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A new integrated approach to full powder diffraction pattern analysis is

described. This new approach incorporates wavelet-based data pre-processing,

non-parametric statistical tests for full-pattern matching, and singular value

decomposition to extract quantitative phase information from mixtures. Every

measured data point is used in both qualitative and quantitative analyses. The

success of this new integrated approach is demonstrated through examples using

several test data sets. The methods are incorporated within the commercial

software program SNAP-1D, and can be extended to high-throughput powder

diffraction experiments.

1. Introduction

The identi®cation of unknown materials via X-ray powder

diffraction patterns has until recently relied on simpli®ed

patterns in which the full diffraction pro®le is reduced to a set

of point functions selected from the strongest normalized

peaks. Each of these functions uses d-spacings (or 2� values)

and intensities (the d±I system) to represent the diffraction

peaks. This simpli®ed approach to the analysis of powder

diffraction patterns has advantages primarily in computer

storage requirements, and with respect to the speed of search

algorithms especially in very large databases (ICDD, 2003).

However, problems arise from the use of such data.

(i) Accurate determinations of the peak positions may be

dif®cult to obtain, especially in cases where peak overlap

occurs or there is signi®cant peak asymmetry.

(ii) The hardware and sample preparation used can also

affect the d-spacing (or 2� value) that is recorded for the peak.

Shoulders to main peaks and broad peaks can also be

problematic.

(iii) There is an objective element in choosing the number

of peaks to select. Different software packages produce a

range of different numbers of peaks from an identical pattern.

For example, an ICDD round robin using a standard

corundum pattern returned values varying from 23 to 81 for

the number of peaks, when the correct number was 42

(Jenkins, 1998).

(iv) Many weak peaks are discarded. This can affect

quantitative analysis of mixtures if one component diffracts

weakly or is present in small amounts.

(v) Sample preparation and instrumentation can induce

signi®cant differences in near-identical samples. Preferred

orientation is a very dif®cult problem.

(vi) The reduction of the pattern to point functions can also

make it dif®cult to design effective algorithms.

In order to use the extra information contained within the

full pro®le, search±match algorithms are required that utilize

each measured data point in the analysis. Recent drastic

reductions in the price of computer storage, and corre-

sponding increases in speed and processing power, means that

storing and handling large numbers of full-pro®le data sets is

much more practical than it would have been just a few years

ago, and a new approach would be timely. However, databases

of full pro®les are not widely available.

2. Existing search±match software overview

Most existing search±match programs do not use the full

pro®le data. Peak search and indexing programs are used

®rstly to extract a d-spacing and corresponding intensity for

each identi®ed peak, although indexing is not a pre-requisite.

The pattern is thus reduced to a stick pattern. As an example

of such pre-processing, see N-TREOR (Altomare et al., 2000).

The most popular search algorithm used with such `stick'

patterns is the Hanawalt search index (Hanawalt et al., 1938).

Based upon a method developed for manual search±match,

this utilizes the eight strongest peak lines to identify the

pattern. Likely matches are ranked using various ®gures of

merit (FoM) or goodness of match (GoM) indicators (for

example, see Johnson & Vand, 1967).

An intermediate approach between reduced-pattern

matching programs and true full-pro®le programs, are

programs that take a full-pro®le unknown pattern and
³ Current address: Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland.
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compare it to a database of reduced patterns. An example of a

computer program that includes such features is DIFFRACT-

AT (Nusinovici & Winter, 1994). Patterns are assigned scores

based upon a calculated ®gure of merit, and the best matches

are displayed graphically, with their stick pro®les super-

imposed over the unknown full pro®le for visual comparison

and veri®cation. The approach used allows small database

peaks, which could potentially be obscured in the unknown

pro®le by part of the full pro®le of a peak, not to be penalized

as they would be in an approach based solely on a d±I system.

In contrast, true full-pro®le search±match programs

compare full-pro®le unknowns to databases consisting of full

pro®les. As such databases are not yet commercially available,

they must be either built up gradually from existing, often

locally collected, experimental patterns, or generated from

stick patterns by pattern simulation software (see for example

Steele & Biederman, 1994).

The latter approach is that taken by MATCHDB (Smith et

al., 1991) where each unknown pattern data point is compared

in turn with the corresponding database-pattern data point.

Overall ®gures of merit for each database pattern are then

calculated, and the top 15 matches are listed. The ®gures of

merit used evaluate the patterns point-by-point in regions

where the intensity is greater than a previously selected cut-off

level. Several different proprietary full-pro®le search±match

systems also exist, but since they are commercial products they

are not discussed in any detail in the literature.

An excellent web site containing downloadable pattern-

matching software is available (CCP14, 2003).

3. Qualitative pattern matching using the full
diffraction pattern

Although much less dependent on the quality of data than

reduced-pattern methods, the reliability of full-pro®le pattern

matching can be improved by accurate pre-processing that

involves smoothing and background removal. A ¯ow chart of

the process is shown in outline in Fig. 1.

3.1. Data pre-processing

Data are imported either as ASCII xy data (2�, intensity),

CIF format (Hall et al., 1991) or a Bruker raw format. We have

also developed a platform-independent binary format for this

data that is used internally in the associated software. The data

are normalized such that the maximum peak intensity is unity.

The pattern is interpolated if necessary to give increments

of 0.02� in 2�. High-order polynomials are used, employing

Neville's algorithm (Press et al., 1992).

To remove the background, local nth-order polynomial

functions are ®tted to the data, and then subtracted to produce

a pattern with a ¯at baseline. The value of n is selected by the

algorithm. Three domains are usually de®ned, but this can be

modi®ed for dif®cult cases.

Smoothing of the data is then carried out using wavelets

(Gilmore, 1998; SmrcÏok et al., 1999) via the SURE (Stein's

unbiased risk estimate) thresholding procedure (Donoho &

Johnstone, 1995; Ogden, 1997).

Peak positions are found using Savitsky±Golay ®ltering

(Savitzky & Golay, 1964). Smoothing via a digital ®lter

replaces each data point xi with a linear combination of itself

and a number of nearest neighbours. (This smoothing is

distinct from the wavelet±SURE procedure and is only used to

determine peak positions in the formalism that we use.) We

can write any point gi as a linear combination of the immediate

neighbours:

gi �
Xnr

n�ÿnl

cnxi�n: �1�

Figure 1
A ¯owchart of data pre-processing before pattern matching. Items
marked with an asterisk (*) are optional.

Figure 2
Pre-processing the powder data. The green line is the raw data. The blue
line is the result of (a) removal of background using local nth-order
polynomials, (b) smoothing via wavelets and the SURE procedure, and
(c) peak searching using Golay±Savitsky ®ltering; peaks are marked with
a bullet (*).



Savitsky±Golay ®ltering provides an ef®cient way to deter-

mine the coef®cients cn by the least-squares ®t of a polynomial

of degree M in i,

a0 � a1i� a2i2 � . . . aMiM; �2�

to the values xÿnl
; . . . xnr

. For ®nding peaks we need the ®rst-

order derivative and thus require a1. To distinguish maxima

and minima the gradient change is inspected. This procedure is

robust with respect to noise, peak shape and peak width.

As an example, Fig. 2 shows the pre-processing of powder

data for a clay mineral including normalization, the removal of

background using local nth-order polynomials, followed by

smoothing via wavelets, then peak searching.

3.2. Non-parametric statistics

The full-pattern-matching tools described here utilize, in

part, non-parametric statistics. In general, non-parametric

statistics are little used in crystallography where the statistical

distributions are well de®ned or, at least, well approximated.

In contrast, the use of non-parametric statistics involves no

assumptions about the underlying distributions of data;

instead it works using ranks. A set of n data points x1, x1, . . .
xn is represented by the data ranks in which the data are sorted

into descending order and this order is used rather than the

data value itself. Identical ranks are designated `ties'. Corre-

lation, for example, becomes a processing of correlating ranks.

This has special advantages for comparing powder patterns on

a point-by-point basis, since the distribution of the data is

unknown. Furthermore, such statistics are robust and resistant

to unplanned defects, outliers, etc. (see, for example, Conover,

1971). In the case of powders, this robustness will encompass

peak asymmetry and preferred orientation.

The ®rst step when dealing with non-parametric statistical

tests is to convert the diffraction pattern from actual data

values to the ranks of those values. If there are n data points in

the pattern, the smallest intensity value is assigned a rank of 1
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Figure 3
The use of the Pearson (r) and Spearman (�) correlation coef®cients. (a) r
= 0.93; � = 0.68. The high value of r arises from the perfect match of the
two biggest peaks around 12 and 25� in 2�, but the much lower Spearman
coef®cient acts as a warning that there are unmatched regions in the two
patterns. (b) r = 0.79; � = 0.90. The lower value of r is due to peak offsets
around 6� and the peak at 29�. Visual inspection of the two patterns
indicates a high degree of similarity however, which is re¯ected in the
Spearman coef®cient of 0.9. (c) r = 0.66; � = 0.22. The value of r re¯ects
the peak at 6�; the low value of � indicates a poor match in other regions.

Figure 4
The Kolmogorov±Smirnov two-sample test. The two data sets are
converted to ranks then further transformed to cumulative distributions,
S1(x) and S2(x), and D is calculated as the maximum distance between
S1(x) and S2(x). The associated probability is computed via equation (6).
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[R(x) = 1], the largest a rank of n [R(x) = n] and the ith largest

intensity a rank of I [denoted R(xi) = I]. If any tied ranks exist

(i.e. from data points of equal value) they are assigned a rank

corresponding to the average value of the ranks they would

have taken if they were not the same. Having transformed the

data into such a form, non-parametric tests may then be

applied.

3.3. Matching powder patterns

We employ up to four statistics for matching powder

patterns with each other.

(i) The non-parametric Spearman rank over the full

collected intersecting 2� range employed on a point-by-point

basis.

(ii) The Pearson correlation coef®cient also taken over the

same range.

(iii) The Kolmogorov±Smirnov test, also on a point-by-

point basis, but only involving regions of the patterns where

there are marked peaks.

(iv) The Pearson correlation coef®cient that is the para-

metric equivalent of (iii).

Each statistic will now be discussed in turn.

3.4. Spearman's rank order coefficient

Consider two diffraction patterns, each with n measured

points n[(x1, y1), . . . (xn, yn)]. These are transformed to ranks

R(xi) and R(yi). The Spearman test (Spearman, 1904) then

gives a correlation coef®cient �xy, in the form (Conover, 1971;

Press et al., 1992)

�xy �
Pn
i�1

R�xi�R�yi� ÿ n n�1
2

ÿ �2

Pn
i�1

R�xi�2 ÿ n n�1
2

ÿ �2

� �1=2 Pn
i�1

R�yi�2 ÿ n n�1
2

ÿ �2

� �1=2
: �3�

This produces a coef®cient in the range ÿ1 � �xy � 1. As with

the conventional correlation coef®cient, a score of zero would

indicate no correlation between the two data sets. A negative

score indicates anti-correlation, i.e. that large values of x are

paired with small values of y, and vice versa. A positive score

means large x values are paired with large y values, and vice

versa. Usually the whole pattern is used, but some regions, e.g.

areas where standards are present, can be excluded.

3.5. Pearson's r

Pearson's r is a parametric linear correlation coef®cient

widely used in crystallography. It has a similar form to

Spearman's test, except that the data values themselves, and

not their ranks, are used:

rxy �
Pn
i�1

xi ÿ x� � yi ÿ y� �
Pn
i�1

xi ÿ x� �2 Pn
i�1

yi ÿ y� �2
� �1=2

�4�

(where x; y are the means of intensities taken over the full

diffraction pattern). Again, r can range from ÿ1.0 to 1.0.

Fig. 3 shows the use of the Pearson and Spearman corre-

lation coef®cients. In Fig. 3(a), r = 0.93 and � = 0.68. The high

parametric coef®cient arises from the perfect match of the two

biggest peaks, but the much lower Spearman coef®cient acts as

a warning that there are unmatched regions in the two

patterns. In Fig. 3(b), the situation is reversed: the Pearson r =

0.79, whereas � = 0.90, and it can be seen that there is a strong

measure of association with the two patterns, although there

are some discrepancies in the region 15±35�. In Fig. 3(c), r =

0.66 and � = 0.22; in this case the Spearman test is again

warning of missing match regions. Thus, the use of the two

coef®cients acts as a valuable balance of their respective

properties when processing complete patterns.

3.6. Kolmogorov±Smirnov two-sample test

The third test we use is the Kolmogorov±Smirnov (KS) two-

sample test (also known as the Smirnov test) which we apply

to individual peaks rather than the complete diffraction

pattern, i.e. only peaks that occur at the same 2� values (within

a user-speci®ed tolerance) in both patterns are compared, and

this is done on a point-by-point basis. For further details of the

KS test, see work by Smirnov (1939) with a fuller discussion by

Steck & Smirnov (1969). The original Kolmogorov test was

designed to compare an empirical distribution function to a

hypothetical distribution function. The Smirnov variation

compares two empirical distribution functions. As the correct

function is generally not known, the Smirnov variation is more

widely useful. Unlike tests such as the chi-squared, the KS test

gives exact results for small data sets and does not require a

large number of observations.

The two peak pro®les each have np points, which are

transformed to ranks then converted to cumulative

distributions S1(x) and S2(x), respectively. The test then looks

for the maximum value of the absolute difference between the

two over the full range of np:

D � sup
x

S1�x� ÿ S2�x�
�� ��: �5�

The process is shown graphically in Fig. 4. To establish the

validity of the null hypothesis, H0, that the peaks are drawn

from the same sample, the associated probability can be

calculated via the approximation

p H0jD� � � QKS n1=2
p � 0:12� 0:11=n1=2

p

ÿ �
D

� �
; �6�

where

QKS t� � � 2
X1
j�1

�ÿ1�jÿ1 exp�ÿ2j2t2�; �7�

with the limits QKS(0) = 1 and QKS(1) = 0. The larger the

value of D, the less likely it represents the same data and the

two peaks are different. Just as with the Spearman coef®cient,

the KS test is a robust non-parametric statistic.

An example of the KS test applied to real data is shown in

Fig. 5. In Fig. 5(a) the peaks have similar, although not iden-

tical shapes with identical peak positions; D = 0.22, with an

associated probability for the null hypothesis of p(H0|D) =



0.98, i.e. there is a 98% chance that the null hypothesis is valid.

In Fig. 5(b), where peak shapes are very different and there is

a small offset of the peak maxima, the corresponding statistics

are D = 0.51, with p(H0|D) = 0.25. In this case the null

hypothesis is not accepted at the usual limits of 95 or 99%.

3.7. Peak matching using Pearson's r

In the same way as the KS test, peaks can also be matched

using their full pro®le by employing the Pearson r on a point-

by-point basis but con®ning the match to the region of peak

overlap(s) in the two samples. In general, this test is the least

useful of the four, and is highly correlated with the r coef®-

cient computed over the whole diffraction pattern.

3.8. Combining the coefficients

It is usually advantageous to combine individual correlation

coef®cients to give an overall measure of similarity. The

Pearson r and the Spearman � are usually used together in a

weighted mean to give an overall rank coef®cient rw:

rw � �w1�xy � w2rxy�=�w1 � w2�: �8�

Usually w1 = w2 = 0.5. This argument is, of course, heuristic:

there is no particularly rigorous statistical validity in doing

this, but in practice the combination has considerable discri-

minating power.

The KS test gives p(H0|D). In principle, this allows us to mix

the KS test with r and �, but, in reality, we have here two

classes of test: one is based on the entire pattern and the other

uses only speci®ed peaks, and it is not easy to combine the two

classes, since the second is a function of the number of peaks

and there remains the problem of processing problems where

a peak is present in the reference sample but not in another,

and vice versa. In consequence, we tend to keep the two

classes separate.

4. Full-profile qualitative pattern matching in action

The method proceeds as follows.

(i) A database of known samples is created. Each sample is

optionally pre-processed as described in x3.1. Note that peak

identi®cation is only necessary if the KS or the related para-

metric test are to be used: it is not required for the Spearman

or full-pattern Pearson tests.

(ii) The sample pattern to be matched against this database

is selected, and pre-processed as necessary.

(iii) The intersecting 2� range of the two data sets is

calculated, and each of the pattern-matching tests is

performed using only that region. The user may also de®ne

excluded regions.

(iv) A minimum intensity is set, below which pro®le data

are set to zero. This eliminates noise and does not reduce the

discriminating power of the method. This is set to 0.1Imax as a

default, where Imax is the maximum measured intensity, but

the parameter may be varied.

(v) An optimal shift in 2� between patterns is often

required, arising from equipment settings and data collection

protocols. We use the form

� 2�� � � a0 � a1 sin �; �9�
where a0 and a1 are constants that can be determined by

maximizing equation (5). It is dif®cult to obtain suitable

expressions for the derivatives @a0=@rw and @a1=@rw for use in

the optimization, so we use the downhill simplex method

(Nelder & Mead, 1965) which does not require them. The

ef®ciency of this procedure is discussed in x4.5.

(vi) A parametric Pearson's test is performed using all the

measured data points.

(vii) The Spearman � is computed in the same way.

(viii) Peak lists for the sample and database patterns are

compared. Where a peak is located within a user-controllable

tolerance at the same 2� in both patterns, a KS test is

performed utilizing the full pro®les of each coinciding peak. A

®nal KS probability is calculated as the average of the indi-

vidual KS peak test scores.

(ix) Procedure (viii) is repeated using the parametric

Pearson test in exactly the same way as the KS test.

(x) Results from each of the four tests are stored and

displayed by the program for each pattern in the database.

(xi) An overall rank value is calculated for each database

sample after completion of the various calculations. It

comprises the sum of weighted values of the available statis-

tics. The weights applied are user-de®nable.

(xii) The matching results are then sorted in rank order, rw,

or via any of the individual tests described above as required.

4.1. Test data

To provide suitable examples of SNAP-1D full-pro®le

pattern matching, a database of 98 patterns in CIF format was

imported into the program. These comprise a subset of the

ICDD database for the analysis of clay minerals (Smith et al.,

1996; Smith, 1999; ICDD, 2003). Clay minerals are layer sili-

cates, in which layer stacking-sequence errors give rise to

broad peaks which are often highly asymmetric, and are thus

poorly represented by the standard d±I formalism, and so

represent a suitable challenge for full-pro®le matching

procedures. There is a good monograph on the use of powder

diffraction and clay minerals by Moore & Reynolds (1997).

4.2. Pattern matching on montmorillonite using the ICDD
database of clay minerals

There are three samples of montmorillonite in the database.

One of these was selected as the reference pattern and

matched against the remaining 97 patterns. The results are

shown in Fig. 6 and tabulated in Table 1, sorted on the rw value.

The three montmorillonite samples are clearly identi®ed with

the top rw values; the next pattern in the list is nonite and there

is a clear and signi®cant drop in rw for this sample. There are

substantial differences in the three montmorillonite patterns,

especially in the region 18±35� 2�, but the combined use of the

Pearson and Spearman coef®cients allows the patterns to be
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successfully matched. The KS test highlights the fact that

signi®cant peak pro®le differences are present. As expected,

the Pearson peak correlation coef®cient is less sensitive, and

less useful, and is closely correlated to the full Pearson r

coef®cient.

4.3. Opal

Opal is a quartz mineral. Opaline silicates form a diagenetic

series which begins with amorphous opal (opal A) and

progresses through opal-CT to opal C, ending with low-quartz

(Moore & Reynolds, 1997). An opal-CT sample was matched

against the database. The results are shown in Fig. 7 and

tabulated in Table 2, sorted on the rw value. There are only

three opal samples in the database as used. They have all been

identi®ed despite considerable difference in peak shapes,

widths and offsets, especially those involving opal-A. As

before, the KS test highlights the differences in peak shape.

Sample matching using d±I values would be very dif®cult with

these data.

4.4. Using the Kolmogorov±Smirnov test

As an example of the use of the KS test to monitor small

peak shape differences, the KS test was applied to quartz in

Table 1
Pattern matching on a sample of montmorillonite using an ICDD
database of clay minerals.

The results are sorted on rw. This table needs to be read in conjunction with
Fig. 6. There are three montmorillonite samples in the database and these have
been successfully identi®ed as the top three matches. The values of the
Pearson, Spearman and the Pearson coef®cient applied only to matching
peaks are quite similar, but the KS test indicates signi®cant detailed difference
in the patterns.

Mineral Rank Pearson Spearman KS
Pearson
peaks

Line
colour

Montmorillonite 1.00 1.00 1.00 1.00 1.00 Red
Montmorillonite 0.87 0.87 0.88 0.47 0.92 Dark blue
Montmorillonite 0.79 0.71 0.89 0.18 0.71 Green
Nonite 0.54 0.48 0.60 0.19 0.56 Light blue

Table 2
Pattern matching on opal using an ICDD database of clay minerals.

This should be read in conjunction with Fig. 7. The ®rst entry was input as the
reference. There are two other opal samples in the database and these are
identi®ed as the top entries in the sorted rw list, even though there are
considerable differences between them, especially for Opal-A. This is
highlighted by the low values of the KS test.

Sample Rank Pearson Spearman KS
Pearson
peaks

Line
colour

Opal-CT 1.0000 1.0000 1.0000 1.0000 1.0000 Red
Opal-CT 0.7942 0.9308 0.6577 0.6218 0.7905 Blue
Opal-A 0.6313 0.7286 0.5341 0.0102 0.5271 Green

Figure 6
Pattern matching for montmorillonite using the ICDD clay minerals
database. This needs to be read in conjunction with Table 1, which
includes the key for line colours. There are three montmorillonite
samples in the database and these have been successfully identi®ed as the
top three matches despite considerable pro®le differences. The next
pattern in the sorted list of rw values is the unrelated nonite mineral,
which is quite different, having a sharp peak around 27�. This is re¯ected
in the low value of 0.55 for rw.

Figure 7
Pattern matching using an Opal-CT sample in the ICDD clays database as
a reference. This ®gure needs to be examined in conjunction with Table 2.
The top two matches (excluding the reference opal) are opal CT and opal-
A; the latter has a very different peak pro®le compared with the
remaining samples. There are also problems with peak offsets.

Figure 5
The Kolmogorov±Smirnov two-sample test applied to single peaks from
two patterns which occur at the same value of 2�. (a) D = 0.22; the
associated probability p(H0|D) = 0.98, i.e. the null hypothesis that the two
peaks are drawn from identical samples, is accepted with an associated
probability of 0.98. (b) D = 0.51, with p(H0|D) = 0.25. In this case the
peaks are drawn from different samples, which can be seen via the offset
in 2� and the very different peak shapes.



the 2� range 79.0±84.5�. The Pearson and Spearman correla-

tion coef®cients are 0.88 and 0.87, respectively; the Pearson

coef®cient applied to the peaks only is 0.82, but the KS test

gives a coef®cient of 0.19, highlighting the fact that there are

signi®cant differences. Fig. 8 shows the two patterns super-

imposed; it can be seen that there are differences in peak

widths and data resolution, although overall the peaks are

very similar, especially as characterized by d±I values.

4.5. Pattern shifts

To test the ef®cacy of the downhill simplex method for

determining the parameters a0 and a1 in equation (9), a series

of eight shifted patterns were generated for an organic powder

sample in the range 0 � 2� � 35� using values of a0 and a1 in

the range ÿ1.0 to 1.0. The simplex method was then used to

compare the calculated values of the shift parameters with

those used to generate the offset patterns. The method uses

multiple starting points: if the maximum search values for a0

and a1 are de®ned as (a0max, a1max), we use the starting points

(0.0, 0.0), (a0max + 0.1, 0.0), (0, a1max + 0.1, 0.0). Once an

optimum point has been found, it is usually recommended that

the calculation is restarted from the optimum point, but we

found this to be unnecessary.

Table 3 summarizes the results; the average deviation

between true and calculated values of the a0 coef®cients is

0.02�, and for a1 is 0.005. This is within the resolution of the

data, which is 0.02�.

5. Quantitative analysis without Rietveld refinement

Quantitative analysis seeks to identify the components of a

mixture given the powder diffraction patterns of the pure

components and that of the mixture itself. It is obvious that the

full pro®le data will, in general, be invaluable in these cases,

and should give more accurate answers than d±I-based

calculations, but will be less tractable mathematically. In this

section we ®rst review existing techniques and then demon-

strate the use of least-squares combined with singular value

decomposition to use full-pro®le diffraction data to obtain

quantitative analyses of mixtures, without the use of Rietveld

re®nement and thus without knowledge of the crystal struc-

tures of the components.

5.1. Overview of existing quantitative techniques

There is an excellent text by Zevin & Kimmel (1995)

covering all aspects of quantitative X-ray diffractometry.

Quantitative analyses of powder diffraction patterns may be

roughly divided into two categories: those involving the use of

either an internal or an external standard, or those utilizing a

full diffraction pro®le. The latter approach may be subdivided

into the Rietveld method, pro®le stripping and least-squares

best-®t summation.

The Rietveld approach requires crystal structures to be

known for all individual phases in the mixture. A calculated

full pro®le is produced based upon that knowledge, and

crystallographic parameters re®ned to produce the best ®t to

the experimental data. See, for example, works by Bish &

Howard (1988) and Hill (1993).

In the pro®le-stripping method (also known as pattern

subtraction), ®gures of merit are used to identify a phase that

best ®ts the overall mixture pattern. This pure-phase pro®le is

then subtracted from the mixture pro®le, after scaling has

been performed. The process is then repeated until no residual

pattern remains, showing that all phases have been accounted

for. Our approach is related to this but works in the opposite

direction, taking all candidate patterns simultaneously, then

reducing the possible candidates.

The best-®t summation approach, described by Smith et al.

(1988), is suited to situations where the user has prior

knowledge of likely candidate phases, and can therefore select

them individually for inclusion. Using least-squares techni-

ques, the best-®t of the weighted sum of combined phase

patterns to the mixture pattern is obtained. Weight fractions

are then calculated using the reference intensity ratio method

(RIR) (Hill & Howard, 1987). A modi®cation of this by

Chipera & Bish (2002) obtains weight fractions using the pre-

scaled patterns and the internal standard approach, and is

implemented as an Excel worksheet.
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Table 3
The use of the downhill simplex method to determine the shift
parameters a0 and a1 from equation (9).

Columns 1 and 4 contain the values of a0 and a1 that were used to generate the
offset data. The calculated values from the downhill simplex method
optimizing rw are given in columns 2 and 5, with the absolute differences in
columns 3 and 6. The mean deviation of a0 from the true values is 0.02, while
that of a1 is 0.005. This compares well with the resolution of the data, which is
0.02� 2�.

a0

acalc
0 from

simplex
method j�0j = ja0 ÿ acalc

0 j a1

acalc
1 from

simplex
method j�1j = ja1 ÿ acalc

1 j
0.00 0.00 0.00 0.00 0.00 0.00
0.20 0.18 0.02 0.40 0.41 0.01
1.00 0.99 0.01 0.00 0.00 0.00
0.00 ÿ0.04 0.04 0.40 0.41 0.01
0.40 0.37 0.03 0.40 0.41 0.01
0.40 0.37 0.03 0.20 0.22 0.02
1.00 1.00 0.00 1.00 1.00 0.00
ÿ1.00 ÿ0.97 0.03 1.00 1.00 0.00

1.00 1.00 0.00 ÿ1.00 ÿ1.00 0.00

Figure 8
The KS test applied to quartz in the 2� range 79.0±84.5�. The Pearson and
Spearman correlation coef®cients are 0.88 and 0.87, respectively; the
Pearson coef®cient applied to the peaks only is 0.82, but the KS test gives
a coef®cient of 0.19, highlighting the difference in detail between the two.
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5.2. Quantitative analysis using full profiles and singular
value decomposition

Assume we have a sample pattern, S, which is considered to

be a mixture of up to N components. S comprises m data

points, S1, S2, . . . Sm. The N patterns can be considered to

make up fractions p1, p2, p3, . . . pN of the sample pattern. We

want the best possible combination of database patterns to

make up the sample pattern. A system of linear equations can

be constructed in which x11 is measurement point 1 of pattern

1, etc.:

x11p1 � x12p2 � x13p3 � . . .� x1NpN � S1;

x21p1 � x22p2 � x23p3 � . . .� x2NpN � S2;

..

.

xm1p1 � xm2p2 � xm3p3 � . . .� xmNpN � Sm:

�10�

Writing these in matrix form:

x11 x12 x13 � � � x1N

x21 x22 x23 � � � x2N

..

. ..
. ..

. . .
. ..

.

xm1 xm2 xm3 � � � xmN

0BBB@
1CCCA

p1

p2

..

.

pN

0BBB@
1CCCA �

S1

S2

..

.

SN

0BBB@
1CCCA �11�

or

x � p� S : �12�
We seek a solution for S that minimizes

�2 � x � pÿ S
�� ��2 : �13�

Since N � m, the system is heavily overdetermined, and we

can use least squares.

The condition number of a matrix is the ratio of the largest

to the smallest values of its corresponding diagonal matrix W.

It is called singular if its condition number is or approaches

in®nity, and ill-conditioned if the value of the reciprocal of the

condition number begins to approach the precision limit of the

machine being used to calculate it (see, for example, Searle,

1999). Normal least-squares procedures can have dif®culties

attempting to invert very poorly conditioned matrices, such as

will arise with powder data where every data point is included.

Singular value decomposition (SVD) is ideal in such cases as it

allows singular and ill-conditioned matrices to be dealt with.

In particular, not every m � N matrix has an inverse.

However, every such matrix does have a corresponding

singular value decomposition.

SVD decomposes the x matrix to several constituent

matrices to give the solution (Press et al., 1992)

p � V � diag �1=wj� � UT � S : �14�
W is a diagonal matrix with positive or zero elements. If most

of its components are unusually small, then it is possible to

approximate the matrix p with only a few terms of S (i.e. we

can make up the sample pattern using only a combination of

just a few database patterns) so that combinations of equa-

tions that do not contribute to the best possible ®nal solution

are effectively ignored. This system of least squares is highly

stable, and the use of W gives us a ¯exible and powerful way of

producing a solution for the composition of an unknown

number of pure phases contributing to a measured pattern.

Although computationally the method is, relatively

speaking, quite a slow and memory-hungry one, as it involves

calculations dealing with several large matrices, it is excep-

tionally stable, and, when dealt with properly, rarely causes

computational problems. The method has found use in powder

indexing (Coelho, 2003).

The variance±covariance matrix can also be obtained from

the V matrix and the diagonal of W:

cov �pj; pk� �
XN

i�1

VjiVjk

w2
i

� �
: �15�

From this an estimate of the variances of the component

percentages can be found.

Powder diffraction yields the fractional percentages arising

from the scattering power of the component mixtures, piÿ pN.

The values of p can be used to calculate a weight fraction for

that particular phase provided that the atomic absorption

coef®cients are known, and this in turn requires the unit-cell

dimensions and cell contents, but not the atomic coordinates

(Smith et al., 1993; Cressey & Scho®eld, 1996). The general

formula for the weight fraction of component n in a mixture

comprising N components is (Leroux et al., 1953)

cn � pn�
�=��n; �16�

where

�� �
XN

j�1

cj�
�
j �17�

and

��j � �j=�j; �18�
where �j is the atomic X-ray absorption coef®cient and �j is

the density of component j. The variance of cn can be

computed via

�2�cn� �
1

�1ÿ pn���n

� �2
1

�1ÿ pn�2
XN

j�1
j 6�n

��j cj

0B@
1CA

2

�2�pn�

264
� p2

n

XN

j�1
j 6�n

���j �2�2�cj�

375: �19�

(see Appendix A for details). Clearly the variance of any

component depends on the variances of the other phases

which are themselves unknown at the start of the calculation.

Equation (19) is solved by assigning equal variances of 1.0 to

each �2�cj� and iterating until there is no signi®cant change in

variance.

5.3. Applications of the SVD method

This method requires a database of full-pro®le patterns, and

assumes that the patterns of the individual pure phases are



included within that database. Obviously, the quality of the

overall results is strongly dependent on the quality of the

measured data and care is needed to use suitable protocols. As

in qualitative analysis, data interpolation followed by optional

background subtraction and wavelet smoothing procedures

are performed upon all the patterns.

Depending upon user preferences, either the entire data-

base, or just a subset of it can be used as possible phase input.

The subset is selected using a user-controlled correlation cut-

off level. In this case only those patterns that have a weighted

mean correlation, rw, greater than a given cut-off value are

subsequently used in the SVD-based least squares. The full

angle range of the unknown sample is used by default in the

calculations, but a smaller sub-range may be employed if

required. The method selects the top 15 results as measured by

the p matrix from this solution vector as long as the associated

weights from the W matrix are signi®cantly greater than zero,

and builds another matrix p with them, carrying out the entire

procedure again.

Finally, the top j patterns (where j is a user-controllable

integer between 1 and 15) are put through the matrix

decomposition process once more. The results returned are

the fractions of each pattern included in the test pattern.

These are scaled to a percentage, and the number of possible

phases is limited to j. The displayed results are effectively the

scale fraction for each phase; weight percentages may be

calculated from these if required. Any patterns that are

considered to be incorrect can be marked as such by the user,

and may then be ignored and the analysis repeated.

6. Examples of quantitative analysis

6.1. Simulated mixtures

To provide a test for the method, the powder diffraction

patterns of mixtures were simulated by combining various

experimental patterns from the ICDD clay database, and then

adding 5% Gaussian noise to the resulting pattern.

The ®rst example of this involved three individual minerals:

gibbsite, anastase and ¯uorite. A powder pattern was gener-

ated by combining the individual patterns in equal propor-

tions. A qualitative search was ®rst carried out of the entire

database, and all patterns with an rw value of <0.01 were

excluded from the quantitative analysis which then followed.

The results are shown in Table 4(a). Note that these are the

only suggested constituent phases returned by the program; all

other phases in the database were discarded by the analysis

process. That two different gibbsite phases are suggested is a

consequence of the database, which contains multiple patterns

for some minerals, and two for gibbsite. Marking one of the

two gibbsites to be ignored and re-running the analysis gave

the results shown in Table 4(b).

A mixture containing the same phases, but in different

proportions, was then constructed. The same data handling

and options were used as previously. The results from this run

are in Table 4(c).
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Table 4
Quantitative analysis test using a subset of an ICDD clay minerals
database.

Only the scale percentages are calculated. (a) A synthetic mixture of equal
proportions of ¯uorite, anatase and gibbsite tested against the whole database,
which has two gibbsite entries. The scale fraction for gibbsite sums to 0.330. (b)
A mixture of equal proportions of ¯uorite, anatase and gibbsite tested against
the whole database with one of the two gibbsite entries removed. (c) A
synthetic mixture of unequal proportions of ¯uorite, anatase and gibbsite
tested against the whole database with one of the two gibbsite entries
removed.

Name Actual scale fraction Calculated scale fraction

(a)
Fluorite 0.333 0.337 (8)
Anatase 0.333 0.332 (7)
Gibbsite 0.333 0.293 (20)
Gibbsite 0.037 (13)
(b)
Fluorite 0.333 0.329 (8)
Anatase 0.333 0.335 (9)
Gibbsite 0.333 0.336 (13)
(c)
Fluorite 0.750 0.750 (45)
Anatase 0.150 0.149 (80)
Gibbsite 0.100 0.101 (51)

Table 5
Quantitative analysis of mixtures of corundum, ¯uorite, zincite and brucite (or alternatively silica) from the IUCr round robin (Scarlett et al., 2002;
Masden et al., 2001).

Sample 3 contains silica rather than brucite (indicated by asterisks *). For sample 3, the weight percentage corrundum was provided by the organizers and the
results have been scaled to this value. Standard errors are in brackets. The average deviation for corundum is 20%, that for ¯uorite is 18%, and that of zincite is 3%,
with an overall average deviation of 23%. The results for 1a±1h are also shown graphically in Fig. 8.

Sample
Published value SNAP-1D result

Corundum Flourite Zincite Brucite or silica Corundum Fluorite Zincite Brucite or silica

1a 1.2 94.8 4.0 1.3 (6) 93.8 (2) 4.8 (2)
1b 94.3 4.3 1.4 94.9 (6) 3.7 (2) 1.4 (2)
1c 5.0 1.4 93.6 3.8 (10) 1.1 (4) 95.1 (4)
1d 13.5 53.6 32.9 12.2 (9) 49.6 (3) 38.2 (3)
1e 55.1 29.6 15.3 53.4 (10) 28.6 (3) 17.9 (3)
1f 27.1 17.7 55.2 22.8 (11) 15.9 (4) 61.3 (4)
1g 31.4 34.4 34.2 28.3 (10) 32.0 (3) 39.7 (3)
1h 35.1 34.7 30.2 30.1 (15) 33.4 (5) 36.5 (5)
2 21.3 22.5 19.9 36.3 18.3 (20) 17.4 (3) 19.6 (1) 44.7 (2)
3 30.8 19.7 20.1 29.5* 30.8 (3) 21.9 (4) 18.1 (4) 29.0 (1)*
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These calculations give values of the scale factors p1, p2, etc.

in equation (23), rather than weight percentages. The average

deviation of the calculated value from the true value is 0.2 and

is always less than 2% in error, indicating that the method is

capable, with good sample preparation techniques and with

well characterized samples, of a viable level of accuracy.

6.2. IUCr round robin

The International Union of Crystallography Commission on

Powder Diffraction (CPD) sponsored a round robin on the

determination of quantitative phase abundance from diffrac-

tion data. The results were published in two papers (Madsen et

al., 2001; Scarlett et al., 2002). We have used the data supplied

for samples 1a±1h, 2 and 3 to test the viability of the full-

pattern SVD methodology. Sample 1 is a three-phase system

prepared with eight different and widely varying compositions.

It was possible for participants to collect their own data or use

that supplied by the CPD; we chose the latter approach. The

papers identi®ed a large variation in reported results arising

from incorrect data processing and program usage. The results

from the full-pattern SVD method are tabulated in Table 5

and are shown graphically in Fig. 9 (which is partially taken

from Fig. 2 of Madsen et al., 2001). The average deviation

between true and calculated weight percentages is 2.0% for

corundum; that for ¯uorite is 1.8%, and that of zincite is 3%,

with an overall average deviation for all components of 2.3%.

Given the simplicity and speed of our calculations, this is quite

satisfactory. It should be noted that we are not proposing that

this formalism is a substitute for Rietveld methods when high

accuracy is required. However, it should also be emphasized

that the total time for all these calculations is less than 1 min

on a modest PC once the data are in a suitable format.

The errors seem to be underestimated, however. The source

of this is probably due to systematic errors associated with

peak shapes and background that do not ®nd their way into

our current model.

6.3. BCA round robin

The BCA 2003 Industrial Group Quantitative round robin

(Cockcroft & Frampton, 2003) used a two-phase sample

comprising paracetamol and lactose. Samples of mixture and

pure phases were provided. Data collection was carried out on

a Bruker D5000 diffractometer in re¯ection mode and

analysed using the quantitative mode of SNAP-1D. There

were noticeable preferred orientation effects in the lactose

sample. The correct results were paracetamol 84.92% and

lactose 15.08%. The values obtained by SNAP-1D were 86.2

and 14.8%, respectively. This represents an average deviation

of 0.8%, which is very satisfactory.

7. Conclusions

We have shown that a mixture of parametric and non-para-

metric statistical tests using full-pro®le powder diffraction

patterns is useful in both qualitative and quantitative powder

diffractometry. The method is relatively simple and overcomes

the problems that arise when only the peaks or representa-

tions of the peaks in the pattern are used. In quantitative

mode, the use of singular value decomposition gives a stable

mathematical formalism capable of being used with full

diffraction data where every measured point is included. This

can act as a simple alternative to Rietveld re®nement and does

not require atomic coordinates, although it does need X-ray

absorption coef®cients, and thus the unit-cell dimensions and

contents, unless one is dealing with polymorphic mixtures. It is

not as accurate as the Rietveld method, but can give percen-

tage weight compositions with an estimated uncertainty of 1±

5% depending on data quality. The limit of detectability for a

given component is well below 5%.

The methodology is incorporated into the commercial

computer program SNAP-1D (Barr et al., 2003) that runs on

PCs using the Windows 2000/XP operating systems and is

marketed by Bruker-AXS.

The title of the paper concerns high-throughput crystal-

lography, and the link with this technique now needs to be

made: it is possible to generate a correlation matrix in which

every pattern in a database of n patterns is matched with every

other to give an n � n correlation matrix q using a weighted

mean of the Spearman and Pearson coef®cients with the

optional inclusion of the KS and PP coef®cients. The matrix q
can be converted to a distance matrix, d, of the same dimen-

sions via

d � 0:5�1:0ÿ q�: �20�

Figure 9
The results of the full-pattern quantitative analysis on mixtures of
corundum, zincite and ¯uorite used in the IUCr round robin (Madsen et
al., 2001). The values are in weight percentage. The yellow circles are the
correct results; the red are those calculated by SNAP-1D. This ®gure has
been adapted from the paper by Madsen et al. (2001).



At this point, the tools of cluster analysis and multivariate data

analysis are now available to classify patterns, identify clusters,

estimate the number of pure components and to visualize

them. This topic is addressed in the following paper. It can be

used with more than 1000 patterns, and so is relevant to high-

throughput techniques.

The methods described here can also be applied to other

one-dimensional spectroscopies, such as Raman and IR, and

results will also be presented elsewhere.

APPENDIX A
Error propagation in quantitative analysis

The general formula for the weight fraction of component n in

a mixture comprising N components is:

cn � pn�
�=��n; �21�

where

�� �
XN

j�1

cj�
�
j �22�

and

��j � �j=�j; �23�
where �j is the absorption coef®cient and �j the density of

component j. Rearranging (21),

cn �
pn

1ÿ pn

XN

j�1
j 6�n

��j cj

0B@
1CA 1

��n
�24�

for 0.0 � sn � 1.0. We require the standard deviation ��cn�:

@cn

@sn

� �
cn

� 1

1ÿ pn� �2
XN

j�1
j6�n

��j cj

0B@
1CA 1

��n
; �25�

@cn

@cj

� �
j6�n

� pn

1ÿ pn

��j
��n
: �26�

Error propagation theory gives

�2 cn� � �
@cn

@pn

� �2

�2 pn� � �
Xn

j�1
j6�n

@cn

@cj

� �2

�2 cj

ÿ �
; �27�

so

�2�cn� �
1

�1ÿ pn���n

� �2
1

�1ÿ pn�2
XN

j�1
j 6�n

��j cj

0B@
1CA

2

�2�pn�
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� p2

n

XN

j�1
j 6�n

���j �2�2�cj�

375: �28�
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