research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and thermal properties of poly[[μ-1,2-bis­­(pyridin-4-yl)ethene-κ2N:N′-μ-bromido-copper(I)] 1,2-bis­­(pyridin-4-yl)ethene 0.25-solvate]

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 29 September 2023; accepted 9 October 2023; online 19 October 2023)

The reaction of copper(I) bromide with 1,2-bis­(pyridin-4-yl)ethene in aceto­nitrile leads to the formation of the title compound, {[CuBr(C12H10N2)]·0.25C12H10N2}n or CuBr(4-bpe)·0.25(4-bpe) [4-bpe = 1,2-bis­(pyridin-4-yl)ethene]. The asymmetric unit consists of one copper(I) cation and one bromide anion in general positions as well as two crystallographically independent half 4-bpe ligands and a quarter of a disordered 4-bpe solvate mol­ecule that are completed by centers of inversion. The copper(I) cations are tetra­hededrally coordinated as CuBr2N2 and linked by pairs of μ-1,1-bridging bromide anions into centrosymmetric dinuclear units that are further connected into layers by the 4-bpe coligands. Between the layers, inter­layer C—H⋯Br hydrogen bonding is observed. The layers are arranged in such a way that cavities are formed in which the disordered 4-bpe solvate mol­ecules are located. Powder X-ray (PXRD) investigations reveal that a pure sample has been obtained. Thermogravimetric (TG) and differential thermoanalysis (DTA) measurements show two mass losses that are accompanied by endothermic events in the DTA curve. The first mass loss correspond to the removal of 0.75 4-bpe mol­ecules, leading to the formation of (CuBr)2(4-bpe), already reported in the literature as proven by PXRD.

1. Chemical context

Coordination polymers based on copper(I) halides show a large structural variability and are of inter­est, for example, regarding their luminescence behavior (Jess et al., 2007[Jess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). Dalton Trans. pp. 2263-2270.]; Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]; Gibbons et al., 2017[Gibbons, S. K., Hughes, R. P., Glueck, D. S., Royappa, A. T., Rheingold, A. L., Arthur, R. B., Nicholas, A. D. & Patterson, H. H. (2017). Inorg. Chem. 56, 12809-12820.]; Jia et al., 2018[Jia, J. H., Chen, X. L., Liao, J. Z., Liang, D., Yang, M. X., Yu, R. & Lu, C. Z. (2018). Dalton Trans. 48, 1418-1426.]; Nitsch et al., 2015[Nitsch, J., Kleeberg, C., Fröhlich, R. & Steffen, A. (2015). Dalton Trans. 44, 6944-6960.]; Mensah et al., 2021[Mensah, A., Shao, J. J., Ni, J. L., Li, G. J., Wang, F. M. & Chen, L. Z. (2021). Front. Chem. 9, 816363.]). They consist of CuX substructures including monomeric and dimeric units, chains, double chains and layers, which can be further connected into one-, two- and three-dimensional networks if bridging coligands are present (Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]; Näther et al., 2007[Näther, C., Bhosekar, G. & Jess, I. (2007). Inorg. Chem. 46, 8079-8087.]; Kromp et al., 2003[Kromp, T., Sheldrick, W. S. & Näther, C. (2003). Z. Anorg. Allg. Chem. 629, 45-54.]). For a pairing of a particular copper(I) halide and coligand, frequently two or more compounds with a different ratio between the copper(I) halide and the coligand are found.

In previous investigations we have found that the coligand-rich compounds usually lose their coligands stepwise, which lead to the irreversible formation of ligand-deficient inter­mediates that are obtained in qu­anti­tative yield (Näther & Jess, 2004[Näther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868-2876.]; Näther et al., 2002[Näther, C., Greve, J. & Jess, I. (2002). Solid State Sci. 4, 813-820.]). In the course of this reaction, compounds with more condensed CuX substructures are formed. This is the case, e.g., for coordination compounds based on pyrazine and 4,4′-bi­pyridine. With pyrazine, one compound with the composition CuCl(pyrazine) is known in which the copper(I) cations are linked by the chloride anions into chains, which are further connected into layers by the pyrazine ligands (Moreno et al., 1995[Moreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). Can. J. Chem. 73, 1591-1595.]). Upon heating, half of the pyrazine ligands are removed, leading to a compound with the composition (CuCl)2(pyrazine), in which the CuI cations are linked by μ-1,1 bridging chloride anions into double chains, which are further connected into layers by the coligands (Kawata et al., 1998[Kawata, S., Kitigawa, S., Kurnagai, H., Iwabuchi, S. & Katada, M. (1998). Inorg. Chim. Acta, 267, 143-145.]; Näther et al., 2001[Näther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017-1022.]). 4,4′-Bi­pyridine compounds with the composition CuX(4,4′-bi­pyridine) (X = Cl, Br, I) have been reported in which the copper cations are connected into (CuX)2 dimeric units, which are further linked into layers by the 4,4′-bi­pyridine ligands (Yaghi & Li, 1995[Yaghi, O. M. & Li, G. (1995). Angew. Chem. Int. Ed. Engl. 34, 207-209.]; Batten et al., 1999[Batten, S. R., Jeffery, J. C. & Ward, M. D. (1999). Inorg. Chim. Acta, 292, 231-237.]; Lu et al., 1999[Lu, J. Y., Cabrera, B. R., Wang, R. J. & Li, J. (1999). Inorg. Chem. 38, 4608-4611.]). Thermogravimetric experiments prove that the coligands are removed in a stepwise fashion leading to compounds with the composition (CuX)2(4,4′-bi­pyridine) (X = Cl, Br, I), in which the CuI cations are linked into double chains, which are further connected into layers by bridging 4,4′-bi­pyridine ligands (Yaghi & Li, 1995[Yaghi, O. M. & Li, G. (1995). Angew. Chem. Int. Ed. Engl. 34, 207-209.]; Näther & Jess, 2001[Näther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897-910.]).

A further bridging coligand is 1,2-bis­(pyridin-4-yl)ethene, for which some compounds have already been reported in the literature (see Database survey). These includes three ligand-deficient compounds with the composition (CuX)2(4-bpe) (X = Cl, Br, I) in which the copper(I) cations are linked by the halide anions into chains, which are further connected into layers by the 4-bpe ligand (Li et al., 2006[Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Hu, N.-H. (2006). Acta Cryst. C62, m205-m207.]; Yang & Li, 2006[Yang, L.-Q. & Li, X.-H. (2006). Acta Cryst. E62, m1510-m1511.]; Chen et al., 2008[Chen, S. P., Fan, G. & Gao, S. L. (2008). Chin. J. Chem. 26, 286-289.]; Wang, 2016[Wang, C. C. (2016). CSD Communication (refcode WEHVIP03). CCDC, Cambridge, England.]; Shen & Lush, 2010[Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1071.]; Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]; Neal et al., 2019[Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.]). With CuI, a ligand-rich compound with the composition CuI(4-bpe)·0.25 4-bpe has already been reported, which is not known for CuBr and CuI (Hoffman et al., 2020[Hoffman, J. L., Akhigbe, J. E., Reinheimer, E. W. & Smucker, B. W. (2020). IUCrData, 5, x200998.]). This compound consists of layers that are stacked in such a way that pores are formed, in which 4-bpe solvate mol­ecules are located. A very similar structure is found for (CuCl)2(4-bpe)·4H2O, but in this compound the pores are filled with water, instead of 4-bpe (Mohapatra & Maji, 2010[Mohapatra, S. & Maji, T. K. (2010). Dalton Trans. 39, 3412-3419.]). Based on these findings, one can assume that a similar compound might also exist with CuBr. Moreover, for such a compound it is highly likely that upon heating it will transform into the ligand-deficient compound (CuBr)2(4-bpe) already reported in the literature. Therefore, we reacted CuBr with 4-bpe in different solvents and from aceto­nitrile we obtained a new crystalline phase that was characterized by single-crystal X-ray diffraction and thermoanalytical measurements.

[Scheme 1]

2. Structural commentary

The title compound is isotypic to CuI(4-bpe)·0.25 4-bpe already reported in the literature (Hoffman et al., 2020[Hoffman, J. L., Akhigbe, J. E., Reinheimer, E. W. & Smucker, B. W. (2020). IUCrData, 5, x200998.]). Its asymmetric unit consists of one CuI cation and one bromide anion in general positions as well as two crystallographically independent half 4-bpe ligands that are completed by inversion symmetry (Fig. 1[link]). There is one quarter of an additional bpe solvate mol­ecule that is disordered around a center of inversion (Fig. 2[link] and see Refinement section). Because of the disorder, this ligand is not fully occupied and was refined using a split model (Fig. 3[link]).

[Figure 1]
Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes for the generation of equivalent atoms: (i) −x, −y + 2, −z + 1; (ii) −x − 1, −y + 2, −z; (iii) −x + 2, −y + 1, −z + 1.
[Figure 2]
Figure 2
Crystal structure of the solvate 4-bpe mol­ecule with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code for the generation of equivalent atoms: (iv) −x + 2, −y + 1, −z.
[Figure 3]
Figure 3
Crystal structure of the title compound showing the disorder of the solvate 4-bpe mol­ecule.

The copper(I) cations are tetra­hedrally coordinated by two symmetry-equivalent bromide anions and two N atoms of two crystallographically independent 4-bpe ligands (Fig. 1[link]). From the bond lengths and angles (Table 1[link]), it is apparent that the tetra­hedra are slightly distorted. Pairs of CuI cations are linked by two μ-1,1 bridging bromide anions into dimeric (CuBr)2 units that are located on centers of inversion and are further connected by the 4-bpe ligands into layers (Fig. 4[link]).

Table 1
Selected geometric parameters (Å, °)

Cu1—Br1 2.5441 (5) Cu1—N1 1.988 (2)
Cu1—Br1i 2.6424 (5) Cu1—N11 1.979 (2)
       
Br1—Cu1—Br1i 96.351 (16) N11—Cu1—Br1 107.21 (6)
N1—Cu1—Br1i 99.06 (7) N11—Cu1—N1 131.18 (9)
N1—Cu1—Br1 108.16 (6) Cu1—Br1—Cu1i 83.649 (16)
N11—Cu1—Br1i 109.28 (6)    
Symmetry code: (i) [-x, -y+2, -z+1].
[Figure 4]
Figure 4
Crystal structure of the title compound with a view of one CuBr(4-bpe) layer along the crystallographic b-axis direction. The disordered 4-bpe solvate mol­ecule is not shown for clarity.

3. Supra­molecular features

In the crystal structure of the title compound, the layers are arranged in such a way that cavities are formed, which proceed along the a-axis direction, in which the disordered 4-bpe solvate mol­ecules are embedded (Fig. 5[link]). The layers are connected via inter­molecular C—H⋯Br hydrogen bonding (Table 2[link]). The C—H⋯Br angle is close to linearity, indicating that this is a significant inter­action. There are additional C—H⋯Br inter­actions, between the C—H groupings of the solvate 4-bpe ligands and the bromide ions (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Br1ii 0.95 2.97 3.919 (3) 175
C5—H5⋯Br1 0.95 3.12 3.759 (2) 126
C24—H24⋯Br1iii 0.95 2.93 3.816 (7) 156
C26—H26⋯Br1iv 0.95 2.96 3.861 (12) 159
C26′—H26′⋯Br1iii 0.95 2.87 3.751 (17) 154
Symmetry codes: (ii) [-x-1, -y+2, -z+1]; (iii) [x+1, y, z-1]; (iv) [-x+1, -y+1, -z+1].
[Figure 5]
Figure 5
Crystal structure of the title compound with a view along the crystallographic a-axis direction, showing the pores in which the disordered solvate 4-bpe mol­ecules are embedded.

4. Database survey

A search in the CSD database (version 5.43, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed that several compounds with copper(I) halides and 4-bpe as a coligand have been reported. These include three compounds with the composition (CuX)2(4-bpe) with X = Cl (CSD refcode WEHVIP, Li et al., 2006[Li, Z.-G., Xu, J.-W., Jia, H.-Q. & Hu, N.-H. (2006). Acta Cryst. C62, m205-m207.]; WEHVIP01, Yang et al., 2006[Yang, L.-Q. & Li, X.-H. (2006). Acta Cryst. E62, m1510-m1511.]; WEHVIP02, Chen et al., 2008[Chen, S. P., Fan, G. & Gao, S. L. (2008). Chin. J. Chem. 26, 286-289.]; WEHVIP03, Wang, 2016[Wang, C. C. (2016). CSD Communication (refcode WEHVIP03). CCDC, Cambridge, England.]), Br (SUXSUA; Shen & Lush, 2010[Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1071.]), I (HUJHID; Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]; HUJHID01, Neal et al., 2019[Neal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.]). In all these compounds, the copper(I) cations are tetra­hedrally coordinated by three bromide anions and one 4-bpe ligand. The copper(I) cations are linked by the three μ-1,1,1 bridging halide anions into chains that are further linked into layers by the 4-bpe coligands. The chloride and iodide compounds are isotypic, which is not the case for the bromide compound. There is one compound of the composition (CuI)(4-bpe)·0.25 4-bpe that is isotypic to the title compound (TUYRAJ; Hoffman et al., 2020[Hoffman, J. L., Akhigbe, J. E., Reinheimer, E. W. & Smucker, B. W. (2020). IUCrData, 5, x200998.]). Another compound of the composition (CuCl)2(4-bpe)·4H2O has similar unit-cell parameters as well as the same space group, which indicates that this compound may also be isotypic to the title compound (HUTXIE; Mohapatra & Maji, 2010[Mohapatra, S. & Maji, T. K. (2010). Dalton Trans. 39, 3412-3419.]).

There are further compounds that additionally contain tri­phenyl­phosphane as ligand, such as (CuX)2(4-bpe)(tri­phenyl­phosphane)2 with X = I (NAZTEQ; Sugimoto et al., 2018[Sugimoto, S., Ohtsu, H. & Tsuge, K. (2018). J. Photochem. Photobiol. Chem. 353, 602-611.]), Br (SIPYEW; Yu et al., 2007[Yu, M. M., Zhao, X. J. & Fu, W. F. (2007). Chin. J. Struct. Chem. 26, 1179-1182.]). One additional compound with the composition (CuCl)2(4-bpe)(tri­phenyl­phosphan)2·2 CH2Cl2 contains solvate mol­ecules (SIPYIA; Yu et al., 2007[Yu, M. M., Zhao, X. J. & Fu, W. F. (2007). Chin. J. Struct. Chem. 26, 1179-1182.]).

5. Thermoanalytical investigations

Comparison of the experimental powder pattern with that calculated from single-crystal data reveals that the title compound was obtained as a pure phase (Fig. S1). The title compound was characterized for its thermal properties by simultaneous thermogravimetry and differential thermoanalysis (TG–DTA). Upon heating, two mass losses are observed in the TG curve that are accompanied by endothermic events in the DTA curve (Fig. 6[link]). From the first derivative of the TG curve (DTG curve), it is obvious that both mass losses are well resolved (Fig. 6[link]). The first mass loss of 36.4% is in good agreement with that calculated for the removal of 0.75 4-bpe ligands (Δmcalc.= 36.8%), whereas the second mass loss of 19.7% is much lower than that expected for the loss of the remaining 4-bpe ligands (Δmcalc.= 24.5%), indicating that in this step the coligands are not completely removed. However, the first observation indicates that after the first mass loss a compound with the composition (CuBr)2(4-bpe) has been formed. To prove this assumption, a second TG measurement was performed, in which the residue formed after the first mass loss was isolated and investigated by PXRD. Comparison of the experimental pattern with that calculated for (CuBr)2(4-bpe) reported in the literature (Shen et al., 2010[Shen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1071.]) proves that this compound was obtained (Fig. S2).

[Figure 6]
Figure 6
DTG, TG and DTA curve for the title compound, measured with a 4°C min−1 heating rate.

6. Synthesis and crystallization

CuBr was purchased from Riedel de Haën. 4-bpe was purchased from Sigma-Aldrich. A microcrystalline powder was obtained by the reaction of 0.5 mmol CuBr (71.75 mg) and 1.0 mmol 4-bpe (182.2 mg) in 3 ml of MeCN. The mixture was stirred for 4 d at room temperature and filtered off. Crystals suitable for single-crystal X-ray diffraction were obtained under hydro­thermal conditions for 4 d at 403 K using 0.5 mmol of CuBr (71.75 mg), 2.0 mmol of 4-bpe (364.4 mg) in 3 ml of MeCN as a solvent. An IR spectrum of the title compound can be found in Fig.  S3.

Experimental details

The XRPD measurements were performed with a Stoe Transmission Powder Diffraction System (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator using Cu Kα1 radiation (λ = 1.540598 Å). The IR spectra were measured using an ATI Mattson Genesis Series FTIR Spectrometer, control software: WINFIRST, from ATI Mattson. Thermogravimetry and differential thermoanalysis (TG–DTA) measurements were performed in a dynamic nitro­gen atmosphere in Al2O3 crucibles using a STA-PT 1000 thermobalance from Linseis. The instrument was calibrated using standard reference materials.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C-bound H atoms were positioned with idealized geometry and were refined isotropically with Uĩso(H) = 1.2Ueq(C) using a riding model. The solvate 4-bpe mol­ecule is disordered around a center of inversion. Therefore, it was refined using a split model with restraints for the geometry (SAME) and half occupancy for all atoms.

Table 3
Experimental details

Crystal data
Chemical formula [CuBr(C12H10N2)]·0.25C12H10N2
Mr 370.72
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.7421 (2), 10.1612 (2), 10.1749 (3)
α, β, γ (°) 72.143 (2), 73.252 (3), 68.004 (2)
V3) 692.68 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.50
Crystal size (mm) 0.16 × 0.10 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.686, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15373, 2913, 2872
Rint 0.023
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.09
No. of reflections 2913
No. of parameters 217
No. of restraints 16
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.62
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.90a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[µ-1,2-bis(pyridin-4-yl)ethene-κ2N:N'-µ-bromido-copper(I)] 1,2-bis(pyridin-4-yl)ethene 0.25-solvate] top
Crystal data top
[CuBr(C12H10N2)]·0.25C12H10N2Z = 2
Mr = 370.72F(000) = 368
Triclinic, P1Dx = 1.780 Mg m3
a = 7.7421 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.1612 (2) ÅCell parameters from 12191 reflections
c = 10.1749 (3) Åθ = 4.7–77.9°
α = 72.143 (2)°µ = 5.50 mm1
β = 73.252 (3)°T = 100 K
γ = 68.004 (2)°Block, red
V = 692.68 (4) Å30.16 × 0.10 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2913 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2872 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.0000 pixels mm-1θmax = 80.1°, θmin = 4.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2023)
k = 1212
Tmin = 0.686, Tmax = 1.000l = 1210
15373 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.2491P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2913 reflectionsΔρmax = 0.60 e Å3
217 parametersΔρmin = 0.62 e Å3
16 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.10927 (5)0.86193 (5)0.40925 (4)0.03213 (12)
Br10.08547 (4)0.86001 (3)0.65801 (3)0.02641 (9)
N10.0555 (3)0.8695 (3)0.2873 (2)0.0281 (5)
C10.0113 (5)0.8330 (6)0.1631 (4)0.0727 (16)
H10.1431700.7831820.1394910.087*
C20.1003 (5)0.8634 (7)0.0665 (4)0.0795 (17)
H20.0445480.8347500.0207070.095*
C30.2928 (4)0.9353 (3)0.0968 (3)0.0311 (6)
C40.3642 (4)0.9700 (3)0.2276 (3)0.0253 (5)
H40.4960901.0173580.2550580.030*
C50.2425 (4)0.9356 (3)0.3180 (3)0.0244 (5)
H50.2949960.9602750.4071840.029*
C60.4080 (4)0.9702 (3)0.0088 (3)0.0329 (6)
H60.3427950.9473680.0975370.039*
N110.3736 (3)0.7409 (2)0.4259 (2)0.0234 (4)
C110.4923 (4)0.6648 (3)0.3305 (3)0.0269 (5)
H110.4455870.6667660.2529480.032*
C120.6785 (4)0.5838 (3)0.3389 (3)0.0284 (5)
H120.7553080.5295940.2697850.034*
C130.7539 (3)0.5816 (3)0.4487 (3)0.0242 (5)
C140.6307 (4)0.6606 (3)0.5484 (3)0.0261 (5)
H140.6748010.6625990.6255700.031*
C150.4447 (3)0.7359 (3)0.5344 (3)0.0258 (5)
H150.3625450.7868450.6047440.031*
C160.9534 (4)0.4976 (3)0.4555 (3)0.0266 (5)
H161.0208790.4353300.3918220.032*
N210.3823 (9)0.5175 (8)0.0098 (6)0.0499 (14)0.5
C210.493 (2)0.4013 (17)0.062 (3)0.051 (4)0.5
H210.4439050.3231710.1115920.061*0.5
C220.6762 (13)0.3836 (8)0.0708 (7)0.0514 (19)0.5
H220.7485250.2955640.1231890.062*0.5
C230.7524 (10)0.4965 (8)0.0020 (7)0.0494 (17)0.5
C240.6363 (12)0.6207 (7)0.0705 (7)0.0495 (18)0.5
H240.6806070.7015670.1194250.059*0.5
C250.455 (2)0.6270 (18)0.071 (3)0.044 (3)0.5
H250.3771250.7152200.1192660.052*0.5
C260.9471 (15)0.4575 (12)0.0265 (10)0.0280 (18)0.3
H260.9977540.3650000.0844460.034*0.3
C26'0.930 (3)0.546 (2)0.0285 (15)0.038 (4)0.2
H26'0.9342500.6383940.0857630.045*0.2
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0218 (2)0.0507 (3)0.0213 (2)0.00529 (17)0.00852 (15)0.00798 (17)
Br10.02694 (14)0.02953 (15)0.01730 (14)0.00214 (10)0.00306 (10)0.00738 (10)
N10.0224 (10)0.0430 (13)0.0183 (11)0.0073 (9)0.0066 (8)0.0076 (9)
C10.0211 (14)0.156 (5)0.0325 (19)0.005 (2)0.0076 (13)0.049 (2)
C20.0277 (16)0.170 (5)0.0333 (19)0.006 (2)0.0089 (14)0.055 (3)
C30.0258 (13)0.0462 (16)0.0215 (13)0.0083 (11)0.0067 (10)0.0096 (11)
C40.0238 (12)0.0261 (12)0.0248 (13)0.0044 (9)0.0073 (9)0.0062 (10)
C50.0269 (12)0.0240 (11)0.0227 (12)0.0050 (9)0.0071 (9)0.0075 (9)
C60.0273 (13)0.0525 (17)0.0200 (13)0.0077 (11)0.0053 (10)0.0153 (12)
N110.0221 (10)0.0265 (10)0.0212 (10)0.0063 (8)0.0053 (8)0.0057 (8)
C110.0295 (13)0.0280 (12)0.0238 (13)0.0040 (10)0.0093 (10)0.0090 (10)
C120.0298 (13)0.0290 (13)0.0244 (13)0.0044 (10)0.0035 (10)0.0110 (10)
C130.0233 (12)0.0207 (11)0.0269 (13)0.0048 (9)0.0047 (9)0.0056 (9)
C140.0241 (12)0.0304 (12)0.0257 (13)0.0061 (10)0.0079 (10)0.0092 (10)
C150.0223 (11)0.0308 (13)0.0243 (13)0.0049 (10)0.0041 (9)0.0109 (10)
C160.0245 (12)0.0240 (12)0.0295 (14)0.0038 (9)0.0031 (10)0.0102 (10)
N210.048 (3)0.067 (5)0.037 (3)0.017 (3)0.002 (3)0.020 (3)
C210.068 (10)0.035 (7)0.035 (8)0.011 (8)0.011 (7)0.014 (6)
C220.065 (5)0.049 (4)0.024 (3)0.006 (4)0.009 (3)0.015 (3)
C230.046 (4)0.073 (5)0.035 (4)0.012 (3)0.005 (3)0.039 (4)
C240.071 (5)0.046 (4)0.031 (3)0.032 (4)0.016 (3)0.016 (3)
C250.054 (8)0.032 (6)0.025 (4)0.000 (6)0.003 (6)0.001 (5)
C260.036 (6)0.026 (6)0.014 (4)0.003 (4)0.003 (4)0.003 (4)
C26'0.061 (13)0.030 (9)0.008 (6)0.009 (8)0.006 (7)0.007 (6)
Geometric parameters (Å, º) top
Cu1—Br12.5441 (5)C14—C151.381 (3)
Cu1—Br1i2.6424 (5)C15—H150.9500
Cu1—N11.988 (2)C16—C16iii1.331 (5)
Cu1—N111.979 (2)C16—H160.9500
N1—C11.330 (4)N21—N21iv1.781 (13)
N1—C51.336 (3)N21—C211.319 (13)
C1—H10.9500N21—C21iv1.386 (18)
C1—C21.382 (4)N21—C22iv1.019 (9)
C2—H20.9500N21—C23iv1.081 (9)
C2—C31.381 (4)N21—C24iv1.428 (10)
C3—C41.385 (4)N21—C25iv1.701 (16)
C3—C61.468 (4)N21—C251.337 (15)
C4—H40.9500C21—H210.9500
C4—C51.382 (3)C21—C221.385 (13)
C5—H50.9500C22—H220.9500
C6—C6ii1.305 (5)C22—C231.389 (11)
C6—H60.9500C23—C241.381 (10)
N11—C111.341 (3)C23—C261.484 (12)
N11—C151.349 (3)C23—C26'1.55 (2)
C11—H110.9500C24—H240.9500
C11—C121.379 (4)C24—C251.382 (14)
C12—H120.9500C25—H250.9500
C12—C131.393 (4)C26—C26v1.30 (2)
C13—C141.397 (3)C26—H260.9500
C13—C161.469 (3)C26'—C26'v1.29 (3)
C14—H140.9500C26'—H26'0.9500
Br1—Cu1—Br1i96.351 (16)C22iv—N21—N21iv115.6 (9)
N1—Cu1—Br1i99.06 (7)C22iv—N21—C21166.0 (9)
N1—Cu1—Br1108.16 (6)C22iv—N21—C21iv68.3 (8)
N11—Cu1—Br1i109.28 (6)C22iv—N21—C23iv82.7 (8)
N11—Cu1—Br1107.21 (6)C22iv—N21—C24iv147.8 (9)
N11—Cu1—N1131.18 (9)C22iv—N21—C25iv160.5 (10)
Cu1—Br1—Cu1i83.649 (16)C22iv—N21—C2551.4 (8)
C1—N1—Cu1123.56 (19)C23iv—N21—N21iv161.7 (9)
C1—N1—C5116.2 (2)C23iv—N21—C21111.2 (9)
C5—N1—Cu1119.41 (17)C23iv—N21—C21iv151.1 (10)
N1—C1—H1118.1C23iv—N21—C24iv65.1 (6)
N1—C1—C2123.7 (3)C23iv—N21—C25iv116.6 (9)
C2—C1—H1118.1C23iv—N21—C25134.0 (10)
C1—C2—H2120.0C24iv—N21—N21iv96.6 (6)
C3—C2—C1120.0 (3)C24iv—N21—C25iv51.5 (6)
C3—C2—H2120.0C25—N21—N21iv64.3 (7)
C2—C3—C4116.5 (2)C25iv—N21—N21iv45.1 (6)
C2—C3—C6119.2 (3)C25—N21—C21iv17.3 (9)
C4—C3—C6124.3 (2)C25—N21—C24iv160.9 (9)
C3—C4—H4120.2C25—N21—C25iv109.4 (8)
C5—C4—C3119.7 (2)N21—C21—H21117.3
C5—C4—H4120.2N21—C21—C22125.5 (12)
N1—C5—C4123.8 (2)C22—C21—H21117.3
N1—C5—H5118.1C21—C22—H22120.5
C4—C5—H5118.1C21—C22—C23119.1 (10)
C3—C6—H6117.2C23—C22—H22120.5
C6ii—C6—C3125.7 (3)N21iv—C23—C21iv38.3 (6)
C6ii—C6—H6117.2N21iv—C23—C2246.7 (6)
C11—N11—Cu1123.12 (17)N21iv—C23—C2469.7 (7)
C11—N11—C15116.7 (2)N21iv—C23—C26157.5 (9)
C15—N11—Cu1120.17 (17)N21iv—C23—C26'168.7 (10)
N11—C11—H11118.2C22—C23—C21iv85.0 (6)
N11—C11—C12123.5 (2)C22—C23—C26110.8 (8)
C12—C11—H11118.2C22—C23—C26'144.6 (9)
C11—C12—H12120.0C24—C23—C21iv31.5 (6)
C11—C12—C13120.0 (2)C24—C23—C22116.4 (7)
C13—C12—H12120.0C24—C23—C26132.8 (8)
C12—C13—C14116.7 (2)C24—C23—C26'99.0 (9)
C12—C13—C16119.7 (2)C26—C23—C21iv164.2 (8)
C14—C13—C16123.6 (2)C23—C24—H21iv164.4 (16)
C13—C14—H14120.1C23—C24—H24120.1
C15—C14—C13119.8 (2)C23—C24—C25119.7 (8)
C15—C14—H14120.1H24—C24—H21iv74.4
N11—C15—C14123.3 (2)C25—C24—H21iv46.1 (18)
N11—C15—H15118.3C25—C24—H24120.1
C14—C15—H15118.3N21—C25—H21iv158 (2)
C13—C16—H16117.6N21—C25—C24124.6 (12)
C16iii—C16—C13124.8 (3)N21—C25—H25117.7
C16iii—C16—H16117.6C24—C25—H21iv34.3 (10)
C21—N21—N21iv50.5 (8)C24—C25—H25117.7
C21iv—N21—N21iv47.2 (6)H25—C25—H21iv83.9
C21—N21—C21iv97.7 (9)C23—C26—H26118.0
C21iv—N21—C24iv143.8 (8)C26v—C26—C23124.0 (14)
C21—N21—C24iv46.2 (8)C26v—C26—H26118.0
C21—N21—C25114.7 (10)C23—C26'—H26'121.9
C21iv—N21—C25iv92.3 (8)C26'v—C26'—C23116 (2)
C21—N21—C25iv5.9 (13)C26'v—C26'—H26'121.9
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y+2, z; (iii) x+2, y+1, z+1; (iv) x+1, y+1, z; (v) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Br1vi0.952.973.919 (3)175
C5—H5···Br10.953.123.759 (2)126
C24—H24···Br1vii0.952.933.816 (7)156
C26—H26···Br1viii0.952.963.861 (12)159
C26—H26···Br1vii0.952.873.751 (17)154
Symmetry codes: (vi) x1, y+2, z+1; (vii) x+1, y, z1; (viii) x+1, y+1, z+1.
 

Acknowledgements

The project was supported by the State of Schleswig-Holstein.

References

First citationBatten, S. R., Jeffery, J. C. & Ward, M. D. (1999). Inorg. Chim. Acta, 292, 231–237.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, S. P., Fan, G. & Gao, S. L. (2008). Chin. J. Chem. 26, 286–289.  CSD CrossRef Google Scholar
First citationGibbons, S. K., Hughes, R. P., Glueck, D. S., Royappa, A. T., Rheingold, A. L., Arthur, R. B., Nicholas, A. D. & Patterson, H. H. (2017). Inorg. Chem. 56, 12809–12820.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoffman, J. L., Akhigbe, J. E., Reinheimer, E. W. & Smucker, B. W. (2020). IUCrData, 5, x200998.  Google Scholar
First citationJess, I., Taborsky, P., Pospíšil, J. & Näther, C. (2007). Dalton Trans. pp. 2263–2270.  Google Scholar
First citationJia, J. H., Chen, X. L., Liao, J. Z., Liang, D., Yang, M. X., Yu, R. & Lu, C. Z. (2018). Dalton Trans. 48, 1418–1426.  CSD CrossRef Google Scholar
First citationKawata, S., Kitigawa, S., Kurnagai, H., Iwabuchi, S. & Katada, M. (1998). Inorg. Chim. Acta, 267, 143–145.  CAS Google Scholar
First citationKromp, T., Sheldrick, W. S. & Näther, C. (2003). Z. Anorg. Allg. Chem. 629, 45–54.  CSD CrossRef CAS Google Scholar
First citationLi, Z.-G., Xu, J.-W., Jia, H.-Q. & Hu, N.-H. (2006). Acta Cryst. C62, m205–m207.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, J. Y., Cabrera, B. R., Wang, R. J. & Li, J. (1999). Inorg. Chem. 38, 4608–4611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMensah, A., Shao, J. J., Ni, J. L., Li, G. J., Wang, F. M. & Chen, L. Z. (2021). Front. Chem. 9, 816363.  CrossRef PubMed Google Scholar
First citationMohapatra, S. & Maji, T. K. (2010). Dalton Trans. 39, 3412–3419.  CSD CrossRef CAS PubMed Google Scholar
First citationMoreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). Can. J. Chem. 73, 1591–1595.  CSD CrossRef CAS Web of Science Google Scholar
First citationNäther, C., Bhosekar, G. & Jess, I. (2007). Inorg. Chem. 46, 8079–8087.  Web of Science PubMed Google Scholar
First citationNäther, C., Greve, J. & Jess, I. (2002). Solid State Sci. 4, 813–820.  Google Scholar
First citationNäther, C. & Jess, I. (2001). Monatsh. Chem. 132, 897–910.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C. & Jess, I. (2004). Eur. J. Inorg. Chem. pp. 2868–2876.  Google Scholar
First citationNäther, C., Jess, I. & Greve, J. (2001). Polyhedron, 20, 1017–1022.  Web of Science CrossRef CAS Google Scholar
First citationNeal, H. C., Tamtam, H., Smucker, B. W. & Nesterov, V. V. (2019). IUCrData, 4, x190122.  Google Scholar
First citationNitsch, J., Kleeberg, C., Fröhlich, R. & Steffen, A. (2015). Dalton Trans. 44, 6944–6960.  CSD CrossRef CAS PubMed Google Scholar
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, F. M. & Lush, S. F. (2010). Acta Cryst. E66, m1071.  CSD CrossRef IUCr Journals Google Scholar
First citationSugimoto, S., Ohtsu, H. & Tsuge, K. (2018). J. Photochem. Photobiol. Chem. 353, 602–611.  CSD CrossRef CAS Google Scholar
First citationWang, C. C. (2016). CSD Communication (refcode WEHVIP03). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M. & Li, G. (1995). Angew. Chem. Int. Ed. Engl. 34, 207–209.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, L.-Q. & Li, X.-H. (2006). Acta Cryst. E62, m1510–m1511.  CSD CrossRef IUCr Journals Google Scholar
First citationYu, M. M., Zhao, X. J. & Fu, W. F. (2007). Chin. J. Struct. Chem. 26, 1179–1182.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds