

Received 16 July 2020 Accepted 9 August 2020

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: deamination reaction; aza-crown ether; dibenzo-16-crown-3; crystal structure; γ piperidone; hydrogen bonds; C—H··· π contacts.

CCDC reference: 2022314

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis by deamination reaction and crystal structure at 120 K of (16*Z*,19*E*)-18-oxo-*N*-(pyridin-2-yl)-6,7,9,10-tetrahydro-18*H*-dibenzo[*h*,*o*][1,4,7]-trioxacyclohexadecine-17-carboxamide

Ayalew T. Wodajo,^a Thi Thanh Van Tran,^b* Hong Hieu Truong,^c Alexander G. Tskhovrebov,^{c,d} The Duan Le,^b Victor N. Khrustalev^{c,e} and Tuan Anh Le^b

^aCollege of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, ^bFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam,
 ^cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, ^dN. N. Semenov Federal Research Center, for Chemical Physics, Russian Academy of Sciences, UI. Kosygina 4, Moscow, Russian Federation, and ^eN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow 119991, Russian Federation. *Correspondence e-mail: tvch@yahoo.com

The title compound, $C_{27}H_{24}N_2O_5$, is a product of the deamination reaction from aza-14-crown-4 ether containing the γ -piperidone subunit. The title molecule contains a 16-membered macrocycle with the conformation of the C-O-C-C-O-C-O-C polyether chain being $t-g^{(-)}-t-t-g^{(+)}-t$ (t = trans, 180° ; $g = gauche, \pm 60^\circ$). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is $31.11 (14)^\circ$. The cavity size inside the macrocycle is 4.72 Å. The macrocycle is significantly flattened as a result of the extended conjugated system. Steric repulsion between the pyridylcarboxamide fragment and the benzene ring results in a slight deviation of macrocycle from planarity. The structure also features intramolecular hydrogen bonding, which results in a deviation of the angle between the planes of amide and pyridyl groups from planarity: this angle is $16.32 (18)^\circ$. In the crystal, the molecules are linked into infinite zigzag chains *via* intermolecular C-H··· π contacts. The chains are bound into layers parallel to (100) by weak intermolecular C-H···O hydrogen bonds.

1. Chemical context

Nowadays, aza-crown ethers are designed, synthesized and applied as macrocyclic ligands for coordination chemistry (Hiraoka, 1982; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997; Kolyadina *et al.*, 2013; Mazur *et al.*, 2010) and as potential anticancer agents with a high cytotoxicity (Anh *et al.*, 2014; Le *et al.*, 2015, 2018, 2019; Dao *et al.*, 2019). Over the last several years, new aza-crown ethers containing heterocyclic subunits such as piperidine (Levov *et al.*, 2006, 2008*a,b*; Anh *et al.*, 2008, 2012*a,b,c*; Hieu *et al.*, 2012*a,b*, 2013), perhydropyrimidine (Hieu *et al.*, 2011), perhydrotriazine (Khieu *et al.*, 2011), pyridine (Anh *et al.*, 2004; Le *et al.*, 2015) and bispyridine (Komarova *et al.*, 2008; Sokol *et al.*, 2011) have been synthesized.

In a recent study, we condensed a γ -piperidone-containing aza-crown ether with α -aminopyridine in the aprotic solvent *o*xylene, which allows deamination to occur (Volkov *et al.*, 2007). After prolonged heating (5 h), the title compound was obtained in a yield of 40%. The reversible deamination reaction is apparently the result of thermodynamic control.

According to the *PASS* program (Filimonov *et al.*, 2014), which gives a computer prediction of biological activities, the title compound is expected to exhibit antiallergic (72% probability) and antiasthmatic (67%) properties, as well as to be a membrane permeability inhibitor (65%). In addition, this compound containing crown ether $(-O-CH_2-CH_2-O-CH_2-CH_2-O-)$ and dienon fragments [-CH=CH-C(O)-CH=CH-] could act as a good ligand in coordination chemistry.

2. Structural commentary

The title compound, (3), is a product of the deamination reaction starting from aza-14-crown-4 ether containing the γ -piperidone subunit (1). The molecular structure of (3) is presented in Fig. 1. The molecule contains a 16-membered macrocycle with the C7–O8–C9–C10–O11–C12–C13–O14–C15 polyether chain exhibiting a $t-g^{(-)}-t-t-g^{(+)}-t$ (t = trans, 180°; $g = \text{gauche}, \pm 60^{\circ}$) conformation. The dihedral angle between the mean planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 31.11 (14)°. The cavity size

Figure 1

Molecular structure of (3) with displacement ellipsoids shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed line indicates the intramolecular $N-H\cdots O$ hydrogen bond.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1N \cdots O18$	0.88(3)	2 04 (3)	2 737 (3)	135 (3)
C19-H19···O5	0.95	2.22	2.823 (4)	120
C23-H23···O21	0.95	2.34	2.903 (4)	117
$C6-H6B\cdotsO18^{i}$	0.99	2.50	3.323 (4)	140
$C9-H9A\cdots O8^{ii}$	0.99	2.48	3.447 (4)	165
C10-H10A···O11 ⁱⁱ	0.99	2.41	3.238 (4)	140
$C26-H26\cdots C22^{iii}$	0.95	2.76	3.678 (4)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

inside the macrocycle, determined as a double-mean distance between the C16, C19, O5, O8 and O11 atoms and the center of this pentagon, is 4.72 Å. The macrocycle is significantly flattened because of the extended conjugated system. The steric repulsion between the 17-pyridylcarboxamide fragment and the aromatic ring (C11A/C12–C15/C15A) results in a slight deviation of the macrocycle from planarity. The molecular structure also features intramolecular hydrogen bonds (Table 1), which result in the deviation of the amide and pyridyl groups from coplanarity, the angle between their main planes being 16.32 (18)°. In addition, the intramolecular N1– H1N···O18 hydrogen bond has a significant impact on the structure, preventing the C11A/C12–C15/C15A benzene ring from being conjugated with the C16=C17 double bond.

3. Supramolecular features

In the crystal, molecules of (3) are linked into infinite zigzag chains *via* intermolecular C26 $-H\cdots\pi$ (C22) contacts (Fig. 2). A similar supramolecular motif was previously observed by our group (Tskhovrebov *et al.*, 2019; Repina *et al.*, 2020). The chains are linked into two-tier puckered layers parallel to (100) by weak intermolecular C $-H\cdots$ O hydrogen bonds (Table 1, Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom *et al.*, 2016) revealed the existence of several structurally similar compounds. Since members of our group reported the synthesis of dibenzopiperazidinoaza-14-crown-4 for the first time (Levov

Figure 2

The chain of molecules of (3) along the *c* axis. Dashed lines indicate the intramolecular N-H···O hydrogen bonds and the intermolecular C-H··· π contacts.

research communications

Figure 3

Crystal packing of (3) illustrating the two-tier puckered layer parallel to (100). Dashed lines indicate the intramolecular $N-H\cdots O$ and the intermolecular $C-H\cdots \pi$ and $C-H\cdots O$ hydrogen bonds.

et al., 2006), several relevant macrocyclic crown ethers have been prepared and structurally characterized (Hieu *et al.*, 2012*a*, 2016; Polyakova *et al.*, 2016, 2018; Sokol *et al.*, 2014; Nguyen *et al.*, 2017; Anh *et al.*, 2012*c* and references therein). The aforementioned macrocyclic crown ethers contain an O_3C_4 linear chain fragment appended to the two aryl rings. The O atoms in the macrocycles appear to be in an sp^3 hybridized state with C–O–C angles close to 120°. Overall, the metrical parameters in this type of macrocyclic ligand are not remarkable.

5. Synthesis and crystallization

Aza-crown ether (1) was synthesized according to the procedure described previously (Levov *et al.*, 2008*a*), and purified by recrystallization from ethanol. α -Aminopyridine and *o*-xylene were acquired from Aldrich. All solvents were HPLC grade and used without any further purification.

A solution of 2.0 g (4.7 mmol) aza-crown ether (1) and 0.44 g (4.7 mmol) α -aminopyridine (2) in 10 ml *o*-xylene was refluxed with stirring for 5 h (monitored by TLC until the disappearance of the starting organic compound spots). The solvent was evaporated under vacuum, then the residue was purified by column chromatography (ethyl acetate:*n*-hexane = 5:1) and recrystallized from ethanol to obtain 1.27 g of pure compound (3) as single crystals in 58% yield. T_{mlt} = 482–484 K. $R_{\rm f}$ = 0.66 (ethyl acetate, silufol). IR, ν , cm⁻¹: 1687 (C=O), 1638 (HN-C=O), 3317 (NH). ¹H NMR (CDCl₃, 400 MHz, 300 K): 3.89 (*m*, 2H, *J* = 4.3 and 2.0 Hz, CH₂OCH₂), 4.01 (*m*, 2H, *J* = 4.3 and 1.7 Hz, CH₂OCH₂), 4.33 (*m*, 4H, Ph-O-CH₂), 6.91–7.75 (*m*, 11H, H_{aryl}, H_{pyridine}), 7.73 (*d*, 1H, *J* = 15.7 Hz, H18), 8.18 (*d*, 1H, *J* = 15.7 Hz, H17), 8.32 (*d*, 1H, *J* =

5.4 Hz, H_{pyridine}), 8.36 (*s*, 1H, H14). Mass spectrum, *m/z* (I_{max} , %): 456 [M]⁺ (4), 428 (1), 309 (4), 283 (3), 265 (3), 238 (25), 221 (18), 210 (50), 189 (10), 173 (89), 159 (20), 147 (38), 131 (100), 118 (48), 115 (51), 103 (27), 91 (81), 89 (52), 78 (65), 45 (38). Analysis calculated for C₂₇H₂₄N₂O₅, %: C, 71.04; H, 5.30; N, 6.14. Found: C, 70.82; H, 5.34; N, 6.01.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atom of the amino group was localized in a difference-Fourier map and refined isotropically with fixed displacement parameters $[U_{iso}(H) =$ $1.2U_{eq}(N)]$. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99 Å and refined as riding with fixed isotropic displacement parameters $[U_{iso}(H) =$ $1.2U_{eq}(C)]$.

Funding information

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2017.312 and by the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)].

References

- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.
- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.
- Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{27}H_{24}N_2O_5$
$M_{\rm r}$	456.48
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	120
a, b, c (Å)	17.021 (6), 16.519 (5), 8.079 (3)
β (°)	97.552 (8)
$V(\dot{A}^3)$	2251.9 (13)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09
Crystal size (mm)	$0.20 \times 0.20 \times 0.05$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.975, 0.987
No. of measured, independent and	13715, 4398, 2301
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.100
$(\sin \theta / \lambda)_{max} (Å^{-1})$	0.617
())	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.060, 0.169, 0.97
No. of reflections	4398
No. of parameters	310
H-atom treatment	H atoms treated by a mixture of independent and constrained
▲	rennement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-5})$	0.24, -0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2015b).

- Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). *Russ. J. Org. Chem.* 44, 463–465.
- Anh, T. L., Hieu, H. T., Phuong, T. T. N., Ha, T. P., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajoe, A. T. (2014). *Macroheterocycles* 7, 386–390.
- Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.
- Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dao, T. N., Truong, H. H., Luu, V. B., Soldatenkov, A. T., Kolyadina, N. M., Kulakova, A. N., Khrustalev, V. N., Wodajo, A. T., Nguyen, H. Q., Van Tran, T. T. & Le, T. A. (2019). *Chem. Heterocycl. Compd*, 55, 654–659.
- Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). *Chem. Heterocycl. C.* 50, 444–457.
- Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). *Chem. Heterocycl. Compd.* 47, 1307–1308.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012*a*). *Acta Cryst.* E68, o2431–o2432.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.

- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Tuyen, N. V. & Khrustalev, V. N. (2016). Acta Cryst. E72, 829–832.
- Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013). Acta Cryst. E69, 0565–0566.
- Hiraoka, M. (1982). Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.
- Khieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). *Russ. J. Org. Chem.* 47, 766–770.
- Kolyadina, N. M., Sokol, V. I., Kvartalov, V. B., Davydov, V. V., Fomicheva, E. A., Soldatenkov, A. T. & Sergienko, V. S. (2013). *Russ. J. Inorg. Chem.* 58, 671–677.
- Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. Compd, 44, 624–625.
- Le, T. A., Nguyen, T. T. P., Truong, H. H., Soldatenkov, A. T., Bui, T. V., Tran, T. T. V., Dao, T. N., Voskressensky, L. G., To, H. T. & Khrustalev, V. N. (2018). *Macroheterocycles* 11, 197–202.
- Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). *Mendeleev Commun.* **25**, 224–225.
- Le, A. T., Tran, V. T. T., Truong, H. H., Nguyen, L. M., Luong, D. M., Do, T. T., Nguyen, D. T., Dao, N. T., Le, D. T., Soldatenkov, A. T. & Khrustalev, V. N. (2019). *Mendeleev Commun.* 29, 375–377.
- Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457–462.
- Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). *Russ. J. Org. Chem.* 44, 1665–1670.
- Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). *Mendeleev Commun.* 16, 35–36.
- Mazur, V. M., Kolyadina, N. M., Sokol, V. I., Soro, S., Sergienko, V. S. & Davydov, V. V. (2010). *Russ. J. Coord. Chem.* **36**, 838–843.
- Nguyen, V. T., Truong, H. H., Le, T. A., Soldatenkov, A. T., Thi, T. A. D., Tran, T. T. V., Esina, N. Y. & Khrustalev, V. N. (2017). *Acta Cryst.* E73, 118–121.
- Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.
- Polyakova, I. N., Sergienko, V. S., Kvartalov, V. B., Kolyadina, N. M. & Sokol, V. I. (2016). *Russ. J. Inorg. Chem.* 61, 168–173.
- Polyakova, I. N., Sokol, V. I., Sergienko, V. S., Kolyadina, N. M., Kvartalov, V. B. & Polyanskaya, N. A. (2018). *Crystallogr. Rep.* 63, 358–363.
- Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). *Inorg. Chim. Acta*, 502 Article 119378.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). *Russ. Chem. Bull.* 60, 2086–2088.
- Sokol, V. I., Kvartalov, V. B., Kolyadina, N. M., Sergienko, V. S., Soldatenkov, A. T., Davydov, V. V. & Drogova, G. M. (2014). *Russ. J. Inorg. Chem.* 59, 1094–1100.
- Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. J. (2019). J. Organomet. Chem. 886, 71–75.
- Volkov, S. V., Kutyakov, S. V., Levov, A. N., Polyakova, E. I., Anh, L. T., Soldatova, S. A., Terentiev, P. B. & Soldatenkov, A. T. (2007). *Chem. Heterocycl. Compd.* 43, 445–453.

supporting information

Acta Cryst. (2020). E76, 1454-1457 [https://doi.org/10.1107/S2056989020010968]

Synthesis by deamination reaction and crystal structure at 120 K of (16Z,19E)-18-oxo-N-(pyridin-2-yl)-6,7,9,10-tetrahydro-18H-dibenzo[h,o] [1,4,7]trioxacyclohexadecine-17-carboxamide

Ayalew T. Wodajo, Thi Thanh Van Tran, Hong Hieu Truong, Alexander G. Tskhovrebov, The Duan Le, Victor N. Khrustalev and Tuan Anh Le

Computing details

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015*b*); molecular graphics: *SHELXTL* (Sheldrick, 2015*b*); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2015*b*).

(16*Z*,19*E*)-18-Oxo-*N*-(pyridin-2-yl)-6,7,9,10-tetrahydro-18*H*-dibenzo[*h*,*o*][1,4,7]trioxacyclohexadecine-17-carboxamide

Crystal data

 $C_{27}H_{24}N_2O_5$ $M_r = 456.48$ Monoclinic, $P2_1/c$ a = 17.021 (6) Å b = 16.519 (5) Å c = 8.079 (3) Å $\beta = 97.552$ (8)° V = 2251.9 (13) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.975$, $T_{\max} = 0.987$ 13715 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.169$ S = 0.97 F(000) = 960 $D_x = 1.346 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1174 reflections $\theta = 2.5-23.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KPlate, light-yellow $0.20 \times 0.20 \times 0.05 \text{ mm}$

4398 independent reflections 2301 reflections with $I > 2\sigma(I)$ $R_{int} = 0.100$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.4^\circ$ $h = -14 \rightarrow 20$ $k = -19 \rightarrow 20$ $l = -9 \rightarrow 9$

4398 reflections310 parameters0 restraintsPrimary atom site location: difference Fourier map

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0735P)^2]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
and constrained refinement	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.81155 (16)	0.57786 (15)	0.3654 (4)	0.0314 (7)	
H1N	0.7620 (19)	0.5900 (19)	0.327 (4)	0.038*	
N2	0.84697 (15)	0.67951 (15)	0.1997 (4)	0.0370 (7)	
C1	0.39211 (18)	0.41274 (18)	0.1565 (4)	0.0323 (8)	
H1	0.4052	0.4436	0.0648	0.039*	
C2	0.31862 (19)	0.37494 (19)	0.1440 (5)	0.0354 (8)	
H2	0.2822	0.3795	0.0447	0.043*	
C3	0.29920 (19)	0.33067 (19)	0.2777 (5)	0.0368 (9)	
Н3	0.2496	0.3037	0.2694	0.044*	
C4	0.35155 (19)	0.32526 (18)	0.4240 (5)	0.0342 (8)	
H4	0.3369	0.2958	0.5161	0.041*	
C4A	0.42529 (18)	0.36265 (17)	0.4368 (4)	0.0290 (8)	
05	0.47971 (12)	0.35990 (12)	0.5778 (3)	0.0328 (6)	
C6	0.4577 (2)	0.31983 (18)	0.7232 (4)	0.0335 (8)	
H6A	0.4500	0.2613	0.7007	0.040*	
H6B	0.4073	0.3425	0.7517	0.040*	
C7	0.5223 (2)	0.3323 (2)	0.8653 (4)	0.0400 (9)	
H7A	0.5320	0.3909	0.8830	0.048*	
H7B	0.5060	0.3094	0.9688	0.048*	
08	0.59254 (13)	0.29397 (13)	0.8301 (3)	0.0391 (6)	
C9	0.6507 (2)	0.2893 (2)	0.9744 (4)	0.0428 (9)	
H9A	0.6300	0.2570	1.0623	0.051*	
H9B	0.6632	0.3443	1.0189	0.051*	
C10	0.7239 (2)	0.2505 (2)	0.9269 (4)	0.0411 (9)	
H10A	0.7614	0.2398	1.0290	0.049*	
H10B	0.7099	0.1980	0.8719	0.049*	
011	0.76185 (13)	0.30110 (12)	0.8158 (3)	0.0364 (6)	
C11A	0.80461 (18)	0.36681 (18)	0.8857 (4)	0.0304 (8)	
C12	0.85596 (19)	0.3632 (2)	1.0331 (4)	0.0386 (9)	
H12	0.8594	0.3154	1.0991	0.046*	
C13	0.9026 (2)	0.4302 (2)	1.0842 (5)	0.0440 (9)	
H13	0.9373	0.4287	1.1863	0.053*	
C14	0.89803 (19)	0.4990 (2)	0.9853 (4)	0.0389 (9)	
H14	0.9307	0.5443	1.0190	0.047*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C15	0.84686 (18)	0.5026 (2)	0.8396 (4)	0.0358 (8)
H15	0.8443	0.5503	0.7735	0.043*
C15A	0.79813 (18)	0.43628 (18)	0.7869 (4)	0.0293 (8)
C16	0.73583 (18)	0.43972 (17)	0.6437 (4)	0.0284 (7)
H16	0.6877	0.4133	0.6588	0.034*
C17	0.73683 (18)	0.47504 (16)	0.4934 (4)	0.0260 (7)
C18	0.66355 (17)	0.48163 (17)	0.3709 (4)	0.0283 (8)
O18	0.66282 (13)	0.52429 (13)	0.2450 (3)	0.0376 (6)
C19	0.59118 (18)	0.43833 (17)	0.4033 (4)	0.0289 (8)
H19	0.5920	0.4063	0.5011	0.035*
C20	0.52515 (18)	0.44386 (17)	0.2969 (4)	0.0282 (7)
H20	0.5289	0.4775	0.2028	0.034*
C20A	0.44743 (17)	0.40665 (17)	0.3006 (4)	0.0273 (7)
C21	0.81515 (18)	0.50452 (18)	0.4451 (4)	0.0288 (8)
O21	0.87634 (12)	0.46652 (13)	0.4817 (3)	0.0381 (6)
C22	0.87370 (18)	0.62108 (17)	0.3072 (4)	0.0292 (7)
C23	0.95325 (18)	0.60770 (18)	0.3617 (4)	0.0301 (8)
H23	0.9696	0.5666	0.4410	0.036*
C24	1.00802 (19)	0.6561 (2)	0.2971 (4)	0.0355 (8)
H24	1.0631	0.6481	0.3305	0.043*
C25	0.9825 (2)	0.7161 (2)	0.1840 (5)	0.0417 (9)
H25	1.0192	0.7501	0.1382	0.050*
C26	0.9017 (2)	0.7254 (2)	0.1394 (5)	0.0438 (10)
H26	0.8839	0.7666	0.0615	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0264 (14)	0.0261 (14)	0.0424 (18)	0.0027 (12)	0.0064 (13)	0.0087 (13)
N2	0.0330 (15)	0.0306 (15)	0.0483 (19)	0.0036 (13)	0.0081 (14)	0.0128 (14)
C1	0.0338 (18)	0.0260 (17)	0.037 (2)	0.0007 (14)	0.0067 (16)	-0.0016 (15)
C2	0.0296 (18)	0.0328 (18)	0.044 (2)	0.0021 (15)	0.0055 (16)	-0.0072 (17)
C3	0.0319 (18)	0.0277 (18)	0.053 (2)	-0.0039 (15)	0.0136 (17)	-0.0101 (17)
C4	0.0352 (19)	0.0222 (16)	0.048 (2)	-0.0020 (14)	0.0158 (17)	0.0009 (16)
C4A	0.0315 (17)	0.0189 (16)	0.038 (2)	0.0017 (14)	0.0080 (15)	0.0003 (14)
05	0.0388 (13)	0.0274 (12)	0.0334 (14)	-0.0016 (10)	0.0091 (11)	0.0052 (10)
C6	0.046 (2)	0.0230 (16)	0.035 (2)	0.0019 (15)	0.0185 (16)	0.0036 (15)
C7	0.052 (2)	0.0347 (19)	0.036 (2)	0.0038 (17)	0.0167 (17)	0.0016 (16)
08	0.0459 (14)	0.0396 (14)	0.0328 (14)	0.0032 (11)	0.0094 (11)	0.0011 (11)
C9	0.053 (2)	0.045 (2)	0.030 (2)	-0.0063 (18)	0.0018 (18)	0.0089 (17)
C10	0.052 (2)	0.036 (2)	0.033 (2)	-0.0056 (17)	0.0012 (17)	0.0130 (16)
011	0.0494 (14)	0.0264 (12)	0.0326 (14)	-0.0041 (10)	0.0030 (11)	0.0038 (10)
C11A	0.0341 (18)	0.0297 (17)	0.0280 (19)	0.0026 (14)	0.0058 (15)	-0.0051 (15)
C12	0.0406 (19)	0.043 (2)	0.031 (2)	0.0058 (17)	0.0032 (16)	0.0031 (17)
C13	0.036 (2)	0.060 (2)	0.035 (2)	0.0046 (18)	0.0014 (16)	-0.012 (2)
C14	0.0308 (18)	0.045 (2)	0.040 (2)	-0.0020 (16)	0.0038 (16)	-0.0132 (18)
C15	0.0303 (17)	0.0365 (19)	0.041 (2)	0.0004 (15)	0.0061 (16)	-0.0066 (16)
C15A	0.0293 (17)	0.0279 (17)	0.0311 (19)	0.0032 (14)	0.0053 (15)	-0.0030 (15)

supporting information

C16	0.0321 (17)	0.0189 (15)	0.034 (2)	-0.0030 (13)	0.0057 (14)	-0.0030 (14)
C17	0.0336 (18)	0.0142 (14)	0.0305 (19)	0.0014 (13)	0.0056 (14)	-0.0012 (13)
C18	0.0302 (17)	0.0185 (15)	0.036 (2)	0.0013 (13)	0.0022 (15)	-0.0011 (15)
O18	0.0383 (13)	0.0349 (13)	0.0389 (15)	-0.0051 (11)	0.0025 (11)	0.0145 (11)
C19	0.0360 (18)	0.0209 (16)	0.0307 (19)	-0.0001 (14)	0.0071 (15)	0.0027 (14)
C20	0.0364 (19)	0.0178 (15)	0.0311 (19)	-0.0013 (13)	0.0069 (15)	0.0017 (13)
C20A	0.0265 (16)	0.0171 (15)	0.038 (2)	-0.0023 (13)	0.0057 (15)	-0.0041 (14)
C21	0.0318 (18)	0.0236 (16)	0.0310 (19)	0.0016 (14)	0.0037 (15)	-0.0004 (14)
O21	0.0321 (13)	0.0325 (12)	0.0506 (16)	0.0076 (11)	0.0084 (11)	0.0094 (11)
C22	0.0322 (17)	0.0194 (15)	0.037 (2)	-0.0002 (14)	0.0073 (15)	-0.0020 (14)
C23	0.0319 (18)	0.0255 (16)	0.033 (2)	0.0019 (14)	0.0065 (15)	-0.0005 (15)
C24	0.0322 (18)	0.0316 (18)	0.043 (2)	-0.0005 (15)	0.0059 (16)	-0.0023 (16)
C25	0.037 (2)	0.037 (2)	0.054 (3)	-0.0060 (16)	0.0131 (17)	0.0098 (18)
C26	0.042 (2)	0.035 (2)	0.055 (3)	0.0005 (17)	0.0094 (18)	0.0177 (18)

Geometric parameters (Å, °)

N1—C21	1.370 (4)	C11A—C12	1.383 (4)
N1-C22	1.407 (4)	C11A—C15A	1.394 (4)
N1—H1N	0.88 (3)	C12—C13	1.392 (5)
N2-C22	1.338 (4)	C12—H12	0.9500
N2-C26	1.341 (4)	C13—C14	1.386 (5)
C1—C2	1.390 (4)	C13—H13	0.9500
C1-C20A	1.401 (4)	C14—C15	1.371 (4)
C1—H1	0.9500	C14—H14	0.9500
C2—C3	1.380 (5)	C15—C15A	1.405 (4)
С2—Н2	0.9500	C15—H15	0.9500
C3—C4	1.386 (5)	C15A—C16	1.464 (4)
С3—Н3	0.9500	C16—C17	1.350 (4)
C4—C4A	1.390 (4)	C16—H16	0.9500
C4—H4	0.9500	C17—C18	1.491 (4)
C4A—O5	1.371 (4)	C17—C21	1.518 (4)
C4A—C20A	1.411 (4)	C18—O18	1.236 (4)
O5—C6	1.441 (4)	C18—C19	1.477 (4)
С6—С7	1.495 (5)	C19—C20	1.326 (4)
С6—Н6А	0.9900	C19—H19	0.9500
C6—H6B	0.9900	C20—C20A	1.463 (4)
С7—О8	1.415 (4)	C20—H20	0.9500
С7—Н7А	0.9900	C21—O21	1.219 (3)
С7—Н7В	0.9900	C22—C23	1.385 (4)
O8—C9	1.429 (4)	C23—C24	1.381 (4)
C9—C10	1.495 (5)	C23—H23	0.9500
С9—Н9А	0.9900	C24—C25	1.380 (4)
С9—Н9В	0.9900	C24—H24	0.9500
C10-011	1.440 (4)	C25—C26	1.383 (5)
C10—H10A	0.9900	C25—H25	0.9500
C10—H10B	0.9900	C26—H26	0.9500
011—C11A	1.385 (4)		

C21—N1—C22	128.1 (3)	C11A—C12—H12	120.3
C21—N1—H1N	110 (2)	C13—C12—H12	120.3
C22—N1—H1N	120 (2)	C14—C13—C12	119.7 (3)
C22—N2—C26	116.8 (3)	C14—C13—H13	120.2
C2-C1-C20A	121.9 (3)	C12—C13—H13	120.2
C2—C1—H1	119.1	C15—C14—C13	120.7 (3)
C20A—C1—H1	119.1	C15—C14—H14	119.6
C3—C2—C1	119.2 (3)	C13—C14—H14	119.6
C3—C2—H2	120.4	C14—C15—C15A	120.7 (3)
C1—C2—H2	120.4	C14—C15—H15	119.7
C2—C3—C4	120.5 (3)	C15A—C15—H15	119.7
С2—С3—Н3	119.7	C11A—C15A—C15	117.9 (3)
С4—С3—Н3	119.7	C11A—C15A—C16	118.6 (3)
C3—C4—C4A	120.5 (3)	C15—C15A—C16	123.1 (3)
C3—C4—H4	119.7	C17—C16—C15A	129.4 (3)
C4A—C4—H4	119.7	C17—C16—H16	115.3
O5—C4A—C4	123.5 (3)	C15A—C16—H16	115.3
O5—C4A—C20A	116.4 (3)	C16—C17—C18	121.4 (3)
C4—C4A—C20A	120.1 (3)	C16—C17—C21	119.0 (3)
C4A—O5—C6	118.2 (2)	C18—C17—C21	119.5 (3)
O5—C6—C7	108.6 (3)	O18—C18—C19	120.2 (3)
O5—C6—H6A	110.0	O18—C18—C17	120.3 (3)
С7—С6—Н6А	110.0	C19—C18—C17	119.4 (3)
O5—C6—H6B	110.0	C20—C19—C18	120.5 (3)
С7—С6—Н6В	110.0	С20—С19—Н19	119.8
H6A—C6—H6B	108.3	C18—C19—H19	119.8
O8—C7—C6	109.9 (3)	C19—C20—C20A	130.5 (3)
08—C7—H7A	109.7	С19—С20—Н20	114.7
С6—С7—Н7А	109.7	C20A—C20—H20	114.7
O8—C7—H7B	109.7	C1—C20A—C4A	117.8 (3)
С6—С7—Н7В	109.7	C1—C20A—C20	117.6 (3)
H7A—C7—H7B	108.2	C4A—C20A—C20	124.6 (3)
C7—O8—C9	112.0 (3)	O21—C21—N1	123.6 (3)
O8—C9—C10	109.0 (3)	O21—C21—C17	121.6 (3)
O8—C9—H9A	109.9	N1—C21—C17	114.7 (3)
С10—С9—Н9А	109.9	N2—C22—C23	123.8 (3)
O8—C9—H9B	109.9	N2—C22—N1	112.1 (3)
С10—С9—Н9В	109.9	C23—C22—N1	124.0 (3)
H9A—C9—H9B	108.3	C24—C23—C22	117.9 (3)
O11—C10—C9	111.6 (3)	С24—С23—Н23	121.1
O11—C10—H10A	109.3	С22—С23—Н23	121.1
C9—C10—H10A	109.3	C25—C24—C23	119.8 (3)
O11—C10—H10B	109.3	C25—C24—H24	120.1
C9—C10—H10B	109.3	C23—C24—H24	120.1
H10A—C10—H10B	108.0	C24—C25—C26	117.9 (3)
C11A—O11—C10	117.1 (3)	C24—C25—H25	121.1
C12—C11A—O11	123.8 (3)	С26—С25—Н25	121.1

C12—C11A—C15A	121 5 (3)	N2-C26-C25	123.9(3)
O_{11} O_{11A} O_{15A}	121.3(3) 1144(3)	N2 C26 H26	118.1
C_{11} C_{12} C_{13}	114.4(3)	C_{25} C_{26} H_{26}	110.1
CIIA-CI2-CI5	119.5 (5)	C25—C20—H20	110.1
C20A—C1—C2—C3	0.5 (5)	C21-C17-C18-O18	-14.0 (4)
C1—C2—C3—C4	1.3 (5)	C16—C17—C18—C19	-9.2 (4)
C2—C3—C4—C4A	-1.7 (5)	C21—C17—C18—C19	167.5 (3)
C3—C4—C4A—O5	179.8 (3)	O18—C18—C19—C20	0.9 (5)
C3—C4—C4A—C20A	0.1 (5)	C17—C18—C19—C20	179.4 (3)
C4—C4A—O5—C6	-3.5 (4)	C18—C19—C20—C20A	179.3 (3)
C20A—C4A—O5—C6	176.3 (2)	C2-C1-C20A-C4A	-2.0(5)
C4A—O5—C6—C7	-173.9 (3)	C2-C1-C20A-C20	175.8 (3)
O5—C6—C7—O8	-64.4 (3)	O5—C4A—C20A—C1	-178.0(3)
C6—C7—O8—C9	-167.7 (3)	C4—C4A—C20A—C1	1.7 (4)
C7—O8—C9—C10	-178.4 (3)	O5—C4A—C20A—C20	4.3 (4)
O8—C9—C10—O11	67.3 (3)	C4—C4A—C20A—C20	-175.9 (3)
C9-C10-O11-C11A	76.2 (3)	C19—C20—C20A—C1	-169.6 (3)
C10-011-C11A-C12	44.2 (4)	C19—C20—C20A—C4A	8.0 (5)
C10-011-C11A-C15A	-142.0 (3)	C22—N1—C21—O21	2.3 (5)
O11—C11A—C12—C13	173.2 (3)	C22—N1—C21—C17	179.3 (3)
C15A—C11A—C12—C13	-0.2 (5)	C16—C17—C21—O21	38.3 (4)
C11A—C12—C13—C14	-1.2 (5)	C18—C17—C21—O21	-138.4 (3)
C12—C13—C14—C15	1.5 (5)	C16—C17—C21—N1	-138.8 (3)
C13—C14—C15—C15A	-0.3 (5)	C18—C17—C21—N1	44.4 (4)
C12—C11A—C15A—C15	1.4 (5)	C26—N2—C22—C23	2.0 (5)
O11—C11A—C15A—C15	-172.7 (3)	C26—N2—C22—N1	178.7 (3)
C12—C11A—C15A—C16	-172.5 (3)	C21—N1—C22—N2	164.2 (3)
O11—C11A—C15A—C16	13.5 (4)	C21—N1—C22—C23	-19.1 (5)
C14—C15—C15A—C11A	-1.1 (5)	N2-C22-C23-C24	-2.0 (5)
C14—C15—C15A—C16	172.4 (3)	N1-C22-C23-C24	-178.3 (3)
C11A—C15A—C16—C17	-145.3 (3)	C22—C23—C24—C25	0.9 (5)
C15—C15A—C16—C17	41.2 (5)	C23—C24—C25—C26	0.0 (5)
C15A—C16—C17—C18	-171.7 (3)	C22—N2—C26—C25	-1.0(5)
C15A—C16—C17—C21	11.6 (5)	C24—C25—C26—N2	0.1 (6)
C16—C17—C18—O18	169.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1 <i>N</i> ···O18	0.88 (3)	2.04 (3)	2.737 (3)	135 (3)
С19—Н19…О5	0.95	2.22	2.823 (4)	120
C23—H23…O21	0.95	2.34	2.903 (4)	117
C6—H6 <i>B</i> ···O18 ⁱ	0.99	2.50	3.323 (4)	140
C9—H9A…O8 ⁱⁱ	0.99	2.48	3.447 (4)	165
C10—H10A…O11 ⁱⁱ	0.99	2.41	3.238 (4)	140
C26—H26…C22 ⁱⁱⁱ	0.95	2.76	3.678 (4)	164

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z+1/2; (iii) x, -y+3/2, z-1/2.