

Received 14 April 2020 Accepted 4 June 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; non-covalent interactions; azo dye; Hirshfeld surface analysis.

CCDC reference: 2007970

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(*E*)-(4-chlorophenyl)diazenyl]-ethenyl}-*N*,*N*-dimethylaniline

Zeliha Atioğlu,^a Mehmet Akkurt,^b Namiq Q. Shikhaliyev,^c Sevinc H. Mukhtarova,^c Gulnar T. Suleymanova^c and Flavien A. A. Toze^d*

^aİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ 1148 Baku, Azerbaijan, and ^dDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon. *Correspondence e-mail: toflavien@yahoo.fr

The title compound, $C_{16}H_{14}Cl_3N_3$, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C– $H \cdot \cdot \cdot N$ and C– $H \cdot \cdot \cdot Cl$ hydrogen bonds in addition to C– $Cl \cdot \cdot \cdot \pi$ interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that $Cl \cdot \cdot H/H \cdot \cdot \cdot Cl$ (33.6%), $H \cdot \cdot \cdot H$ (27.9%) and $C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$ (17.6%) are the most important contributors towards the crystal packing.

1. Chemical context

Non-covalent interactions, such as hydrogen bonds, halogenhalogen or chalcogen-chalcogen bonds, van der Waals interactions or π - π stacking, π ···cation and π ···anion interactions, *etc.* are much weaker than covalent bonds. Nevertheless, they can control the reactivity of molecules, the crystal packing, tautomerization and other properties (Asadov *et al.*, 2016; Mahmudov *et al.*, 2019). For example, such kinds of weak interactions can create interesting supramolecular networks in coordination compounds, involving monomeric, oligomeric or polymeric subunits, which affects their catalytic activity (Afkhami *et al.*, 2017; Gurbanov *et al.*, 2018).

In a previous study we have attached resonance-assisted hydrogen-bonded synthons or chlorine atoms to dye molecules, which leads to intermolecular weak interactions for the resulting products with interesting analytical and solvato-chromic properties (Maharramov *et al.*, 2018; Mahmudov & Pombeiro, 2016). In a continuation of our work in this direction, we now have synthesized a new azo dye, 4-{2,2-dichloro-1-[(E)-(4-chlorophenyl)diazenyl]ethenyl}-N,N-dimethyl-aniline, which features C-H···N, C-H··· π and C-Cl···Cl types of weak intermolecular interactions.

The molecular structures of the three molecules in the asymmetric unit of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) contains three molecules of similar shape, hereafter referred to as Mol-N1 (C1–C16/N1–N3/Cl1–Cl3), Mol-N1A (C1A–C16A/N1A– N3A/Cl1A–Cl3A) and Mol-N1B (C1B–C16B/N1B–N3B/ Cl1B–Cl3B). The conformational differences between molecules Mol-N1, Mol-N1A and Mol-N1B are highlighted in an overlay diagram shown in Fig. 2. The dihedral angles between the benzene rings [C1–C6 and C8–C13 (molecule Mol-N1), C1A–C6A and C8A–C13A (molecule Mol-N1A), and C1B– C6B and C8B–C13B (molecule Mol-N1B)] of the 4-chlorophenyl and N,N-dimethylaniline groups are 69.94 (10), 79.68 (12) and 88.08 (13)°, respectively. In molecule Mol-N1, the N1–N2–C7–C14, N2–C7–C14–Cl2, N2–C7–C14– Cl3 and C8–C7–C14–Cl3 torsion angles are –178.7 (2), 3.1 (3), –176.21 (16) and 4.1 (3)°, respectively. The corres-

Figure 2 Overlay image of the three molecules in the asymmetric unit of the title compound.

A partial view of the crystal packing of the title compound. Intermolecular interactions are shown as dashed lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 and Cg4 are the centroids of the C1–C6 and C8A–C13A rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2A\cdots N3A$	0.93	2.68	3.597 (3)	167
$C5B-H5BA\cdots Cl3^{i}$	0.93	2.95	3.703 (3)	139
$C14-Cl3\cdots Cg1^{ii}$	1.71 (1)	3.55(1)	4.083 (2)	96(1)
$C14B - Cl3B \cdots Cg4^{iii}$	1.71 (1)	3.85 (1)	5.300 (3)	142 (1)

Symmetry codes: (i) x, y + 1, z - 1; (ii) -x + 2, -y, -z + 2; (iii) -x + 1, -y, -z + 1.

ponding angles are 178.4 (2), 3.8 (3), -175.1 (2) and 2.5 (3)° for molecule Mol-N1*A*, and -175.0 (2), 0.3 (3), 179.71 (18) and -0.1 (4) for molecule Mol-N1*B*.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, the molecules are connected by intermolecular $C-H\cdots N$ and $C-H\cdots Cl$ hydrogen bonds and $C-Cl\cdots \pi$ interactions, which contribute to the overall packing, forming a three-dimensional network (Table 1; Fig. 3).

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and intermolecular interactions in the crystal structure. The Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) of the title compound were calculated using Crystal Explorer 17.5 (Turner et al., 2017). The three-dimensional molecular Hirshfeld surfaces of the three molecules Mol-N1, Mol-N1A and Mol-N1B and the overall surface were generated using a high standard surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the d_{norm} surfaces indicate contacts with distances shorter, longer and equal to the van der Waals radii (Fig. 4a). The shape-index of the Hirshfeld surface is a tool to visualize $\pi - \pi$ stacking interactions; Fig. 4b clearly suggest that there are no π - π interactions in the title compound. The red spots in Fig. 4a

research communications

Table 2	
Summary of short interatomic contacts (Å) in the title comp	ound.

(C2) $H2A \cdots N3A$ (C11A)2.68 (x, y, z) (C4) C11Cl1B (C4B) 3.5403 (11) $(2 - x, 2 - y, 1 - z)$ (C14) C12Cl1 (C4) 3.6580 (11) $(2 - x, 1 - y, 2 - z)$ (C13) H13ACl2 (C14) 3.10 $(2 - x, -y, 2 - z)$ (C14) C13H5BA (C5B) 2.95 $(x, -1 + y, 1 + z)$ (C9) H9AH15D (C15A) 2.60 $(1 - x, -y, 2 - z)$ (C15) H15CCl3 (C14) 3.00 $(1 - x, -1 - y, 2 - z)$ (C4) C5H12A (C12) 2.95 $(x, 1 + y, z)$ (C5A) H5AACl2A (C14A) 3.10 $(1 - x, 1 - y, 1 - z)$ (C5A) H5AACl2A (C14A) 3.10 $(1 - x, 1 - y, 1 - z)$ (C14A) C13AH16E (C16A) 3.09 $(x, 1 + y, z)$ (C14A) C13AH16E (C16A) 3.09 $(x, 1 + y, z)$ (C14A) C13AH16E (C15B) 2.97 $(-1 + x, y, z)$ (C14A) C13AH16I (C16B) 2.49 $(1 - x, -y, 1 - z)$ (C12A) H15DH9A (C9) 2.60 $(1 - x, -y, 1 - z)$ (C13A) H15DH9A (C9) 2.60 $(1 - x, -y, 1 - z)$ (C14B) C11BCl3A (C14A) 3.6816 (11) $(2 - x, 2 - y, 1 - z)$ (C12B) H15DH9A (C3A) 2.98 $(2 - x, 1 - y, 1 - z)$ (C4B) C11BH12B (C12A) 2.98 $(2 - x, 1 - y, 1 - z)$ (C16B) H16IH3AA (C3A) 2.49 $(1 - x, -y, 1 - z)$ (C16B) H16IH3AA (C3A) 2.49 $(1 - x, -y, 1 - z)$ (C1B) H16IH3AA (C3A) 2.92 $(x, -1 + y, z)$ (C15B) H15GC5A (C4A) 2.97 $(1 + x, y, z)$ (C15B) H15GH2BA (C2B) 2.37 $(2 - x, 1 - y, 1 $	Contact	Distance	Symmetry operation
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C2) H2 A ···N3 A (C11 A)	2.68	(x, y, z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C4) Cl1···Cl1B $(C4B)$	3.5403 (11)	(2-x, 2-y, 1-z)
(C13)H13ACl2(C14)3.10 $(2 - x, -y, 2 - z)$ (C14)C13H5BA(C5B)2.95 $(x, -1 + y, 1 + z)$ (C9)H9AH15D(C15A)2.60 $(1 - x, -y, 2 - z)$ (C15)H15CCl3(C14)3.00 $(1 - x, -1 - y, 2 - z)$ (C4)C5H12A(C12)2.95 $(x, 1 + y, z)$ (C6A)H6AAH12C(C12B)2.54 (x, y, z) (C5A)H5AACl2A(C14A)3.10 $(1 - x, 1 - y, 1 - z)$ (C14A)C13AH16E(C16A)3.09 $(x, 1 + y, z)$ (C14A)C13AH16E(C16A)3.09 $(x, 1 + y, z)$ (C14A)C13AH16E(C16A)3.09 $(x, 1 + y, z)$ (C14A)C13AH16E(C16B)2.97 $(-1 + x, y, z)$ (C14A)C15B2.97 $(-1 + x, y, z)$ (C12A)H15DH9A(C9)2.60 $(1 - x, -y, 1 - z)$ (C12A)H15DH9A(C9)2.60 $(1 - x, -y, 1 - z)$ (C14B)C11BC11(C2 - x, 2 - y, 1 - z)(C12A)(C12A)H12BC4B(C1B)2.98 $(2 - x, 1 - y, 1 - z)$ (C4B)C11BH12B(C12A)2.98 $(2 - x, 1 - y, 1 - z)$ (C4B)C1BH12B(C12A)2.98 $(2 - x, 1 - y, 1 - z)$ (C1B)H16IH3AA(C3A)2.49 $(1 - x, -y, 1 - z)$ (C1B)H16IH3AA(C3A)2.49 $(1 - x, -y, 1 - z)$ (C1B)H16IH3AA(C3B)2.92 $(x, -1 + y, z)$ (C1	(C14) Cl2···Cl1 $(C4)$	3.6580 (11)	(2-x, 1-y, 2-z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C13) H13 A ···Cl2 $(C14)$	3.10	(2-x, -y, 2-z)
(C9) $H9A \cdots H15D$ (C15A)2.60 $(1 - x, -y, 2 - z)$ (C15) $H15C \cdots C13$ (C14)3.00 $(1 - x, -1 - y, 2 - z)$ (C4)C5 $\cdots H12A$ (C12)2.95 $(x, 1 + y, z)$ (C6A) $H6AA \cdots H12C$ (C12B)2.54 (x, y, z) (C5A) $H5AA \cdots C12A$ (C14A)3.10 $(1 - x, 1 - y, 1 - z)$ (C9A) $H9AA \cdots N2B$ (N1B)2.92 $(1 - x, 1 - y, 1 - z)$ (C1A) $C1A \cdots C12A$ (C16A)3.09 $(x, 1 + y, z)$ (C1A) $C1A \cdots H16E$ (C16A)3.09 $(x, 1 + y, z)$ (C1A) $C1A \cdots H16E$ (C16B)2.49 $(1 - x, -y, 1 - z)$ (C4A) $C5A \cdots H15G$ (C15B)2.97 $(-1 + x, y, z)$ (C1A) $C1A \cdots H16I$ (C16B)2.49 $(1 - x, -y, 1 - z)$ (C1A) $H3A \cdots H16I$ (C16B)2.49 $(1 - x, -y, 1 - z)$ (C1A) $H13E \cdots C11B$ (C18)2.98 $(2 - x, 1 - y, 1 - z)$ (C1A) $H12E \cdots C14B$ 3.5403(11) $(2 - x, 2 - y, 1 - z)$ (C12A) $H12B \cdots C14B$ (C14A)3.6816(11)(2 - x, 2 - y, 1 - z)(C1B)C1B $\cdots C13A$ (C14A)3.6816(11) $(2 - x, 2 - y, 1 - z)$ (C12A)2.98 $(2 - x, 1 - y, 1 - z)$ (C1B)C1B $\cdots C13A$ (C2A)2.98 $(2 - x, 1 - y, 1 - z)$ (C1B)H16I $\cdots H3AA$ (C3A)2.49 $(1 - x, -y, 1 - z)$ (C1B)H16I $\cdots H3AA$ (C3B)2.92 $(x, -1 + y, z)$ (C15B)H15G \cdots	(C14) Cl3···H5BA $(C5B)$	2.95	(x, -1 + y, 1 + z)
(C15) H15C···Cl3 (C14)3.00 $(1 - x, -1 - y, 2 - z)$ (C4) C5···H12A (C12)2.95 $(x, 1 + y, z)$ (C6A) H6AA···H12C (C12B)2.54 (x, y, z) (C5A) H5AA···Cl2A (C14A)3.10 $(1 - x, 1 - y, 1 - z)$ (C9A) H9AA···N2B (N1B)2.92 $(1 - x, 1 - y, 1 - z)$ (C1A) C13A···H2A (C2)2.68 (x, y, z) (C14A) C13A···H16E (C16A)3.09 $(x, 1 + y, z)$ (C14A) C13A···H16F (C16B)2.97 $(-1 + x, y, z)$ (C14A) C13A···H16I (C16B)2.49 $(1 - x, -y, 1 - z)$ (C15A) H15D···H9A (C9)2.60 $(1 - x, -y, 1 - z)$ (C12A) H12B···Cl4B (C11B)2.98 $(2 - x, 1 - y, 1 - z)$ (C12A) H12B···Cl3A (C14A)3.6816 (11) $(2 - x, 2 - y, 1 - z)$ (C12B) C11B···Cl3A (C14A)3.6816 (11) $(2 - x, 2 - y, 1 - z)$ (C1B) C11B···Cl3A (C14A)3.6816 (11) $(2 - x, 2 - y, 1 - z)$ (C1B) C1B···Cl3A (C14A)3.6816 (11) $(2 - x, 2 - y, 1 - z)$ (C1B) H16I···H3AA (C3A)2.49 $(1 - x, -y, 1 - z)$ (C1B) H16I···H3AA (C3A)2.49 $(1 - x, -y, 1 - z)$ (C1B) H16I···H3AA (C3A)2.92 $(1 - x, -y, 1 - z)$ (C15B) H15G···C5A (C4A)2.97 $(1 + x, y, z)$ (C15B) H15I···H2BA (C2B)2.37 $(2 - x, 1 - y, 1 - z)$ (C12B) H12C···H6AA (C6A)2.54 (x, y, z)	(C9) $H9A \cdots H15D$ (C15A)	2.60	(1 - x, -y, 2 - z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C15) H15C···Cl3 (C14)	3.00	(1-x, -1-y, 2-z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$(C4)$ $C5 \cdots H12A$ $(C12)$	2.95	(x, 1 + y, z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C6A)$ H6AA \cdots H12C $(C12B)$	2.54	(x, y, z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C5A) H5AA···Cl2A $(C14A)$	3.10	(1-x, 1-y, 1-z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C9A) H9AA···N2B $(N1B)$	2.92	(1-x, 1-y, 1-z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(C11A)$ N3 $A \cdots$ H2 A $(C2)$	2.68	(x, y, z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C14A) Cl3A···H16E (C16A)	3.09	(x, 1 + y, z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C14A) Cl3A···Cl1B (C4B)	3.6816 (11)	(2-x, 2-y, 1-z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C4A) C5A···H15G (C15B)	2.97	(-1 + x, y, z)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(C3A) H3AA···H16I (C16B)	2.49	(1 - x, -y, 1 - z)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(C15A) H15D···H9A (C9)	2.60	(1 - x, -y, 2 - z)
$ \begin{array}{lllllllllllllllllllllllllllllll$	(C12A) H12 B ···C4B (Cl1B)	2.98	(2 - x, 1 - y, 1 - z)
$ \begin{array}{lllllllllllllllllllllllllllllll$	(C4B) Cl1 B ···Cl1 (C4)	3.5403 (11)	(2-x, 2-y, 1-z)
(C11B) C4B \cdots H12B (C12A)2.98 $(2 - x, 1 - y, 1 - z)$ (C16B) H16I \cdots H3AA (C3A)2.49 $(1 - x, -y, 1 - z)$ (N1B) N2B \cdots H9AA (C9A)2.92 $(1 - x, 1 - y, 1 - z)$ (C8B) C9B \cdots H3BA (C3B)2.92 $(x, -1 + y, z)$ (C15B) H15G \cdots C5A (C4A)2.97 $(1 + x, y, z)$ (C15B) H15I \cdots H2BA (C2B)2.37 $(2 - x, 1 - y, 1 - z)$ (C12B) H12C \cdots H6AA (C6A)2.54 (x, y, z)	(C4B) Cl1 B ···Cl3 A (C14 A)	3.6816 (11)	(2-x, 2-y, 1-z)
(C16B)H16I···H3AA(C3A)2.49 $(1 - x, -y, 1 - z)$ (N1B)N2B···H9AA(C9A)2.92 $(1 - x, 1 - y, 1 - z)$ (C8B)C9B···H3BA(C3B)2.92 $(x, -1 + y, z)$ (C15B)H15G···C5A(C4A)2.97 $(1 + x, y, z)$ (C15B)H15I···H2BA(C2B)2.37 $(2 - x, 1 - y, 1 - z)$ (C12B)H12C···H6AA(C6A)2.54 (x, y, z)	(Cl1B) C4B···H12B (Cl2A)	2.98	(2 - x, 1 - y, 1 - z)
(N1B) N2B···H9AA (C9A)2.92 $(1 - x, 1 - y, 1 - z)$ (C8B) C9B···H3BA (C3B)2.92 $(x, -1 + y, z)$ (C15B) H15G···C5A (C4A)2.97 $(1 + x, y, z)$ (C15B) H15I···H2BA (C2B)2.37 $(2 - x, 1 - y, 1 - z)$ (C12B) H12C···H6AA (C6A)2.54 (x, y, z)	$(C16B)$ H16 $I \cdot \cdot \cdot$ H3AA $(C3A)$	2.49	(1 - x, -y, 1 - z)
$(C8B) C9B \cdots H3BA (C3B)$ 2.92 $(x, -1 + y, z)$ $(C15B) H15G \cdots C5A (C4A)$ 2.97 $(1 + x, y, z)$ $(C15B) H15I \cdots H2BA (C2B)$ 2.37 $(2 - x, 1 - y, 1 - z)$ $(C12B) H12C \cdots H6AA (C6A)$ 2.54 (x, y, z)	(N1B) N2B····H9AA (C9A)	2.92	(1 - x, 1 - y, 1 - z)
(C15B) H15G···C5A (C4A) 2.97 $(1 + x, y, z)$ (C15B) H15I··H2BA (C2B) 2.37 $(2 - x, 1 - y, 1 - z)$ (C12B) H12C···H6AA (C6A) 2.54 (x, y, z)	(C8B) C9 B ···H3BA (C3B)	2.92	(x, -1 + y, z)
(C15B)H15I \cdots H2BA (C2B)2.37 $(2 - x, 1 - y, 1 - z)$ (C12B)H12C \cdots H6AA (C6A)2.54 (x, y, z)	(C15B) H15G···C5A (C4A)	2.97	(1 + x, y, z)
(C12 <i>B</i>) H12 <i>C</i> ··· H6 <i>AA</i> (C6 <i>A</i>) 2.54 (x, y, z)	(C15B) H15I···H2BA (C2B)	2.37	(2 - x, 1 - y, 1 - z)
	(C12B) H12C···H6AA (C6A)	2.54	(x, y, z)
(C5B) H5BA···CI3 (C14) 2.95 $(x, 1+y, -1+z)$	(C5B) H5BA···Cl3 (C14)	2.95	(x, 1 + y, -1 + z)

correspond to the relatively strong $C-H\cdots N$ hydrogenbonding interactions in the crystal structure; in Mol-N1A it involves the N3A atoms of the N,N-dimethylaniline group as acceptors with the aromatic H2A donor atom of the chlorobenzene ring in Mol-N1 (C2-H2A \cdots N3A).

Two-dimensional fingerprint plots are presented in Fig. 5. The red points, which represent closer contacts and negative

Figure 4

Hirshfeld surface of the title compound (symmetry-independent molecules Mol-N1, Mol-N1A and Mol-N1B, and overall), with (a) the interaction of neighbouring molecules mapped over d_{norm} and (b) mapped over shape-index.

Figure 5

Fingerprint plots representative of specific interatomic contacts in the title compound (symmetry-independent molecules Mol-N1, Mol-N1A, Mol-N1B and overall), (a) for all interactions, and delineated into (b) $Cl \cdots H/H \cdots Cl$, (c) $H \cdots H$, (d) $C \cdots H/H \cdots C$ and (e) $Cl \cdots Cl$ interactions.

 d_{norm} values on the surface, correspond to C-H···Cl interactions. The reciprocal Cl···H/H···Cl interactions appear as two symmetrical broad wings with $d_e + d_i \simeq 2.85$ Å and contribute 33.6% to the Hirshfeld surface (Fig. 5b). Another significant reciprocal interaction (H···H) with a contribution of 27.9% is present as broad symmetrical spikes at diagonal axes $d_e + d_i \simeq 2.2$ Å (Fig. 5c). The pair of characteristic wings in the fingerprint plot delineated into C···H/H···C contacts (Tables 2 and 3, Fig. 5d; 17.6% contribution to the Hirshfeld surface), have tips at $d_e + d_i \simeq 2.80$ Å. The Cl···Cl contacts, Fig. 5e (5.7% contribution), have an arrow-shaped distribution of points with the tip at $d_e = d_i = 3.50$ Å.

The other weak intermolecular interactions, *viz*. $CI \cdots C/C \cdots CI$ (5.4%), $N \cdots H/H \cdots N$ (4.7%), $C \cdots C$ (1.7%), $CI \cdots N/N \cdots CI$ (1.6%), $N \cdots C/C \cdots N$ (1.0%) and $N \cdots N$ (0.8%) contacts, show only small contributions and thus have a negligible effect on the packing.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-dichloro-1-phenylvinyl)-2-phenyldiazene skeleton gave 25 hits, of which six closely resemble the title compound, viz. 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4nitrophenyl)ethenyl]diazene (CSD refcode HONBOE; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4nitrophenyl)ethenyl]diazene (HONBUK; Akkurt et al., 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenvl]diazene (HODQAV; Shixaliyev et al., 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZ-REG; Atioğlu et al., 2019), 1,1-[methylenebis(4,1-phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shixaliyev et al., 2018), 1,1-[methylenebis(4,1phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl) ethenyl]diazene} (LEQXOX; Shixaliyev et al., 2018).

In the crystal structures of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9(2) and $64.1(2)^{\circ}$, respectively. Molecules are linked through weak $X \cdots Cl$ contacts [X = Br for HONBOE, and Cl for HONBUK], C-H···Cl and C-Cl··· π interactions into sheets parallel to (001). Additional van der Waals interactions consolidate the three-dimensional packing. In the crystal of HODQAV, molecules are stacked in columns along [100] via weak $C-H\cdots Cl$ hydrogen bonds and face-to-face $\pi - \pi$ stacking interactions. The crystal packing is further stabilized by short Cl···Cl contacts. In XIZREG, molecules are linked by C-H···O hydrogen bonds into zigzag chains running along [001]. The crystal packing is further stabilized by C–Cl··· π , C–F··· π and N-O··· π interactions. In the crystal of LEQXIR, C- $H \cdots N$ and $C - H \cdots O$ hydrogen bonds and $C I \cdots O$ contacts were found, and in LEQXOX, C-H···N and Cl···Cl contacts are observed.

5. Synthesis and crystallization

The title compound was synthesized according to a reported literature protocol (Maharramov et al., 2018). A 20 ml screwneck vial was charged with DMSO (10 ml), (E)-4-[(2-(4chlorophenyl)hydrazineylidene]methyl)-*N*,*N*-dimethylaniline (274 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl₄ (20 mmol, 10 equiv). After 1-3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a $\sim 0.01 M$ solution of HCl (100 mL, pH = \sim 2–3) and extracted with dichloromethane (3 \times 20 ml). The combined organic phase was washed with water $(3 \times 50 \text{ ml})$, brine (30 ml), dried over anhydrous Na₂SO₄ and concentrated in vacuo in a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1-1/1) to give an orange solid. Yield: 72%; mp 408 K. Analysis: calculated for C₁₆H₁₄Cl₃N₃: C 54.19, H 3.98, N 11.85; found: C 54.08, H 3.91, N 11.82%. ¹H NMR (300 MHz, CDCl₃) δ 3.05 (6H, NMe₂), 6.79–7.79 (8H, Ar). ¹³C NMR (75 MHz, CDCl₃) δ

Crystal data	
Chemical formula	$C_{16}H_{14}Cl_3N_3$
$M_{\rm r}$	354.65
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	9.7515 (5), 9.8203 (5), 26.6696 (16)
α, β, γ (°)	92.338 (2), 91.212 (2), 94.048 (2)
$V(Å^3)$	2544.7 (2)
Z	6
Radiation type	Μο Κα
$\mu ({\rm mm}^{-1})$	0.54
Crystal size (mm)	$0.24 \times 0.15 \times 0.09$
Data collection	
Diffractometer	Bruker APEXII PHOTON 100
	detector
Absorption correction	Multi-scan (SADABS: Krause et
F	al. 2015)
T	0.894, 0.946
No. of measured independent and	40829 9634 6689
observed $[I > 2\sigma(I)]$ reflections	1002), 900 1, 0009
R_{int}	0.056
$(\sin \theta / \lambda)$ $(Å^{-1})$	0.610
(Shi o/A)max (P	0.010
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.115, 1.01
No. of reflections	9634
No. of parameters	601
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.29, -0.30

Computer programs: *APEX3* and *SAINT* (Bruker, 2007), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *OLEX2* (Dolomanov *et al.*, 2009), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

152.41, 151.45, 150.29, 137.26, 135.11, 131.08, 129.27, 124.50, 119.11, 111.48, 40.29. ESI-MS: m/z: 355.48 $[M + H]^+$.

Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were refined using a riding model with d(C-H) = 0.93 Å, $U_{iso}(H) =$ $1.2U_{eq}(C)$ for aromatic H atoms, and 0.96 Å, $U_{iso}(H) =$ $1.5U_{eq}(C)$ for methyl H atoms. Owing to poor agreement between observed and calculated intensities, five outliers ($\overline{11}$ 0 4), (4 $\overline{10}$ 13), ($\overline{5}$ 8 8), ($\overline{7}$ 2 18) and (1 8 14) were omitted in the final cycles of refinement.

Funding information

This work was funded by the Science Development Foundation under the President of the Republic of Azerbaijan [grant No. EIF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4].

References

- Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* **46**, 14888–14896.
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.

- Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145– 153.
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237– 241.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.

- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). *Coord. Chem. Rev.* 387, 32–46.
- Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). *Dyes Pigments*, **150**, 377–381.
- Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). *Acta Cryst.* E75, 465– 469.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2020). E76, 1033-1037 [https://doi.org/10.1107/S2056989020007549]

Crystal structure and Hirshfeld surface analysis of 4-{2,2-dichloro-1-[(*E*)-(4-chlorophenyl)diazenyl]ethenyl}-*N*,*N*-dimethylaniline

Zeliha Atioğlu, Mehmet Akkurt, Namiq Q. Shikhaliyev, Sevinc H. Mukhtarova, Gulnar T. Suleymanova and Flavien A. A. Toze

Computing details

Data collection: *APEX3* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *PLATON* (Spek, 2020), *publCIF* (Westrip, 2010).

4-{2,2-Dichloro-1-[(E)-(4-chlorophenyl)diazenyl]ethenyl}-N,N-dimethylaniline

Crystal data $C_{16}H_{14}Cl_3N_3$ $M_r = 354.65$ Triclinic, $P\overline{1}$ a = 9.7515 (5) Å b = 9.8203 (5) Å c = 26.6696 (16) Å a = 92.338 (2)° $\beta = 91.212$ (2)° $\gamma = 94.048$ (2)° V = 2544.7 (2) Å³

Data collection

Bruker APEXII PHOTON 100 detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.894$, $T_{\max} = 0.946$ 40829 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.115$ S = 1.019634 reflections 601 parameters 0 restraints Z = 6 F(000) = 1092 $D_x = 1.389 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9939 reflections $\theta = 2.3-25.6^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$ T = 296 KPlate, orange $0.24 \times 0.15 \times 0.09 \text{ mm}$

9634 independent reflections 6689 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -32 \rightarrow 32$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.050P)^2 + 0.8216P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.30$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.8482 (2)	0.1999 (2)	0.93028 (8)	0.0452 (5)	
C2	0.8218 (2)	0.1942 (2)	0.87896 (8)	0.0546 (6)	
H2A	0.774145	0.117448	0.863853	0.066*	
C3	0.8656 (3)	0.3016 (2)	0.85007 (9)	0.0572 (6)	
H3A	0.848414	0.297623	0.815595	0.069*	
C4	0.9351 (2)	0.4144 (2)	0.87313 (9)	0.0524 (5)	
C5	0.9607 (2)	0.4232 (2)	0.92419 (9)	0.0539 (6)	
H5A	1.006727	0.501099	0.939152	0.065*	
C6	0.9173 (2)	0.3156 (2)	0.95289 (8)	0.0511 (5)	
H6A	0.934411	0.320453	0.987379	0.061*	
C7	0.7902 (2)	-0.0305 (2)	1.02733 (8)	0.0475 (5)	
C8	0.7076 (2)	-0.1457 (2)	1.00137 (8)	0.0445 (5)	
C9	0.5679 (2)	-0.1675 (2)	1.00872 (9)	0.0534 (6)	
H9A	0.526051	-0.111602	1.031902	0.064*	
C10	0.4892 (2)	-0.2699 (2)	0.98260 (9)	0.0557 (6)	
H10A	0.395461	-0.281093	0.988356	0.067*	
C11	0.5471 (2)	-0.3571 (2)	0.94773 (8)	0.0498 (5)	
C12	0.6895 (2)	-0.3368 (2)	0.94155 (9)	0.0519 (5)	
H12A	0.732733	-0.394639	0.919443	0.062*	
C13	0.7660 (2)	-0.2337 (2)	0.96741 (8)	0.0507 (5)	
H13A	0.859983	-0.222405	0.962023	0.061*	
C14	0.8254 (2)	-0.0283 (2)	1.07589 (8)	0.0509 (5)	
C15	0.3225 (3)	-0.4714 (3)	0.92575 (14)	0.0888 (9)	
H15A	0.283755	-0.384431	0.924067	0.133*	
H15B	0.304255	-0.508699	0.957852	0.133*	
H15C	0.281807	-0.532564	0.899690	0.133*	
C16	0.5316 (3)	-0.5541 (3)	0.88809 (12)	0.0829 (8)	
H16A	0.588830	-0.508824	0.864106	0.124*	
H16B	0.461159	-0.612219	0.870729	0.124*	
H16C	0.586559	-0.608226	0.908655	0.124*	
N1	0.79963 (19)	0.08299 (18)	0.95616 (7)	0.0504 (4)	
N2	0.83684 (19)	0.08700 (19)	1.00163 (7)	0.0508 (4)	
N3	0.4692 (2)	-0.4541 (2)	0.91918 (9)	0.0725 (6)	
Cl1	0.99248 (9)	0.55056 (8)	0.83780 (3)	0.0881 (3)	
Cl2	0.91333 (8)	0.10675 (7)	1.10783 (2)	0.0745 (2)	
C13	0.78721 (7)	-0.16465 (7)	1.11246 (2)	0.06280 (17)	
C1A	0.4229 (2)	0.1795 (2)	0.57132 (8)	0.0498 (5)	
C2A	0.3627 (3)	0.0499 (3)	0.56121 (9)	0.0640 (6)	
H2AA	0.357155	-0.012520	0.586525	0.077*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C3A	0.3104 (3)	0.0118 (3)	0.51352 (11)	0.0718 (7)
H3AA	0.268621	-0.075308	0.506822	0.086*
C4A	0.3211 (3)	0.1042 (3)	0.47640 (9)	0.0646 (7)
C5A	0.3798 (3)	0.2340 (3)	0.48587 (9)	0.0670 (7)
H5AA	0.385665	0.295854	0.460393	0.080*
C6A	0.4299 (2)	0.2718 (3)	0.53333 (9)	0.0593 (6)
H6AA	0.468889	0.360025	0.540009	0.071*
C7A	0.6011 (2)	0.3445(2)	0.67585 (8)	0.0470(5)
C8A	0.5983(2)	0.2358 (2)	0.71298 (8)	0.0454(5)
C9A	0.4996(3)	0.2286(3)	0.74897(9)	0.0592 (6)
Н9АА	0 434165	0.293029	0 749979	0.071*
C10A	0 4954 (3)	0.1287(3)	0.78346 (9)	0.0607 (6)
H10B	0.426667	0.126346	0.807108	0.073*
C11A	0.120007 0.5920(2)	0.0304(2)	0.78387 (8)	0.075 0.0458 (5)
	0.5920(2)	0.0377(2)	0.74676 (9)	0.0563 (6)
H12R	0.755564	-0.026818	0.745152	0.0505(0)
	0.6926 (2)	0.1388 (3)	0.743132 0.71237(0)	0.000
U12D	0.0920 (2)	0.1388 (3)	0.71237 (9)	0.0570 (0)
	0.739922	0.141231	0.000134 0.68521(0)	0.008°
C14A	0.0083(2)	0.4000(2)	0.06521(9)	0.0343(0)
UI5A UI5D	0.4881 (4)	-0.0761(3)	0.85075 (12)	0.0900 (10)
	0.496807	0.005235	0.8/8115	0.135*
HISE	0.500050	-0.154259	0.8/6465	0.135*
HISF	0.398498	-0.084/93	0.840832	0.135*
CI6A	0.6869 (3)	-0.1722 (3)	0.81753 (12)	0.0777 (8)
H16D	0.778592	-0.131172	0.822915	0.117*
H16E	0.680026	-0.219876	0.785322	0.117*
H16F	0.666243	-0.235499	0.843298	0.117*
N1A	0.47860 (19)	0.2058 (2)	0.62087 (7)	0.0521 (5)
N2A	0.53735 (18)	0.3236 (2)	0.62771 (7)	0.0494 (4)
N3A	0.5912 (2)	-0.0680(2)	0.81912 (7)	0.0600 (5)
Cl1A	0.25859 (11)	0.05792 (10)	0.41636 (3)	0.1059 (3)
Cl2A	0.67447 (7)	0.59912 (7)	0.64516 (3)	0.07071 (19)
Cl3A	0.76185 (9)	0.50455 (7)	0.73961 (3)	0.0824 (2)
C1B	0.8791 (2)	0.7795 (2)	0.30878 (8)	0.0534 (5)
C2B	0.9091 (3)	0.8881 (3)	0.34212 (10)	0.0732 (8)
H2BA	0.907166	0.874525	0.376414	0.088*
C3B	0.9419 (3)	1.0168 (3)	0.32550 (10)	0.0753 (8)
H3BA	0.961150	1.090166	0.348319	0.090*
C4B	0.9458 (3)	1.0357 (3)	0.27501 (9)	0.0580 (6)
C5B	0.9201 (3)	0.9284 (3)	0.24133 (10)	0.0740 (8)
H5BA	0.925262	0.942155	0.207103	0.089*
C6B	0.8865 (3)	0.8002 (3)	0.25782 (9)	0.0710(7)
H6BA	0.868609	0.727134	0.234787	0.085*
C7B	0.7467 (2)	0.4383 (2)	0.31889 (9)	0.0555 (6)
C8B	0.7881 (2)	0.4045 (2)	0.37050 (9)	0.0496 (5)
C9B	0.9197 (2)	0.3708 (3)	0.38160 (9)	0.0582 (6)
H9BA	0.983240	0.368642	0.356103	0.070*
C10B	0.9597 (2)	0.3403 (3)	0.42917 (10)	0.0609 (6)

H10C	1.048949	0.315983	0.434946	0.073*
C11B	0.8701 (2)	0.3447 (2)	0.46910 (9)	0.0527 (5)
C12B	0.7377 (3)	0.3785 (3)	0.45733 (11)	0.0753 (8)
H12C	0.673596	0.382026	0.482612	0.090*
C13B	0.6991 (3)	0.4069 (3)	0.40940 (11)	0.0752 (8)
H13C	0.609160	0.428491	0.403106	0.090*
C14B	0.6730 (3)	0.3507 (3)	0.28757 (10)	0.0675 (7)
C15B	1.0461 (3)	0.2825 (4)	0.52857 (13)	0.1025 (12)
H15G	1.111103	0.339811	0.510989	0.154*
H15H	1.054616	0.188677	0.518344	0.154*
H15I	1.064191	0.294754	0.564051	0.154*
C16B	0.8219 (3)	0.3376 (3)	0.55890 (11)	0.0845 (9)
H16G	0.785760	0.425916	0.557867	0.127*
H16H	0.873595	0.331524	0.589666	0.127*
H16I	0.747446	0.268088	0.557111	0.127*
N1B	0.8435 (2)	0.6513 (2)	0.32988 (7)	0.0580 (5)
N2B	0.7831 (2)	0.5669 (2)	0.29885 (7)	0.0582 (5)
N3B	0.9100 (2)	0.3187 (3)	0.51715 (8)	0.0759 (7)
Cl1B	0.98597 (9)	1.19767 (8)	0.25356 (3)	0.0849 (2)
Cl2B	0.62580 (10)	0.38856 (10)	0.22766 (3)	0.1031 (3)
Cl3B	0.61794 (9)	0.18941 (8)	0.30326 (3)	0.0901 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0467 (12)	0.0453 (12)	0.0428 (11)	-0.0008 (9)	-0.0046 (9)	0.0019 (9)
C2	0.0661 (15)	0.0469 (13)	0.0481 (13)	-0.0105 (11)	-0.0127 (11)	0.0010 (10)
C3	0.0721 (16)	0.0548 (14)	0.0428 (12)	-0.0086 (11)	-0.0103 (11)	0.0064 (10)
C4	0.0547 (13)	0.0455 (12)	0.0560 (14)	-0.0045 (10)	-0.0061 (11)	0.0098 (10)
C5	0.0580 (14)	0.0462 (13)	0.0553 (14)	-0.0055 (10)	-0.0114 (11)	-0.0032 (10)
C6	0.0567 (14)	0.0524 (13)	0.0424 (12)	-0.0024 (10)	-0.0075 (10)	-0.0024 (10)
C7	0.0461 (12)	0.0515 (13)	0.0446 (12)	-0.0005 (10)	0.0033 (9)	0.0038 (10)
C8	0.0452 (12)	0.0471 (12)	0.0410 (11)	-0.0005 (9)	-0.0003 (9)	0.0058 (9)
C9	0.0513 (13)	0.0570 (14)	0.0520 (13)	0.0034 (11)	0.0091 (10)	-0.0011 (11)
C10	0.0423 (12)	0.0613 (14)	0.0627 (14)	-0.0025 (10)	0.0053 (11)	0.0012 (12)
C11	0.0527 (13)	0.0430 (12)	0.0535 (13)	0.0019 (10)	-0.0043 (10)	0.0066 (10)
C12	0.0535 (14)	0.0487 (13)	0.0541 (13)	0.0097 (10)	0.0019 (10)	-0.0009 (10)
C13	0.0428 (12)	0.0542 (13)	0.0556 (13)	0.0053 (10)	0.0030 (10)	0.0055 (11)
C14	0.0527 (13)	0.0564 (13)	0.0422 (12)	-0.0051 (10)	0.0016 (10)	0.0009 (10)
C15	0.0653 (18)	0.080(2)	0.116 (3)	-0.0120 (15)	-0.0196 (17)	-0.0149 (18)
C16	0.097 (2)	0.0678 (18)	0.0799 (19)	-0.0049 (16)	-0.0045 (16)	-0.0200 (15)
N1	0.0551 (11)	0.0494 (11)	0.0456 (11)	-0.0032 (8)	-0.0037 (8)	0.0037 (8)
N2	0.0545 (11)	0.0534 (11)	0.0434 (10)	-0.0046 (9)	-0.0012 (8)	0.0041 (8)
N3	0.0592 (13)	0.0619 (13)	0.0931 (17)	-0.0044 (10)	-0.0078 (12)	-0.0172 (12)
Cl1	0.1108 (6)	0.0707 (4)	0.0783 (5)	-0.0343 (4)	-0.0217 (4)	0.0297 (4)
Cl2	0.0924 (5)	0.0755 (4)	0.0505 (3)	-0.0260 (4)	-0.0073 (3)	-0.0010 (3)
C13	0.0757 (4)	0.0640 (4)	0.0483 (3)	-0.0032 (3)	0.0018 (3)	0.0122 (3)
C1A	0.0444 (12)	0.0593 (14)	0.0454 (12)	0.0022 (10)	-0.0015 (9)	0.0029 (10)

C2A	0.0755 (17)	0.0601 (15)	0.0561 (15)	0.0021 (13)	-0.0064 (12)	0.0062 (12)
C3A	0.0817 (19)	0.0587 (16)	0.0729 (18)	0.0033 (13)	-0.0159 (14)	-0.0100 (14)
C4A	0.0644 (16)	0.0774 (18)	0.0519 (14)	0.0146 (13)	-0.0122 (12)	-0.0087 (13)
C5A	0.0687 (17)	0.0817 (19)	0.0502 (14)	0.0011 (14)	-0.0101 (12)	0.0115 (13)
C6A	0.0601 (15)	0.0648 (15)	0.0511 (14)	-0.0068 (12)	-0.0070 (11)	0.0054 (11)
C7A	0.0484 (12)	0.0537 (13)	0.0393 (11)	0.0049 (10)	-0.0018 (9)	0.0048 (9)
C8A	0.0477 (12)	0.0499 (12)	0.0381 (11)	0.0014 (10)	-0.0023 (9)	0.0003 (9)
C9A	0.0627 (15)	0.0602 (15)	0.0577 (14)	0.0197 (12)	0.0111 (12)	0.0090 (12)
C10A	0.0650 (15)	0.0648 (15)	0.0552 (14)	0.0146 (12)	0.0180 (12)	0.0106 (12)
C11A	0.0514 (13)	0.0446 (12)	0.0403 (11)	-0.0015 (9)	-0.0049 (9)	-0.0003 (9)
C12A	0.0567 (14)	0.0564 (14)	0.0581 (14)	0.0158 (11)	0.0053 (11)	0.0069 (11)
C13A	0.0566 (14)	0.0644 (15)	0.0521 (13)	0.0110 (12)	0.0118 (11)	0.0103 (11)
C14A	0.0598 (14)	0.0541 (14)	0.0492 (13)	0.0008 (11)	-0.0056 (11)	0.0072 (10)
C15A	0.117 (3)	0.080 (2)	0.0776 (19)	0.0204 (18)	0.0359 (19)	0.0309 (16)
C16A	0.095 (2)	0.0595 (16)	0.0822 (19)	0.0187 (15)	0.0033 (16)	0.0202 (14)
N1A	0.0521 (11)	0.0590 (12)	0.0448 (10)	-0.0002 (9)	-0.0017 (8)	0.0048 (9)
N2A	0.0486 (10)	0.0559 (11)	0.0437 (10)	0.0022 (9)	-0.0021 (8)	0.0050 (8)
N3A	0.0739 (14)	0.0538 (12)	0.0542 (11)	0.0107 (10)	0.0075 (10)	0.0126 (9)
Cl1A	0.1388 (8)	0.1108 (7)	0.0653 (5)	0.0166 (6)	-0.0417 (5)	-0.0205 (4)
Cl2A	0.0811 (4)	0.0591 (4)	0.0719 (4)	-0.0015 (3)	-0.0089 (3)	0.0195 (3)
Cl3A	0.1102 (6)	0.0644 (4)	0.0681 (4)	-0.0145 (4)	-0.0345 (4)	0.0034 (3)
C1B	0.0573 (14)	0.0551 (14)	0.0474 (13)	0.0008 (11)	-0.0043 (10)	0.0054 (10)
C2B	0.117 (2)	0.0571 (16)	0.0454 (13)	0.0029 (15)	-0.0056 (14)	0.0047 (12)
C3B	0.118 (2)	0.0528 (15)	0.0550 (15)	0.0041 (15)	0.0002 (15)	-0.0007 (12)
C4B	0.0583 (14)	0.0583 (14)	0.0585 (15)	0.0047 (11)	0.0070 (11)	0.0125 (12)
C5B	0.093 (2)	0.0810 (19)	0.0453 (14)	-0.0183 (16)	0.0008 (13)	0.0091 (13)
C6B	0.091 (2)	0.0711 (17)	0.0465 (14)	-0.0179 (14)	-0.0012 (13)	-0.0052 (12)
C7B	0.0515 (13)	0.0519 (13)	0.0622 (15)	0.0031 (10)	-0.0065 (11)	-0.0017 (11)
C8B	0.0470 (13)	0.0444 (12)	0.0568 (13)	0.0016 (9)	-0.0025 (10)	0.0011 (10)
C9B	0.0513 (14)	0.0680 (16)	0.0565 (14)	0.0114 (11)	0.0065 (11)	0.0015 (12)
C10B	0.0452 (13)	0.0731 (17)	0.0660 (16)	0.0132 (11)	0.0021 (11)	0.0061 (13)
C11B	0.0482 (13)	0.0515 (13)	0.0590 (14)	0.0045 (10)	0.0043 (11)	0.0063 (11)
C12B	0.0498 (15)	0.111 (2)	0.0682 (17)	0.0185 (15)	0.0148 (13)	0.0153 (16)
C13B	0.0464 (14)	0.105 (2)	0.0774 (19)	0.0201 (14)	0.0014 (13)	0.0136 (16)
C14B	0.0640 (16)	0.0637 (16)	0.0731 (17)	0.0020 (12)	-0.0146 (13)	-0.0041 (13)
C15B	0.083 (2)	0.152 (3)	0.079 (2)	0.037 (2)	-0.0014 (17)	0.037 (2)
C16B	0.095 (2)	0.099 (2)	0.0606 (17)	0.0094 (18)	0.0140 (16)	-0.0004 (16)
N1B	0.0681 (13)	0.0522 (12)	0.0527 (11)	0.0000 (10)	-0.0072 (10)	0.0010 (9)
N2B	0.0605 (12)	0.0570 (12)	0.0560 (12)	0.0011 (9)	-0.0080 (9)	-0.0002 (10)
N3B	0.0611 (13)	0.1092 (19)	0.0611 (13)	0.0214 (13)	0.0082 (11)	0.0188 (13)
Cl1B	0.1076 (6)	0.0658 (4)	0.0832 (5)	0.0017 (4)	0.0239 (4)	0.0219 (4)
Cl2B	0.1230 (7)	0.0965 (6)	0.0848 (5)	-0.0064 (5)	-0.0471 (5)	-0.0079 (4)
Cl3B	0.0889 (5)	0.0609 (4)	0.1158 (6)	-0.0135 (4)	-0.0188 (5)	-0.0088(4)

Geometric parameters (Å, °)

C1—C2	1.386 (3)	C10A—C11A	1.395 (3)
C1—C6	1.388 (3)	C10A—H10B	0.9300

C1—N1	1.421 (3)	C11A—N3A	1.376 (3)
C2—C3	1.380 (3)	C11A—C12A	1.393 (3)
C2—H2A	0.9300	C12A—C13A	1.378 (3)
C3—C4	1.373 (3)	C12A—H12B	0.9300
С3—НЗА	0.9300	C13A—H13B	0.9300
C4—C5	1.377 (3)	C14A—Cl3A	1.710(2)
C4—C11	1.734 (2)	C14A—Cl2A	1.715 (2)
C5—C6	1.378 (3)	C15A—N3A	1.436 (3)
С5—Н5А	0.9300	C15A—H15D	0.9600
С6—Н6А	0.9300	С15А—Н15Е	0.9600
C7—C14	1.332 (3)	C15A—H15F	0.9600
C7—N2	1.418 (3)	C16A—N3A	1.433 (3)
C7—C8	1.481 (3)	C16A—H16D	0.9600
C8—C9	1.383 (3)	C16A—H16E	0.9600
C8-C13	1 385 (3)	C16A—H16F	0.9600
C9—C10	1 377 (3)	N1A—N2A	1.259(3)
C9—H9A	0.9300	C1B-C2B	1.209(3) 1.372(3)
C10—C11	1 393 (3)	C1B—C6B	1.372(3) 1.385(3)
C10 $H10A$	0.9300	C1B—N1B	1.303(3) 1.423(3)
C11 = N3	1 370 (3)	$C^{2}B$ $C^{3}B$	1.425(5) 1.375(4)
C11 - C12	1.370(3)	C2B - C3B	0.9300
C12 $C12$	1.368 (3)	C_{2D} C_{2D} C_{4B}	1.368(4)
C12 H12A	0.0300	$C_{3B} = H_{3BA}$	0.0300
C12—III2A	0.9300	C_{3D} C_{4D} C_{5D}	1.362(4)
C13— $H13A$	0.9300	C4D = C11D	1.302(4)
C14 - C13	1.715(2) 1.714(2)	C5D C6D	1.734(2) 1.270(4)
C14 - C12	1.714(2)		1.370 (4)
C15—IN5	1.445 (4)	Сов исва	0.9300
CI5—HI5A	0.9600	COB—HOBA	0.9300
CI5—HI5B	0.9600	C/B—CI4B	1.335 (3)
CIS—HISC	0.9600	C/B—N2B	1.41/(3)
C16—N3	1.436 (3)	С/В—С8В	1.483 (3)
CI6—HI6A	0.9600	C8B—C13B	1.367 (3)
С16—Н16В	0.9600	C8B—C9B	1.378 (3)
C16—H16C	0.9600	C9B—C10B	1.370 (3)
N1—N2	1.257 (2)	С9В—Н9ВА	0.9300
C1A—C2A	1.378 (3)	C10B—C11B	1.393 (3)
C1A—C6A	1.386 (3)	C10B—H10C	0.9300
C1A—N1A	1.425 (3)	C11B—N3B	1.370 (3)
C2A—C3A	1.387 (4)	C11B—C12B	1.389 (3)
C2A—H2AA	0.9300	C12B—C13B	1.370 (4)
C3A—C4A	1.370 (4)	C12B—H12C	0.9300
СЗА—НЗАА	0.9300	C13B—H13C	0.9300
C4A—C5A	1.371 (4)	C14B—Cl3B	1.707 (3)
C4A—Cl1A	1.733 (3)	C14B—Cl2B	1.716 (3)
C5A—C6A	1.374 (3)	C15B—N3B	1.428 (4)
С5А—Н5АА	0.9300	C15B—H15G	0.9600
С6А—Н6АА	0.9300	C15B—H15H	0.9600
C7A—C14A	1.338 (3)	C15B—H15I	0.9600

C7A—N2A	1.415 (3)	C16B—N3B	1.435 (3)
C7A—C8A	1.484 (3)	C16B—H16G	0.9600
C8A—C13A	1.370 (3)	С16В—Н16Н	0.9600
C8A—C9A	1.374 (3)	C16B—H16I	0.9600
C9A—C10A	1.371 (3)	N1B—N2B	1.255 (3)
C9A—H9AA	0.9300		
C2—C1—C6	119.6 (2)	N3A—C11A—C12A	121.6 (2)
C2-C1-N1	115.70 (19)	N3A—C11A—C10A	122.0 (2)
C6-C1-N1	124.67 (19)	C12A—C11A—C10A	116.4 (2)
C3—C2—C1	120.6 (2)	C13A—C12A—C11A	121.3 (2)
C3—C2—H2A	119.7	C13A—C12A—H12B	119.4
C1—C2—H2A	119.7	C11A—C12A—H12B	119.4
C4—C3—C2	118.8 (2)	C8A—C13A—C12A	121.6 (2)
C4—C3—H3A	120.6	C8A—C13A—H13B	119.2
C2—C3—H3A	120.6	C12A—C13A—H13B	119.2
$C_3 - C_4 - C_5$	121.6(2)	C7A - C14A - C13A	122.02 (18)
C_{3} $-C_{4}$ $-C_{11}$	119 95 (18)	C7A - C14A - C12A	122.02(10) 125.13(18)
$C_5 - C_4 - C_{11}$	118 43 (18)	C13A - C14A - C12A	112 84 (14)
C4-C5-C6	119 4 (2)	N3A - C15A - H15D	109 5
C4-C5-H5A	120.3	N3A—C15A—H15E	109.5
C6-C5-H5A	120.3	H_{15D} C_{15A} H_{15E}	109.5
C_{5} C_{6} C_{1}	120.0(2)	N3A—C15A—H15E	109.5
C5-C6-H6A	120.0 (2)	H_{15D} C_{15A} H_{15F}	109.5
$C_1 = C_6 = H_{6A}$	120.0	H15E C15A H15E	109.5
C14 $C7$ $N2$	120.0 115.2(2)	M3A = C16A = H16D	109.5
$C_{14} = C_{7} = C_{8}$	113.2(2) 123.2(2)	$N_{2A} = C_{16A} = H_{16E}$	109.5
$N_{2} = C_{7} = C_{8}$	123.2(2) 121.58(18)	HIAD CIGA HIAE	109.5
$1\sqrt{2} - \frac{1}{2}$	121.36(16) 117.1(2)	M2A C C 16A H 16E	109.5
$C_{2} = C_{3} = C_{13}$	117.1(2) 1214(2)	$H_{16D} = C_{16A} = H_{16F}$	109.5
$C_{2} = C_{3} = C_{1}$	121.4(2) 121.4(10)	H16E C16A H16E	109.5
$C_{13} = C_{8} = C_{7}$	121.44(19) 121.7(2)	$\mathbf{N}_{\mathbf{A}} = \mathbf{N}_{\mathbf{A}} = \mathbf{N}_{\mathbf{A}} = \mathbf{N}_{\mathbf{A}} = \mathbf{N}_{\mathbf{A}}$	109.3
C10 - C9 - C8	121.7(2)	NIA NIA CTA	113.44(18) 112.75(18)
$C_{10} - C_{9} - H_{9}A$	119.2	NIA - NZA - CI(A	112.75 (18)
C_{0} C_{10} C_{11}	119.2	C11A = N2A = C15A	121.3(2)
C_{2}	121.4 (2)	CI(A = N2A = CI5A	121.2(2)
C_{11} C_{10} H_{10A}	119.5	C10A - N3A - C13A	117.4(2)
CII = CI0 = HI0A	119.3	C_{2B} C_{1B} C_{0B}	119.0 (2)
N3 - C11 - C10	122.3(2)	C2B—C1B—NIB	116.4(2)
	121.2(2)	C6B—C1B—N1B	124.6 (2)
C10-C11-C12	116.5 (2)	C1B - C2B - C3B	120.9 (2)
C13—C12—C11	121.3 (2)	CIB—C2B—H2BA	119.6
С13—С12—Н12А	119.3	СЗВ—С2В—Н2ВА	119.6
C11—C12—H12A	119.3	C4B—C3B—C2B	119.2 (3)
C12—C13—C8	121.9 (2)	C4B—C3B—H3BA	120.4
C12—C13—H13A	119.0	C2B—C3B—H3BA	120.4
С8—С13—Н13А	119.0	C5B—C4B—C3B	120.8 (2)
C7—C14—Cl3	122.13 (18)	C5B—C4B—C11B	119.55 (19)
C7—C14—Cl2	124.47 (18)	C3B—C4B—C11B	119.7 (2)

Cl3—C14—Cl2	113.40 (13)	C4B—C5B—C6B	120.1 (2)
N3—C15—H15A	109.5	C4B—C5B—H5BA	120.0
N3—C15—H15B	109.5	C6B—C5B—H5BA	120.0
H15A—C15—H15B	109.5	C5B—C6B—C1B	120.0 (2)
N3—C15—H15C	109.5	C5B—C6B—H6BA	120.0
H15A—C15—H15C	109.5	C1B—C6B—H6BA	120.0
H15B—C15—H15C	109.5	C14B—C7B—N2B	114.6 (2)
N3—C16—H16A	109.5	C14B—C7B—C8B	123.1 (2)
N3—C16—H16B	109.5	N2B—C7B—C8B	122.3(2)
H16A—C16—H16B	109.5	C13B—C8B—C9B	116.7(2)
N3-C16-H16C	109.5	C13B - C8B - C7B	1221(2)
H_{16A} $-C_{16}$ $-H_{16C}$	109.5	C9B - C8B - C7B	122.1(2) 121.2(2)
H_{16B} C_{16} H_{16C}	109.5	C10B-C9B-C8B	121.2(2) 121.8(2)
$N_2 N_1 - C_1$	113 53 (18)	C10B - C9B - H9BA	119.1
N1N2C7	113.61 (18)	C8B C9B H9BA	119.1
$C_{11} = N_2 = C_1^{-1}$	121.5(2)	C9B-C10B-C11B	119.1 121.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121.3(2) 120.0(2)	$C^{0}B$ $C^{1}0B$ $H^{1}0C$	121.7 (2)
C16 N2 C15	120.0(2)	$C_{3}D = C_{1}0D = H_{1}0C$	119.1
C_{10} C_{13} C_{14} C_{64}	117.0(2) 110.2(2)	$\frac{110}{110} - \frac{110}{110} - \frac{110}{120}$	119.1 121.0(2)
$C_{2A} = C_{1A} = C_{0A}$	119.2(2) 115.7(2)	N3D-C11D-C12B	121.9(2)
CZA—CIA—NIA	115.7(2) 125.0(2)	N3B-CIIB-CI0B	122.3(2)
CIA CIA CIA	125.0 (2)	CI2B—CIIB—CI0B	115.8 (2)
CIA - C2A - C3A	120.4 (2)	C13B - C12B - C11B	121.6 (2)
CIA - C2A - H2AA	119.8	CI3B—CI2B—HI2C	119.2
C3A—C2A—H2AA	119.8	CIIB—CI2B—HI2C	119.2
C4A—C3A—C2A	119.2 (3)	C8B—C13B—C12B	122.3 (2)
С4А—С3А—НЗАА	120.4	C8B—C13B—H13C	118.8
С2А—С3А—НЗАА	120.4	C12B—C13B—H13C	118.8
C3A—C4A—C5A	121.2 (2)	C7B—C14B—Cl3B	123.1 (2)
C3A—C4A—C11A	119.9 (2)	C7B—C14B—Cl2B	123.4 (2)
C5A—C4A—Cl1A	118.9 (2)	Cl3B—Cl4B—Cl2B	113.56 (15)
C4A—C5A—C6A	119.4 (2)	N3B—C15B—H15G	109.5
С4А—С5А—Н5АА	120.3	N3B—C15B—H15H	109.5
С6А—С5А—Н5АА	120.3	H15G—C15B—H15H	109.5
C5A—C6A—C1A	120.5 (2)	N3B—C15B—H15I	109.5
С5А—С6А—Н6АА	119.7	H15G—C15B—H15I	109.5
С1А—С6А—Н6АА	119.7	H15H—C15B—H15I	109.5
C14A—C7A—N2A	115.90 (19)	N3B—C16B—H16G	109.5
C14A—C7A—C8A	121.9 (2)	N3B—C16B—H16H	109.5
N2A—C7A—C8A	122.12 (19)	H16G—C16B—H16H	109.5
C13A—C8A—C9A	117.7 (2)	N3B—C16B—H16I	109.5
C13A—C8A—C7A	121.45 (19)	H16G—C16B—H16I	109.5
C9A—C8A—C7A	120.8 (2)	H16H—C16B—H16I	109.5
C10A—C9A—C8A	121.5 (2)	N2B—N1B—C1B	112.63 (19)
С10А—С9А—Н9АА	119.2	N1B—N2B—C7B	113.78 (19)
С8А—С9А—Н9АА	119.2	C11B—N3B—C15B	121.2 (2)
C9A—C10A—C11A	121.5 (2)	C11B—N3B—C16B	122.0 (2)
C9A—C10A—H10B	119.3	C15B—N3B—C16B	116.6 (2)
C11A—C10A—H10B	119.3		

C6—C1—C2—C3	1.1 (4)	N3A—C11A—C12A—C13A	-178.3 (2)
N1—C1—C2—C3	-179.3 (2)	C10A—C11A—C12A—C13A	1.3 (4)
C1—C2—C3—C4	-0.4 (4)	C9A—C8A—C13A—C12A	-0.5 (4)
C2—C3—C4—C5	-0.6 (4)	C7A—C8A—C13A—C12A	-180.0(2)
C2—C3—C4—Cl1	179.58 (19)	C11A—C12A—C13A—C8A	-0.4 (4)
C3—C4—C5—C6	0.9 (4)	N2A—C7A—C14A—Cl3A	-175.07 (17)
Cl1—C4—C5—C6	-179.27 (18)	C8A—C7A—C14A—Cl3A	2.5 (3)
C4—C5—C6—C1	-0.2 (4)	N2A—C7A—C14A—Cl2A	3.8 (3)
C2-C1-C6-C5	-0.8 (3)	C8A—C7A—C14A—Cl2A	-178.64 (17)
N1—C1—C6—C5	179.7 (2)	C2A—C1A—N1A—N2A	177.3 (2)
C14—C7—C8—C9	74.0 (3)	C6A—C1A—N1A—N2A	-0.3 (3)
N2—C7—C8—C9	-105.6 (2)	C1A—N1A—N2A—C7A	-175.50 (18)
C14—C7—C8—C13	-108.2 (3)	C14A—C7A—N2A—N1A	178.4 (2)
N2-C7-C8-C13	72.2 (3)	C8A—C7A—N2A—N1A	0.8 (3)
C13—C8—C9—C10	-1.6 (3)	C12A—C11A—N3A—C16A	-3.5 (4)
C7—C8—C9—C10	176.3 (2)	C10A—C11A—N3A—C16A	176.9 (3)
C8—C9—C10—C11	0.5 (4)	C12A—C11A—N3A—C15A	-179.0(3)
C9—C10—C11—N3	-175.9 (2)	C10A—C11A—N3A—C15A	1.4 (4)
C9—C10—C11—C12	1.3 (3)	C6B—C1B—C2B—C3B	2.0 (4)
N3—C11—C12—C13	175.3 (2)	N1B—C1B—C2B—C3B	-178.7 (3)
C10-C11-C12-C13	-2.0 (3)	C1B—C2B—C3B—C4B	-0.7 (5)
C11—C12—C13—C8	1.0 (3)	C2B—C3B—C4B—C5B	-1.1 (4)
C9—C8—C13—C12	0.9 (3)	C2B—C3B—C4B—C11B	179.6 (2)
C7—C8—C13—C12	-177.0 (2)	C3B—C4B—C5B—C6B	1.6 (4)
N2-C7-C14-Cl3	-176.21 (16)	Cl1B—C4B—C5B—C6B	-179.1 (2)
C8—C7—C14—Cl3	4.1 (3)	C4B-C5B-C6B-C1B	-0.2 (4)
N2-C7-C14-Cl2	3.1 (3)	C2B-C1B-C6B-C5B	-1.6 (4)
C8—C7—C14—Cl2	-176.55 (17)	N1B-C1B-C6B-C5B	179.2 (3)
C2-C1-N1-N2	173.7 (2)	C14B—C7B—C8B—C13B	-78.7 (3)
C6-C1-N1-N2	-6.7 (3)	N2B-C7B-C8B-C13B	101.5 (3)
C1—N1—N2—C7	-179.12 (18)	C14B—C7B—C8B—C9B	102.2 (3)
C14—C7—N2—N1	-178.7 (2)	N2B-C7B-C8B-C9B	-77.6 (3)
C8—C7—N2—N1	1.0 (3)	C13B—C8B—C9B—C10B	0.4 (4)
C10-C11-N3-C16	-172.1 (2)	C7B-C8B-C9B-C10B	179.5 (2)
C12-C11-N3-C16	10.8 (4)	C8B—C9B—C10B—C11B	-1.4 (4)
C10-C11-N3-C15	-1.9 (4)	C9B—C10B—C11B—N3B	-177.9 (3)
C12-C11-N3-C15	-179.0 (2)	C9B-C10B-C11B-C12B	1.5 (4)
C6A—C1A—C2A—C3A	0.4 (4)	N3B-C11B-C12B-C13B	178.8 (3)
N1A—C1A—C2A—C3A	-177.3 (2)	C10B—C11B—C12B—C13B	-0.6 (4)
C1A—C2A—C3A—C4A	0.9 (4)	C9B—C8B—C13B—C12B	0.6 (4)
C2A—C3A—C4A—C5A	-1.4 (4)	C7B—C8B—C13B—C12B	-178.6 (3)
C2A—C3A—C4A—Cl1A	179.1 (2)	C11B—C12B—C13B—C8B	-0.4 (5)
C3A—C4A—C5A—C6A	0.5 (4)	N2B—C7B—C14B—Cl3B	179.71 (18)
Cl1A—C4A—C5A—C6A	-179.9 (2)	C8B—C7B—C14B—Cl3B	-0.1 (4)
C4A—C5A—C6A—C1A	0.8 (4)	N2B—C7B—C14B—Cl2B	0.3 (3)
C2A—C1A—C6A—C5A	-1.2 (4)	C8B—C7B—C14B—Cl2B	-179.54 (19)
N1A—C1A—C6A—C5A	176.3 (2)	C2B—C1B—N1B—N2B	162.2 (2)

C14A—C7A—C8A—C13A N2A—C7A—C8A—C13A C14A—C7A—C8A—C9A N2A—C7A—C8A—C9A C13A—C8A—C9A—C10A C7A—C8A—C9A—C10A C7A—C8A—C9A—C10A C8A—C9A—C10A—C11A C9A—C10A—C11A—N3A	-92.7 (3) 84.7 (3) 87.8 (3) -94.7 (3) 0.4 (4) 179.9 (2) 0.6 (4) 178.2 (2)	C6B—C1B—N1B—N2B C1B—N1B—N2B—C7B C14B—C7B—N2B—N1B C8B—C7B—N2B—N1B C12B—C11B—N3B—C15B C10B—C11B—N3B—C15B C12B—C11B—N3B—C16B C10B—C11B—N3B—C16B	-18.5 (3) 179.93 (19) 175.0 (2) -5.2 (3) 179.3 (3) -1.3 (4) -6.2 (4) 173.2 (3)
C9A—C10A—C11A—N3A C9A—C10A—C11A—C12A	178.2 (2) -1.4 (4)	C10B—C11B—N3B—C16B	173.2 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C1–C6 and C8A–C13A rings, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A
C2—H2 <i>A</i> ···N3 <i>A</i>	0.93	2.68	3.597 (3)	167
C5 <i>B</i> —H5 <i>BA</i> ···Cl3 ⁱ	0.93	2.95	3.703 (3)	139
$C14$ — $Cl3$ ··· $Cg1^{ii}$	1.71 (1)	3.55 (1)	4.083 (2)	96 (1)
C14 <i>B</i> —C13 <i>B</i> … <i>Cg</i> 4 ⁱⁱⁱ	1.71 (1)	3.85 (1)	5.300 (3)	142 (1)

Symmetry codes: (i) *x*, *y*+1, *z*-1; (ii) –*x*+2, –*y*, –*z*+2; (iii) –*x*+1, –*y*, –*z*+1.