 1 � x, 1 � y, 1 � z
F2� � �H13 2.46 �1 + x, y, z

Note: (a) Values are as calculated in CrystalExplorer (Spackman & Jayatilaka, 2009).

Figure 2
Molecular packing in (I): (a) The supramolecular chain along the a axis,
being sustained by O—H� � �O and N—H� � �O hydrogen bonding with
non-participating H atoms omitted and (b) a view of the unit-cell contents
shown in projection down the a axis, the axis of propagation of the chain
shown in (a). The C—Cl� � �� and C—F� � �� interactions are shown as pink
and purple dashed lines, respectively.



surfaces mapped over dnorm in Fig. 3 represent the charge-

assisted N—H� � �O hydrogen-bonds; the methylene-C13—

H� � �O3 contact, Table 2, on the Hirshfeld surface is evident as

the diminutive-red spot between the respective atoms in

Fig. 3(b). The presence of bright- and broad-red spots near the

ammonium-H1N and H2N, hydroxyl-H1O, carboxylate-O2

and O3 atoms on the dnorm-mapped Hirshfeld surfaces indi-

cate the influence of the charge-assisted N—H� � �O and O—

H� � �O hydrogen bonds, as indicated in Fig. 4(a) and (b). The

donors and acceptors of intermolecular interactions in the

crystals of (I) are also highlighted with blue and red regions

corresponding to positive and negative electrostatic potentials,

respectively, on the Hirshfeld surfaces mapped over electro-

static potentials in Fig. 5. The presence of the faint-red spots

near the CF3 atoms as well as the other atoms of the cation,

Fig. 4(a) and (c), and the Cl1 atom, Fig. 3(b), indicate the

involvement of these atoms in short interatomic contacts,

Table 2. The effect of intermolecular C—X� � �� interactions

(X = F, Cl), Table 1, is illustrated in Fig. 6 through the blue and

orange regions near the respective donors and acceptors on

the Hirshfeld surfaces mapped with shape-index properties.

The overall two-dimensional fingerprint plot for (I), Fig. 7,

and those delineated into H� � �H, O� � �H/H� � �O, F� � �H/H� � �F,

F� � �F, C� � �F/F� � �C, C� � �Cl/Cl� � �C, Cl� � �H/H� � �Cl and Cl� � �Cl

contacts (McKinnon et al., 2007) are illustrated in Fig. 7; the

percentage contributions from the different interatomic

contacts to the Hirshfeld surfaces are summarized in Table 3.

The relatively small contribution, i.e. 12.4%, from H� � �H

contacts to the Hirshfeld surfaces of (I) is due to the presence

of terminal halide substituents in both the cation and anion

and their relatively high contribution to a major portion of the

surface.

The intermolecular N—H� � �O and O—H� � �O hydrogen-

bonds in the packing of (I) indicate a significant contribution

from O� � �H/H� � �O contacts to the surface and these are

evident as the two pairs of superimposed long spikes with the

tips at de + di �1.7 Å in the delineated fingerprint plot. The

largest percentage contribution to the Hirshfeld surface are

from F� � �H/H� � �F contacts, i.e. 25.4%. This is due to the

presence of a number of short interatomic H� � �F contacts,
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Table 3
Percentage contributions of interatomic contacts to the Hirshfeld surface
for (I).

Percentage contribution

Contact (I)
H� � �H 12.4
O� � �H/H� � �O 10.2
F� � �H/H� � �F 25.4
F� � �F 7.7
Cl� � �H/H� � �Cl 19.7
C� � �F/F� � �C 5.4
C� � �Cl/Cl� � �C 5.3
Cl� � �Cl 4.6
C� � �H/H� � �C 3.4
Cl� � �F/F� � �Cl 2.7
N� � �H/H� � �N 1.3
N� � �F/F� � �N 1.0
O� � �O 0.5
C� � �C 0.3
C� � �O/O� � �C 0.2
Cl� � �O/O� � �Cl 0.1

Figure 4
Views of the Hirshfeld surface of (I) mapped over dnorm in the range
�0.121 to +1.475 a.u. for the (a) cation, (b) anion and (c) ion pair. The
N—H� � �O, O—H� � �O and C—H� � �O contacts are shown as black dashed
lines. The faint-red spots near the labelled atoms in (b) and (c) indicate
the short interatomic contacts (see text and Table 2).

Figure 5
A view of the Hirshfeld surface of (I) mapped over the electrostatic
potential in the range �0.128 to + 0.215 a.u. The red and blue regions
represent negative and positive electrostatic potentials, respectively.

Figure 6
Three views of Hirshfeld surface of (I) mapped over the shape-index
property highlighting (a) C—Cl� � ��/�� � �Cl—C contacts through yellow
dotted lines, (b) and (c) C—F� � ��/�� � �F—C contacts with through black
dotted lines. The ‘10, ‘20 and ‘30 refer to the F1—F3 atoms, respectively



Table 2, which are characterized as the pair of short spikes at

de + di � 2.5 Å in the corresponding delineated fingerprint

plot. An arrow-like tip at de + di � 2.8 Å in the fingerprint

delineated into F� � �F contacts is due to the effect of the short

interatomic F� � �F contact summarized in Table 2. The

presence of short interatomic C� � �F/F� � �C contacts, Table 2,

and C—F� � �� contacts (Table 1) involving fluoride atoms

substituted at the methyl-C10 atom is evident from the

forceps-like distribution of points in the fingerprint plot

delineated into these contacts. The C—Cl� � �� contact, Table 1,

involving the carboxylate-Cl3 atom, Fig. 6(a), is viewed as the

spear-shaped distribution of points with the pair of adjoining

tips at de + di � 3.5 Å in the fingerprint plot delineated into

C� � �Cl/Cl� � �C contacts. Although the interatomic Cl� � �H/

H� � �Cl and Cl� � �Cl contacts make significant contributions to

the Hirshfeld surface of (I), Table 3, and are reflected in the

forceps-like and pencil-tip like distributions of points,

respectively, in their delineated fingerprint plots, they occur at

van der Waals separations. The small contribution from the

other interatomic contacts to the Hirshfeld surface of (I),

listed in Table 3, show negligible influence upon the packing.

5. Database survey

As noted in the Chemical context, there are two mefloquine

derivatives that exhibit kryptoracemic behaviour with both

examples being isolated after attempts at chiral resolution of

racemic mefloquine with different carboxylic acids. In one

example, two mefloquinium cations are related across a

pseudo centre of inversion, and the charge balance is provided

by two crystallographically independent 3,3,3-trifluoro-2-

methoxy-2-phenylpropanoate anions, i.e. (+)-PhC(CF3)-

(OMe)CO2
� (Wardell, Wardell et al., 2016). That it is not

necessary to have chiral carboxylate anions is seen in the

second example of kryptoracemic behaviour whereby, as a

result of incomplete substitution of chloride by 4-fluoro-

benzenesulfonate during an anion exchange experiment, the

asymmetric unit comprises a pair of pseudo-enantiomeric

mefloquinium cations with equal numbers of chloride and

4-fluorobenzenesulfonate counter-ions (Jotani et al., 2016).

There are a number of other structurally characterized

mefloquinium salts, namely three isomeric n-nitrobenzoates

(Wardell et al., 2011), 3-amino-5-nitrobenzoate sesquihydrate

(de Souza et al., 2011), hydroxy(phenyl)acetate hemihydrate

(Wardell, Jotani et al., 2016) and trifluoroacetate trifluoro-

acetic acid hemihydrate (Low & Wardell, 2017), and all of

these crystallize in centrosymmetric space groups with equal

numbers of the mefloquinium enantiomers. Further studies

into the interesting phenomenon of kryptoracemic behaviour

in mefloquinium salts are underway.

6. Synthesis and crystallization

A solution of mefloquinium chloride (1 mmol) and sodium

difluorochoroacetate (1 mmol) in EtOH (10 ml) was refluxed

for 20 min. The reaction mixture was left at room temperature

and after two days, colourless slabs of (I) were collected; m.p.

473–475 K. 1H NMR (DMSO-d6) �: 1.20–1.35(2H, m), 1.55–

1.75(4H, m), 3.04 (1H, br,t), 3.53 (1H, br.d), 5.90 (1H, s), 6.94

(1H, br.d), 8.01 (1H, t, J = 8.0Hz), 8.13 (1H, s), 8.42 (1H, d, J =

8.02Hz), 8.72 (1H, d, J = 8.0Hz), 9.48 (1H, br,s); resonances

due to OH and NH were not observed. 13C NMR (DMSO-d6)

�: 21.43 (2�), 21.59, 44.51, 58.90, 67.85, 135.50. 121.17 (JC,F =

273.8 Hz), 121.21 (JC,F = 311.0 Hz), 123.64 (JC,F = 271.7 Hz),

126.37, 127.93 (JC,F = 29.2 Hz), 128.32, 128.68. 129.9 (JC,F =

5.2Hz), 142.78, 146.73 (JC,F = 34.5 Hz), 150.97, 159.82 (JC,F =

25.2 Hz). 19F NMR (DMSO-d6) �: �58.65, �58.84, �66.68.
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Figure 7
The full two-dimensional fingerprint plot for (I) and those delineated into H� � �H, O� � �H/H� � �O, F� � �H/H� � �F, F� � �F, C� � �F/F� � �C, C� � �Cl/Cl� � �C,
Cl� � �H/H� � �Cl and Cl� � �Cl contacts.



7. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 4. The carbon-bound H atoms were

placed in calculated positions (C—H = 0.95–1.00 Å) and were

included in the refinement in the riding-model approximation,

with Uiso(H) set to 1.2Ueq(C). The O- and N-bound H atoms

were refined with distance restraints 0.84�0.01 and

0.88�0.01 Å, respectively, and refined with Uiso(H) =

1.5Ueq(O) and 1.2Ueq(N), respectively. Owing to poor agree-

ment, most likely due to interference from the beam-stop, two

reflections, i.e. (100) and (101), were omitted from the final

cycles of refinement.
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Table 4
Experimental details.

Crystal data
Chemical formula C17H17F6N2O�C2Cl3O2

Mr 541.69
Crystal system, space group Triclinic, P1
Temperature (K) 120
a, b, c (Å) 6.8087 (2), 11.8568 (5), 15.2562 (6)
�, �, � (�) 67.473 (2), 81.663 (2), 89.824 (3)
V (Å3) 1123.77 (7)
Z 2
Radiation type Mo K�
� (mm�1) 0.48
Crystal size (mm) 0.30 � 0.26 � 0.21

Data collection
Diffractometer Bruker–Nonius Roper CCD

camera on �-goniostat
Absorption correction Multi-scan (SADABS; Sheldrick,

2007)
Tmin, Tmax 0.636, 0.746
No. of measured, independent and

observed [I > 2	(I)] reflections
23628, 5114, 3880

Rint 0.055
(sin 
/�)max (Å�1) 0.648

Refinement
R[F 2 > 2	(F 2)], wR(F 2), S 0.047, 0.133, 1.02
No. of reflections 5114
No. of parameters 307
No. of restraints 3
H-atom treatment H atoms treated by a mixture of

independent and constrained
refinement

��max, ��min (e Å�3) 0.81, �0.59

Computer programs: DENZO (Otwinowski & Minor, 1997), COLLECT (Hooft, 1998),
SHELXS (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows
(Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).
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2-{[2,8-Bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium tri-

chloroacetate: crystal structure and Hirshfeld surface analysis

James L. Wardell, Mukesh M. Jotani and Edward R. T. Tiekink

Computing details 

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 

1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve 

structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular 

graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare 

material for publication: publCIF (Westrip, 2010).

2-{[2,8-Bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium trichloroacetate 

Crystal data 

C17H17F6N2O·C2Cl3O2

Mr = 541.69
Triclinic, P1
a = 6.8087 (2) Å
b = 11.8568 (5) Å
c = 15.2562 (6) Å
α = 67.473 (2)°
β = 81.663 (2)°
γ = 89.824 (3)°
V = 1123.77 (7) Å3

Z = 2
F(000) = 548
Dx = 1.601 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 25711 reflections
θ = 2.9–27.5°
µ = 0.48 mm−1

T = 120 K
Slab, colourless
0.30 × 0.26 × 0.21 mm

Data collection 

Bruker–Nonius Roper CCD camera on κ-
goniostat 
diffractometer

Radiation source: Bruker-Nonius FR591 
rotating anode

Graphite monochromator
Detector resolution: 9.091 pixels mm-1

φ & ω scans
Absorption correction: multi-scan 

(SADABS; Sheldrick, 2007)

Tmin = 0.636, Tmax = 0.746
23628 measured reflections
5114 independent reflections
3880 reflections with I > 2σ(I)
Rint = 0.055
θmax = 27.4°, θmin = 2.9°
h = −8→8
k = −15→15
l = −19→19

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.047
wR(F2) = 0.133
S = 1.02
5114 reflections

307 parameters
3 restraints
Primary atom site location: structure-invariant 

direct methods
Hydrogen site location: mixed
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H atoms treated by a mixture of independent 
and constrained refinement

w = 1/[σ2(Fo
2) + (0.0695P)2 + 0.5906P] 

where P = (Fo
2 + 2Fc

2)/3

(Δ/σ)max < 0.001
Δρmax = 0.81 e Å−3

Δρmin = −0.59 e Å−3

Special details 

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; 
correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Owing to poor agreement, perhaps owing to interference from the beam-stop, two reflections, i.e. (1 0 0) 
and (1 0 1), were omitted from the final cycles of the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

F1 −0.22880 (19) −0.00170 (13) 1.00487 (9) 0.0378 (3)
F2 −0.38289 (18) 0.05158 (14) 0.88298 (9) 0.0392 (3)
F3 −0.36487 (19) 0.17017 (13) 0.95862 (9) 0.0384 (3)
F4 0.1664 (2) 0.31406 (13) 1.01713 (9) 0.0430 (3)
F5 0.0401 (2) 0.46009 (13) 0.91079 (10) 0.0454 (4)
F6 0.3286 (3) 0.48695 (15) 0.94377 (13) 0.0590 (5)
O1 0.1401 (2) 0.03503 (14) 0.64074 (11) 0.0300 (3)
H1O 0.058 (3) 0.084 (2) 0.6145 (19) 0.045*
N1 0.0200 (3) 0.23331 (16) 0.88257 (12) 0.0255 (4)
N2 0.5142 (3) −0.04940 (16) 0.63900 (12) 0.0246 (4)
H1N 0.420 (3) −0.084 (2) 0.6219 (17) 0.029*
H2N 0.565 (3) 0.0117 (16) 0.5858 (11) 0.029*
C1 −0.0699 (3) 0.15108 (19) 0.86236 (14) 0.0248 (4)
C2 0.0070 (3) 0.10584 (19) 0.79255 (14) 0.0253 (4)
H2 −0.0687 0.0471 0.7811 0.030*
C3 0.1930 (3) 0.14755 (18) 0.74109 (14) 0.0232 (4)
C4 0.2993 (3) 0.23707 (18) 0.76020 (14) 0.0234 (4)
C5 0.4941 (3) 0.28638 (19) 0.71304 (15) 0.0280 (4)
H5 0.5585 0.2614 0.6645 0.034*
C6 0.5892 (3) 0.3690 (2) 0.73676 (17) 0.0330 (5)
H6 0.7195 0.4006 0.7048 0.040*
C7 0.4967 (4) 0.4085 (2) 0.80829 (17) 0.0341 (5)
H7 0.5657 0.4656 0.8244 0.041*
C8 0.3084 (3) 0.36492 (19) 0.85441 (15) 0.0294 (5)
C9 0.2044 (3) 0.27756 (18) 0.83188 (14) 0.0244 (4)
C10 −0.2631 (3) 0.0942 (2) 0.92713 (15) 0.0283 (4)
C11 0.2098 (4) 0.4061 (2) 0.93101 (17) 0.0365 (5)
C12 0.2837 (3) 0.09461 (19) 0.66926 (14) 0.0236 (4)
H12 0.3575 0.1615 0.6113 0.028*
C13 0.4279 (3) −0.00337 (18) 0.71443 (14) 0.0233 (4)
H13 0.5380 0.0361 0.7315 0.028*
C14 0.6690 (3) −0.1405 (2) 0.67050 (17) 0.0317 (5)
H14A 0.7833 −0.1014 0.6836 0.038*
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H14B 0.7175 −0.1693 0.6187 0.038*
C15 0.5805 (3) −0.2485 (2) 0.76066 (17) 0.0330 (5)
H15A 0.6859 −0.3051 0.7841 0.040*
H15B 0.4774 −0.2935 0.7452 0.040*
C16 0.4882 (4) −0.2063 (2) 0.83963 (16) 0.0332 (5)
H16A 0.4233 −0.2776 0.8957 0.040*
H16B 0.5940 −0.1701 0.8607 0.040*
C17 0.3350 (3) −0.11181 (19) 0.80364 (15) 0.0291 (5)
H17A 0.2230 −0.1503 0.7883 0.035*
H17B 0.2819 −0.0829 0.8548 0.035*
Cl1 0.91440 (9) 0.34265 (7) 0.30595 (4) 0.04821 (19)
Cl2 1.10599 (11) 0.35855 (7) 0.45615 (5) 0.0571 (2)
Cl3 0.70646 (12) 0.44205 (6) 0.43618 (6) 0.0577 (2)
O2 0.6471 (2) 0.16019 (15) 0.46652 (12) 0.0369 (4)
O3 0.8236 (2) 0.16197 (15) 0.57789 (11) 0.0352 (4)
C18 0.7750 (3) 0.20401 (19) 0.49632 (15) 0.0259 (4)
C19 0.8759 (3) 0.3309 (2) 0.42622 (16) 0.0319 (5)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

F1 0.0324 (7) 0.0401 (8) 0.0286 (7) 0.0043 (6) −0.0029 (5) −0.0006 (6)
F2 0.0299 (7) 0.0574 (9) 0.0320 (7) −0.0063 (6) −0.0034 (5) −0.0194 (7)
F3 0.0352 (7) 0.0435 (8) 0.0343 (7) 0.0093 (6) 0.0029 (6) −0.0156 (6)
F4 0.0635 (9) 0.0430 (8) 0.0268 (7) 0.0074 (7) −0.0131 (6) −0.0160 (6)
F5 0.0657 (10) 0.0403 (8) 0.0359 (8) 0.0224 (7) −0.0090 (7) −0.0208 (7)
F6 0.0770 (11) 0.0524 (10) 0.0639 (11) −0.0129 (8) −0.0020 (9) −0.0435 (9)
O1 0.0328 (8) 0.0348 (9) 0.0298 (8) 0.0081 (6) −0.0138 (6) −0.0174 (7)
N1 0.0295 (9) 0.0247 (9) 0.0230 (8) 0.0073 (7) −0.0070 (7) −0.0088 (7)
N2 0.0304 (9) 0.0238 (9) 0.0227 (9) 0.0022 (7) −0.0058 (7) −0.0118 (7)
C1 0.0274 (10) 0.0259 (10) 0.0204 (10) 0.0069 (8) −0.0062 (8) −0.0072 (8)
C2 0.0281 (10) 0.0247 (10) 0.0243 (10) 0.0032 (8) −0.0076 (8) −0.0097 (8)
C3 0.0292 (10) 0.0202 (10) 0.0200 (9) 0.0044 (8) −0.0059 (8) −0.0068 (8)
C4 0.0290 (10) 0.0187 (9) 0.0216 (10) 0.0052 (8) −0.0066 (8) −0.0060 (8)
C5 0.0324 (11) 0.0231 (10) 0.0258 (10) 0.0023 (8) −0.0023 (8) −0.0073 (8)
C6 0.0346 (11) 0.0231 (11) 0.0356 (12) −0.0030 (9) −0.0024 (9) −0.0062 (9)
C7 0.0433 (13) 0.0210 (10) 0.0381 (13) −0.0012 (9) −0.0123 (10) −0.0092 (9)
C8 0.0416 (12) 0.0208 (10) 0.0269 (11) 0.0042 (9) −0.0084 (9) −0.0094 (9)
C9 0.0310 (10) 0.0203 (10) 0.0220 (10) 0.0052 (8) −0.0073 (8) −0.0072 (8)
C10 0.0301 (11) 0.0312 (11) 0.0239 (10) 0.0066 (9) −0.0068 (8) −0.0103 (9)
C11 0.0532 (14) 0.0278 (11) 0.0333 (12) 0.0029 (10) −0.0092 (11) −0.0162 (10)
C12 0.0274 (10) 0.0253 (10) 0.0195 (9) 0.0032 (8) −0.0056 (8) −0.0094 (8)
C13 0.0284 (10) 0.0240 (10) 0.0206 (9) 0.0032 (8) −0.0050 (8) −0.0117 (8)
C14 0.0305 (11) 0.0312 (12) 0.0374 (12) 0.0072 (9) −0.0062 (9) −0.0174 (10)
C15 0.0360 (12) 0.0257 (11) 0.0382 (13) 0.0059 (9) −0.0094 (10) −0.0121 (10)
C16 0.0425 (12) 0.0259 (11) 0.0289 (11) 0.0054 (9) −0.0102 (9) −0.0063 (9)
C17 0.0361 (11) 0.0272 (11) 0.0225 (10) 0.0056 (9) −0.0053 (9) −0.0077 (9)
Cl1 0.0439 (3) 0.0694 (5) 0.0241 (3) 0.0045 (3) −0.0020 (2) −0.0114 (3)
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Cl2 0.0573 (4) 0.0519 (4) 0.0510 (4) −0.0245 (3) −0.0205 (3) −0.0033 (3)
Cl3 0.0819 (5) 0.0298 (3) 0.0581 (4) 0.0197 (3) −0.0082 (4) −0.0145 (3)
O2 0.0414 (9) 0.0423 (9) 0.0345 (9) −0.0046 (7) −0.0039 (7) −0.0238 (8)
O3 0.0335 (8) 0.0359 (9) 0.0297 (8) 0.0021 (7) −0.0083 (7) −0.0045 (7)
C18 0.0260 (10) 0.0250 (10) 0.0294 (11) 0.0046 (8) −0.0019 (8) −0.0145 (9)
C19 0.0379 (12) 0.0302 (12) 0.0265 (11) 0.0027 (9) −0.0079 (9) −0.0088 (9)

Geometric parameters (Å, º) 

F1—C10 1.341 (2) C7—C8 1.367 (3)
F2—C10 1.341 (2) C7—H7 0.9500
F3—C10 1.324 (2) C8—C9 1.429 (3)
F4—C11 1.340 (3) C8—C11 1.504 (3)
F5—C11 1.337 (3) C12—C13 1.538 (3)
F6—C11 1.344 (3) C12—H12 1.0000
O1—C12 1.417 (2) C13—C17 1.523 (3)
O1—H1O 0.835 (10) C13—H13 1.0000
N1—C1 1.307 (3) C14—C15 1.519 (3)
N1—C9 1.364 (3) C14—H14A 0.9900
N2—C13 1.500 (2) C14—H14B 0.9900
N2—C14 1.501 (3) C15—C16 1.529 (3)
N2—H1N 0.882 (10) C15—H15A 0.9900
N2—H2N 0.879 (10) C15—H15B 0.9900
C1—C2 1.404 (3) C16—C17 1.527 (3)
C1—C10 1.510 (3) C16—H16A 0.9900
C2—C3 1.372 (3) C16—H16B 0.9900
C2—H2 0.9500 C17—H17A 0.9900
C3—C4 1.428 (3) C17—H17B 0.9900
C3—C12 1.518 (3) Cl1—C19 1.766 (2)
C4—C9 1.428 (3) Cl2—C19 1.759 (2)
C4—C5 1.423 (3) Cl3—C19 1.784 (2)
C5—C6 1.361 (3) O2—C18 1.238 (3)
C5—H5 0.9500 O3—C18 1.245 (3)
C6—C7 1.413 (3) C18—C19 1.562 (3)
C6—H6 0.9500

C12—O1—H1O 110 (2) F6—C11—C8 111.3 (2)
C1—N1—C9 116.91 (17) O1—C12—C3 112.85 (16)
C13—N2—C14 113.36 (16) O1—C12—C13 105.73 (16)
C13—N2—H1N 110.4 (15) C3—C12—C13 110.13 (16)
C14—N2—H1N 108.4 (16) O1—C12—H12 109.3
C13—N2—H2N 110.7 (16) C3—C12—H12 109.3
C14—N2—H2N 109.4 (16) C13—C12—H12 109.3
H1N—N2—H2N 104 (2) N2—C13—C17 108.72 (16)
N1—C1—C2 125.37 (19) N2—C13—C12 107.06 (16)
N1—C1—C10 115.36 (18) C17—C13—C12 115.11 (17)
C2—C1—C10 119.01 (18) N2—C13—H13 108.6
C3—C2—C1 119.12 (19) C17—C13—H13 108.6
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C3—C2—H2 120.4 C12—C13—H13 108.6
C1—C2—H2 120.4 N2—C14—C15 109.75 (17)
C2—C3—C4 118.17 (18) N2—C14—H14A 109.7
C2—C3—C12 119.94 (18) C15—C14—H14A 109.7
C4—C3—C12 121.84 (17) N2—C14—H14B 109.7
C9—C4—C5 118.59 (18) C15—C14—H14B 109.7
C9—C4—C3 117.62 (18) H14A—C14—H14B 108.2
C5—C4—C3 123.78 (18) C14—C15—C16 111.18 (18)
C6—C5—C4 120.7 (2) C14—C15—H15A 109.4
C6—C5—H5 119.6 C16—C15—H15A 109.4
C4—C5—H5 119.6 C14—C15—H15B 109.4
C5—C6—C7 121.0 (2) C16—C15—H15B 109.4
C5—C6—H6 119.5 H15A—C15—H15B 108.0
C7—C6—H6 119.5 C17—C16—C15 110.84 (18)
C8—C7—C6 120.3 (2) C17—C16—H16A 109.5
C8—C7—H7 119.9 C15—C16—H16A 109.5
C6—C7—H7 119.9 C17—C16—H16B 109.5
C7—C8—C9 120.4 (2) C15—C16—H16B 109.5
C7—C8—C11 120.5 (2) H16A—C16—H16B 108.1
C9—C8—C11 119.1 (2) C13—C17—C16 110.83 (18)
N1—C9—C4 122.80 (18) C13—C17—H17A 109.5
N1—C9—C8 118.09 (18) C16—C17—H17A 109.5
C4—C9—C8 119.07 (19) C13—C17—H17B 109.5
F3—C10—F1 106.88 (17) C16—C17—H17B 109.5
F3—C10—F2 107.34 (17) H17A—C17—H17B 108.1
F1—C10—F2 106.53 (17) O2—C18—O3 127.3 (2)
F3—C10—C1 113.66 (18) O2—C18—C19 116.35 (19)
F1—C10—C1 110.42 (16) O3—C18—C19 116.19 (18)
F2—C10—C1 111.64 (17) C18—C19—Cl2 111.80 (15)
F5—C11—F4 106.7 (2) C18—C19—Cl1 111.57 (15)
F5—C11—F6 106.71 (19) Cl2—C19—Cl1 108.50 (12)
F4—C11—F6 105.65 (19) C18—C19—Cl3 105.96 (14)
F5—C11—C8 113.08 (19) Cl2—C19—Cl3 110.39 (13)
F4—C11—C8 112.85 (19) Cl1—C19—Cl3 108.56 (12)

C9—N1—C1—C2 −0.6 (3) N1—C1—C10—F2 154.97 (17)
C9—N1—C1—C10 173.54 (17) C2—C1—C10—F2 −30.5 (3)
N1—C1—C2—C3 1.3 (3) C7—C8—C11—F5 120.8 (2)
C10—C1—C2—C3 −172.61 (18) C9—C8—C11—F5 −60.6 (3)
C1—C2—C3—C4 −0.9 (3) C7—C8—C11—F4 −118.0 (2)
C1—C2—C3—C12 176.57 (18) C9—C8—C11—F4 60.7 (3)
C2—C3—C4—C9 −0.1 (3) C7—C8—C11—F6 0.7 (3)
C12—C3—C4—C9 −177.48 (17) C9—C8—C11—F6 179.31 (19)
C2—C3—C4—C5 179.01 (19) C2—C3—C12—O1 19.3 (3)
C12—C3—C4—C5 1.6 (3) C4—C3—C12—O1 −163.38 (17)
C9—C4—C5—C6 1.0 (3) C2—C3—C12—C13 −98.6 (2)
C3—C4—C5—C6 −178.1 (2) C4—C3—C12—C13 78.7 (2)
C4—C5—C6—C7 −0.4 (3) C14—N2—C13—C17 −58.8 (2)
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C5—C6—C7—C8 −0.6 (3) C14—N2—C13—C12 176.26 (16)
C6—C7—C8—C9 1.0 (3) O1—C12—C13—N2 58.90 (19)
C6—C7—C8—C11 179.6 (2) C3—C12—C13—N2 −178.90 (15)
C1—N1—C9—C4 −0.5 (3) O1—C12—C13—C17 −62.1 (2)
C1—N1—C9—C8 −178.23 (18) C3—C12—C13—C17 60.1 (2)
C5—C4—C9—N1 −178.32 (18) C13—N2—C14—C15 57.8 (2)
C3—C4—C9—N1 0.8 (3) N2—C14—C15—C16 −54.6 (2)
C5—C4—C9—C8 −0.6 (3) C14—C15—C16—C17 55.1 (2)
C3—C4—C9—C8 178.53 (18) N2—C13—C17—C16 57.1 (2)
C7—C8—C9—N1 177.45 (19) C12—C13—C17—C16 177.17 (17)
C11—C8—C9—N1 −1.2 (3) C15—C16—C17—C13 −56.5 (2)
C7—C8—C9—C4 −0.4 (3) O2—C18—C19—Cl2 −159.24 (16)
C11—C8—C9—C4 −179.02 (19) O3—C18—C19—Cl2 25.0 (2)
N1—C1—C10—F3 33.4 (2) O2—C18—C19—Cl1 −37.5 (2)
C2—C1—C10—F3 −152.12 (18) O3—C18—C19—Cl1 146.68 (16)
N1—C1—C10—F1 −86.7 (2) O2—C18—C19—Cl3 80.4 (2)
C2—C1—C10—F1 87.8 (2) O3—C18—C19—Cl3 −95.35 (19)

Hydrogen-bond geometry (Å, º) 

Cg1 and Cg2 are the centroids of the C4–C9 and N1/C1–C4/C9 rings, respectively.

D—H···A D—H H···A D···A D—H···A

N2—H1N···O1 0.88 (2) 2.42 (2) 2.734 (3) 102 (2)
N2—H1N···O2i 0.88 (2) 1.99 (2) 2.769 (3) 146 (2)
O1—H1O···O3ii 0.83 (2) 1.89 (2) 2.702 (2) 165 (2)
N2—H2N···O2 0.88 (2) 2.00 (2) 2.869 (2) 173 (2)
N2—H2N···O3 0.88 (2) 2.47 (2) 3.043 (3) 124 (1)
C19—Cl3···Cg1iii 1.78 (1) 3.61 (1) 4.709 (3) 118 (1)
C10—F1···Cg2iv 1.34 (1) 3.07 (1) 4.395 (2) 171 (1)
C10—F2···Cg1ii 1.34 (1) 3.44 (1) 3.788 (2) 95 (1)
C10—F3···Cg1ii 1.32 (1) 3.24 (1) 3.788 (2) 104 (1)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y, −z+2.


