
cif applications

J. Appl. Cryst. (2016). 49, 277–284 http://dx.doi.org/10.1107/S1600576715021871 277

Received 21 August 2015

Accepted 16 November 2015

Edited by A. J. Allen, National Institute of

Standards and Technology, Gaithersburg, USA

Keywords: CIF; CIF 2.0.

Supporting information: this article has

supporting information at journals.iucr.org/j

Specification of the Crystallographic Information
File format, version 2.0

Herbert J. Bernstein,a John C. Bollinger,b* I. David Brown,c Saulius Gražulis,d

James R. Hester,e Brian McMahon,f Nick Spadaccini,g John D. Westbrookh and

Simon P. Westripi

aRochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA, bDepartment of Structural

Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA, cBIMR,

McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1, dInstitute of Biotechnology, Vilnius

University, Graiciuno 8, Vilnius, LT-02241, Lithuania, eAustralian Nuclear Science and Technology Organisation, New

Illawarra Road, Lucas Heights, NSW 2234, Australia, fInternational Union of Crystallography, 5 Abbey Square, Chester

CH1 2HU, UK, gThe University of Western Australia, Crawley, 6009, Australia, hRutgers, State University of New Jersey,

Piscataway, NJ 08854, USA, and iThe Walled Garden, Horton Green, Cheshire SY14 7EY, UK. *Correspondence e-mail:

john.bollinger@stjude.org

Version 2.0 of the CIF format incorporates novel features implemented in STAR

2.0. Among these are an expanded character repertoire, new and more flexible

forms for quoted data values, and new compound data types. The CIF 2.0 format

is compared with both CIF 1.1 and STAR 2.0, and a formal syntax specification is

provided.

1. Introduction

The Crystallographic Information File (CIF; Hall et al., 1991,

2005) is a well established format for data exchange and

archiving in crystallography. Since its début, CIF and CIF

applications have come to support an extensive ontology-

based global framework for crystallographic data exchange

and processing, sometimes called the Crystallographic Infor-

mation Framework (also CIF; Hall & McMahon, 2005).

Although CIF version 1.1 (Hall et al., 2005) and its parent

format STAR 1.0 (Hall, 1991; Hall & Spadaccini, 1994) have

broad expressive power, their designs incorporate limitations

that were common at the time of their introduction. These

restrict the characters and therefore languages that can be

readily represented, and they make presentation of vectors,

matrices and other compound data structures cumbersome.

The text quoting conventions do not allow for the inclusion of

all possible strings.

Since the initial STAR specification, the electronic data

needs of science have grown enormously, and today’s research

activities require much richer metadata descriptors and more

flexible approaches to data internationalization. Internet

access to widely disparate and rapidly expanding information

continues to be a strong driver for these requirements. These

needs are addressed in STAR 2.0 (Spadaccini & Hall, 2012a),

which takes Unicode (http://www.unicode.org/) as its character

repertoire, modifies and extends the quoting rules, and

provides new data types. This extended syntax provides for a

higher level of data specificity, validation and automation. It is

supported by a semantically rich dictionary definition

language, DDLm (Spadaccini & Hall, 2012b), and the

purpose-built language dREL for DDLm methods scripts.

Using methods expressions, DDLm can define machine-

parsable and executable relationships between data items, as

ISSN 1600-5767

2016 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576715021871&domain=pdf&date_stamp=2016-02-01

well as facilities for user-defined types and functions. To

enable future use of these improved technologies in CIF, a

new version, 2.0, of the CIF format has been developed. This

format is derived from STAR 2.0 and is described in detail

below.

2. Overview of CIF 1.1

CIF format version 2.0 has the same general form and high-

level data model as has version 1.1, which is described in detail

in Volume G of International Tables for Crystallography,

‘ITVG’ (Hall et al., 2005). CIF 1.1 describes a file format for

zero or more containers for data characterized as a set of

discrete values (‘data values’) identified by distinct tags (‘data

names’). These data may be presented as a sequence of data

names each followed by a single data value, or as a data ‘loop’

that presents tabular data as one or more data names followed

by one or more corresponding groups of data values.

At the topmost level, CIFs are organized into data blocks,

each identified by a distinguishing name (a ‘block code’). Data

blocks may contain save frames, each distinguished within the

scope of its data block by its own name (a ‘frame code’). Data

names may not be repeated within the same innermost

container (data block or save frame).

At the lexical level, all data values in a CIF are presented as

strings of characters from the allowed set. They can be

expressed in CIF 1.1 delimited by apostrophes (’), delimited

by quotation marks ("), or delimited by semicolons (;)

appearing as the first characters of their lines.1 They may also

be expressed literally, without any quotation or delimiter

other than whitespace, provided that they do not contain

whitespace, that they do not start with any of several char-

acters reserved for this purpose, and that they do not take one

of a few reserved forms, including, but not limited to, forms

mimicking the beginning of a data block or save frame.

Conventionally, literal values are described as ‘whitespace-

delimited strings’; values delimited by matching apostrophes

or quotation marks are described as ‘quoted strings’, and

values delimited by beginning-of-line semicolons are

described as ‘text fields’. Interpretation of a CIF data value

can be sensitive to whether it is presented in whitespace-

delimited form.

3. Changes in CIF 2.0

CIF 2.0 syntax is for the most part an extension of CIF 1.1, but

not strictly so. An enumeration of the differences between the

two versions of the format is presented in the following

sections.

3.1. Character set and encoding

CIF 1.1 files are text files, in an unspecified system-depen-

dent sense of that term, consisting of characters drawn from a

98-character subset of those representable in ASCII (ANSI,

1986). CIF 2.0 files, on the other hand, draw from nearly all

Unicode characters (see x5) and are always encoded according

to UTF-8 (The Unicode Consortium, 2014a). Almost any

Unicode character may appear in CIF 2.0 block codes, frame

codes, data names and data values. We hesitate to refer to CIF

2.0 files as ‘Unicode text files’, however, because CIF 2.0

recognizes few of Unicode’s text semantics. For example,

although Unicode defines a wide variety of characters that

serve spacing and line termination purposes – and almost all of

these are allowed in CIF 2.0 documents – only a few serve

those purposes in CIF 2.0 syntax. CIF 2.0 files are permitted to

begin with a Unicode byte-order mark (character U+FEFF).

Such a code may be inserted automatically by text editors, and

it can assist those and other programs in identifying the

encoding of the file content. This character serves no other

purpose in CIF 2.0: it is considered an artefact of the encoding,

not a literal contributor to the file content, and it is disallowed

elsewhere in CIF 2.0 files.

The designation of UTF-8 as the sole character encoding for

CIF 2.0 constitutes less of a distinction from CIF 1.1 than it

may seem to do, because many of the most common single-

byte encodings, including US-ASCII, the ISO-8859 family and

Windows-1252, encode CIF 1.1’s allowed characters in the

same way that UTF-8 does. Furthermore, UTF-8 itself is a

common default encoding for modern computer systems. As a

result, many existing CIFs are already encoded in UTF-8,

whether by coincidence or by design.

3.2. Whitespace and line termination

Whitespace in general and line termination in particular are

significant in CIF. CIF 1.1 leaves the definition of a ‘line’ as an

aspect of the system-dependent notion of a text file, but CIF

2.0 defines the subdivision of files into lines exclusively in

terms of a fixed set of character sequences that, for its

purposes, belong to and terminate one line, separating it from

the next. Specifically, CIF 2.0 recognizes and attributes iden-

tical meaning as line termination to three distinct character

sequences: (1) a line feed (U+000A) not immediately preceded

by a carriage return (U+000D), (2) a carriage return not

immediately followed by a line feed, and (3) a carriage-return/

line-feed pair. CIF 2.0 processors are required to behave as if

each appearance of any of the three equivalent forms of CIF

2.0 line termination in their inputs had been converted to a

line feed prior to analysis.

As in CIF 1.1, the horizontal tab character (U+0009) and the

space character (U+0020) alone are recognized as in-line

whitespace characters in CIF 2.0. CIF keywords, data block

headers, save frame headers, data names and data values all

must be separated from each other by whitespace (an in-line

whitespace character or a line terminator, followed by an

arbitrary number of CIF comments, additional in-line white-

space characters and line terminators). The line terminator

immediately prior to a text-field opening delimiter serves both

to separate the preceding data name or data value from the

text field and to indicate the start of the text field; additional

cif applications

278 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 J. Appl. Cryst. (2016). 49, 277–284

1 Throughout this paper, we adopt the typographic convention that a
monospaced typeface indicates characters that may appear in a CIF 2.0 file
(see also x5.1). The character referred to as ‘apostrophe’ is, strictly, the ASCII
character ‘single quote’ (0x27), Unicode U+0027.

whitespace prior to that line terminator is not required.

Otherwise, whitespace is optional in CIF 2.0 in these positions:

(a) between the enclosing square brackets ([,]) of a List

value (see x3.8) and the values within, and between the

brackets of an empty List;

(b) between the enclosing braces ({,}) of a Table value (see

x3.9) and the entries within, and between the braces of an

empty Table; and

(c) between a Table key and its associated value.

3.3. Version code

The content of a well formed CIF 2.0 file begins with a

structured comment identifying the file’s format. Such a

comment is recommended for CIF 1.1 files but is required for

CIF 2.0 files. The format for CIF 2.0 is

#\#CIF_2.0

where the ‘0’ (zero) is immediately followed by whitespace.

This comment serves as a ‘magic number’ or ‘magic code’ by

which human beings and computer programs alike can

recognize the file type. It is essential for correct interpretation

of the file, because CIF 2.0 text can otherwise be difficult to

distinguish from CIF 1.1 text, but CIF 2.0 is not a strict

superset of CIF 1.1.

3.4. Data names, block codes and frame codes

CIF 1.1 limits the lengths of data names, block codes and

frame codes to 75 characters. CIF 2.0, on the other hand,

places no limit on these beyond that implicit in the overall

2048-character line-length limit it shares with CIF 1.1.

Furthermore, the expanded character repertoire of CIF 2.0

applies to these CIF elements. They may contain any of the

(Unicode) characters allowed in CIF 2.0, excepting only those

that CIF recognizes as whitespace. It should be noted,

however, that, although long names are permitted in CIF 2.0,

existing CIF-based data dictionary formalisms cannot express

definitions for data names that are at or very near the line-

length limit.

As in CIF 1.1, CIF 2.0 block codes are required to be unique

within their data files, frame codes are required to be unique

within their data blocks, and data names are required to be

unique within their directly enclosing data blocks and save

frames, all in a case-insensitive manner. Both uniqueness and

case (in)sensitivity are more complicated in the Unicode

context of CIF 2.0 than in the essentially ASCII context of CIF

1.1, however. Unicode pre-composed characters versus their

component characters, canonical character equivalence and

the relative order of combining characters, among other

considerations, all contribute to the result that two character

sequences may be distinct on a character-by-character basis,

yet be attributed identical significance by Unicode. For many

of the same reasons, although Unicode defines case mappings,

naı̈ve application of case mapping rules does not provide a

consistent basis for case-insensitive comparison. Therefore,

CIF 2.0 defines data name, block code and frame code

uniqueness in terms of the Unicode canonical caseless

matching algorithm (The Unicode Consortium, 2014b): no two

data blocks in any CIF may have names that are canonical

caseless matches of each other, no two save frames in any data

block may have names that are canonical caseless matches of

each other, and no two data names belonging directly to the

same block or frame may be canonical caseless matches of

each other.

3.5. Quoted and whitespace-delimited strings

CIF 2.0 revises the syntax for quoted and whitespace-

delimited string data values. In CIF 1.1, quoted data values

may include their delimiter (apostrophe or quotation mark),

provided that it is not followed by whitespace. CIF 2.0, on the

other hand, does not permit quoted data values to embed their

delimiter under any circumstance. Furthermore, whereas CIF

1.1 permits whitespace-delimited data values to contain

opening and closing square bracket characters, except as the

first character, and to contain opening and closing braces

anywhere, CIF 2.0 excludes these four characters from

appearing anywhere in whitespace-delimited data values. This

CIF 2.0 restriction avoids any ambiguity with respect to values

of the new List and Table data types. The characters explicitly

forbidden from starting CIF 1.1 whitespace-delimited data

values are also forbidden from starting CIF 2.0 whitespace-

delimited data values, thereby avoiding other ambiguities, and

of course whitespace-delimited values cannot contain white-

space. Otherwise, CIF 2.0 permits quoted and whitespace-

delimited data values to contain any Unicode character from

its character set that it does not recognize as a line terminator.

3.6. Triple-quoted strings

CIF 2.0 provides a new way to express single- and multi-line

data values: triple-quoted strings. A triple-quoted string

begins with a delimiter consisting of three apostrophes (’’’)

or three quotation marks ("""), and ends with the next

subsequent appearance of its opening delimiter. They cannot

embed their delimiter, but they can embed the opposite

delimiter, individual or pairs of apostrophes or quotation

marks, and the text-field delimiter. Unlike text fields, triple-

quoted strings may start anywhere that a value may start, and

may end anywhere on the same or any subsequent physical

line. The characters of the value have no special significance to

the CIF format itself (for instance, there is no mechanism for

eliding characters), but of course an application consuming

them will attribute whatever significance it chooses to the

value. In particular, a backslash does not protect the apos-

trophes or quotation marks composing the delimiters from

interpretation as delimiters.

3.7. Text fields

Text fields (described above) are CIF 1.1’s provision for

multi-line data values. Because CIF 1.1 has no other

mechanism for expressing multi-line strings and no mechanism

for embedding the text-field delimiter in a text field, it cannot

express data values that contain that delimiter. Additionally,

the line-length limit prevents the expression of values having

cif applications

J. Appl. Cryst. (2016). 49, 277–284 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 279

any physical line exceeding that limit. ITVG documents a

widely used semantic convention for CIF 1.1 line folding, by

which long logical lines can be expressed in text fields via

shorter physical lines, but it is not part of the formal syntax.

CIF 2.0 partially addresses these issues by the addition of

triple-quoted strings, but ultimately addresses all cases by two

related means: (1) by adopting a text prefixing protocol (see

x5.2), and (2) by incorporating a version of the CIF 1.1 line-

folding protocol for text fields into the CIF 2.0 specification

proper (see x5.3). Text prefixing is especially targeted at

permitting text-field delimiters to be expressed in text-field

values, though it is more general than that. It serves its

purpose by physically separating semicolons within text fields

from the beginnings of their lines, and it can be employed

either with or without line folding.

3.8. List data type

The new ‘List’ data type provided by CIF 2.0 represents, as a

single (compound) value, an ordered sequence of values of

any type or types. Syntactically, a List value takes the form of a

whitespace-separated sequence of data values enclosed in

square brackets. For example,

loop_

_colour_name

_colour_value_rgb

red [1 0 0]

green [0 1 0]

or

_refln.hklFoFc [[1 3 -4] 23.32(9) 22.97(11)]

As shown, Lists can contain other Lists, to any level of

nesting. Similarly, they may contain values of the Table data

type discussed next.

3.9. Table data type

The new ‘Table’ data type provided by CIF 2.0 represents, as

a single (compound) value, an unordered collection of entries

representing associations between string keys and data values

of any type. This sort of data structure is also known variously

as a ‘map’, ‘dictionary’ or ‘associative array’, among other

names. Syntactically, a Table value takes the form of a

whitespace-separated sequence of key–value pairs, enclosed in

braces. The values may be any CIF data value. The keys take

the form of quoted or triple-quoted strings as described above,

with a colon appended immediately after the closing delimiter.

Keys may be separated from their values by an arbitrary

amount of whitespace, including none. For example,

{"symm":"P 4n 2 3 -1n"

’avec’:[10.3 0.0 0.0]

’bvec’:[0.0 10.3 0.0]

’cvec’:[0.0 0.0 10.3]

"description":

"""Cubic space group

and metric cell vectors"""}

Like those in Lists, the values in a Table may be Lists or

other Tables, nested to any depth.

4. Comparison with STAR 2.0

CIF 2.0 is for the most part a restricted profile of STAR 2.0,

but there are two incompatibilities:

(1) In STAR 2.0, list elements and table entries are sepa-

rated from each other by commas (and optional whitespace),

whereas in CIF these elements are separated by mandatory

whitespace alone.

(2) STAR 2.0 requires files to contain at least one data

block, whereas STAR 1.0 and all versions of CIF to date

permit files to contain no data blocks at all (and therefore, for

CIF, no data).

These incompatibilities are superficial and can readily be

overcome by automated translation in either direction.

Additionally, CIF 2.0 documents are subject to several

restrictions relative to STAR 2.0 documents:

(a) Save frames may not be nested in CIF.

(b) CIF does not permit nested loops and therefore does

not use the stop_ keyword (but does reserve it).

(c) CIF documents may not contain global_ sections (and

the global_ keyword is reserved).

(d) CIF requires that data names, data block codes and save

frame codes be unique within their scopes in a case-insensitive

sense, whereas STAR requires only exact uniqueness.

(e) CIF does not recognize STAR 2.0’s mechanism for

embedding string delimiters, nor is the escape character on

which it is based (U+0007) in CIF’s allowed set.

(f) CIF does not recognize STAR save frame references,

and it reserves whitespace-delimited values having the form of

STAR frame references.

(g) CIF does not recognize or allow STAR 2.0 ref-tables.

(h) CIF 2.0 does not allow whitespace between the quoted

string and its immediately following colon in Table keys.

(i) The character set supported by CIF 2.0 is a slight

restriction of the one supported by STAR 2.0.

(j) CIF imposes a 2048-character limit on line lengths.

(k) CIF 2.0 requires files to start with a CIF version

comment.

Well formed CIF 2.0 files translated as suggested above can

be interpreted as STAR 2.0, and, having been successfully

parsed, CIF data can be processed via libraries and utilities

targeting STAR 2.0 data. There is one caveat, however: CIF

2.0’s line-folding and prefixing protocols for text fields. Text

fields that employ these mechanisms are valid in STAR, but

STAR processors will not automatically interpret their values

the same way that CIF 2.0 processors do.

5. CIF 2.0 syntax

The specifications for the CIF syntax, version 2.0, comprise a

formal grammar as well as detailed specifications for the line-

folding and text prefixing protocols. These are presented in the

next sections.

cif applications

280 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 J. Appl. Cryst. (2016). 49, 277–284

5.1. Formal grammar for CIF 2.0

This section presents a formal syntax and grammar for CIF

2.0, in a format based on ISO 14977 Extended Backus–Naur

Form (EBNF) (International Standards Organization, 1996;

see Table 1). It describes in symbolic form how terminal

symbols – sequences of literal characters – can be assembled

into aggregates represented by non-terminal symbols, the

latter into larger aggregates, and so forth, ultimately to

achieve an aggregate that corresponds to an entire CIF.

The terminal symbols of the grammar are represented by

character sequences enclosed in apostrophes or quotation

marks, such as “’” and ‘#\#CIF_2.0’, and by EBNF special

sequences, which are delimited by pairs of question marks. An

apostrophe- or quotation-mark-enclosed character sequence

corresponds to the characters so enclosed. Special sequences

in this grammar represent single Unicode characters: specific

characters are designated via the two characters ‘U+’ followed

by the 4–6 hexadecimal digits of the character’s Unicode code

point value (e.g. ?U+0041? corresponds to the letter ‘A’). A

special sequence consisting of a pair of character designators

with a hyphen between corresponds to any single character

whose Unicode code point value is in the range bounded by

the two designated values, inclusive. Whitespace within these

special sequences is not significant.

Non-terminal symbols of the grammar are defined in terms

of patterns of terminal and non-terminal symbols (‘produc-

tions’). In these patterns, square brackets enclose sequences of

symbols whose appearance is optional; braces enclose

sequences of symbols that may be repeated any number of

cif applications

J. Appl. Cryst. (2016). 49, 277–284 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 281

Table 1
CIF 2.0 formal syntax and grammar.

Symbol Production

CIF2-file (file-heading, [line-term, [wspace-any, data-block,
{wspace, data-block}], [wspace], [comment]]) -
({allchars}, 2049 * char, {allchars})

file-heading [?U+FEFF?], magic code, {inline-wspace}

magic code ‘#\#CIF_2.0’

data-block data-heading, {block-content}

data-heading data-token, container-code

block-content wspace, (data | save-frame)

save-frame save-heading, {frame-content}, wspace, save-token

save-heading save-token, container-code

frame-content wspace, data

container-code non-blank-char, {non-blank-char}

data (data-name, wspace-data-value) | data-loop

data-loop loop-token, wspace, data-name, {wspace, data-name},
wspace-data-value, {wspace-data-value}

data-name ‘_’, non-blank-char, {non-blank-char}

list ‘[’, [list-values-start, {wspace-data-value}], [wspace], ‘]’

list-values-start (wspace-any, nospace-value) | (wspace-any, [comment],
text-field) | ([{wspace-to-eol}, inline-wspace, {inline-
wspace}], wsdelim-string) | (wspace-to-eol, {wspace-
to-eol}, wsdelim-string-sol)

table ‘{’, [wspace-any, table-entry, {wspace, table-entry}],
[wspace], ‘}’

table-entry (quoted-string | triple-quoted-string), ‘:’, (nospace-
value | wsdelim-string | wspace-data-value)

wspace-data-value (wspace, nospace-value) | ([wspace-lines], inline-
wspace, {inline-wspace}, wsdelim-string) | (wspace-
lines, wsdelim-string-sol) | ([wspace], [comment],
text-field)

nospace-value quoted-string | triple-quoted-string | list | table

wsdelim-string-sol wsdelim-string - (‘;’, {non-blank-char})

wsdelim-string (lead-char, {restrict-char}) - (((data-token | save-token),
{non-blank-char}) | loop-token | global-token | stop-
token)

lead-char restrict-char - (‘"’ | ‘#’ | ‘$’ | “’” | ‘_’)

restrict-char non-blank-char - (‘[’ | ‘]’ | ‘{’ | ‘}’)

quoted-string (quote-delim, quote-content, quote-delim)
| (apostrophe-delim, apostrophe-content,
apostrophe-delim)

quote-content {char - quote-delim}

quote-delim ‘"’

apostrophe-content {char - apostrophe-delim}

apostrophe-delim “’”

triple-quoted-string (quote3-delim, quote3-content, quote3-delim)
| (apostrophe3-delim, apostrophe3-content,
apostrophe3-delim)

quote3-delim ‘"""’

quote3-content { [‘"’, [‘"’]], not-quote, {not-quote} }

not-quote allchars - ‘"’

apostrophe3-delim “’’’”

apostrophe3-content { [“’”, [“’”]], not-apostrophe, {not-apostrophe} }

not-apostrophe allchars - “’”

text-field text-delim, text-content, text-delim

text-delim line-term, ‘;’

text-content {allchars} - ({allchars}, text-delim, {allchars})

data-token (‘D’ | ‘d’), (‘A’ | ‘a’), (‘T’ | ‘t’), (‘A’ | ‘a’), ‘_’

save-token (‘S’ | ‘s’), (‘A’ | ‘a’), (‘V’ | ‘v’), (‘E’ | ‘e’), ‘_’

Table 1 (continued)

Symbol Production

loop-token (‘L’ | ‘l’), (‘O’ | ‘o’), (‘O’ | ‘o’), (‘P’ | ‘p’), ‘_’

global-token (‘G’ | ‘g’), (‘L’ | ‘l’), (‘O’ | ‘o’), (‘B’ | ‘b’), (‘A’ | ‘a’), (‘L’ |
‘l’), ‘_’

stop-token (‘S’ | ‘s’), (‘T’ | ‘t’), (‘O’ | ‘o’), (‘P’ | ‘p’), ‘_’

non-blank-char char - inline-wspace

wspace (inline-wspace | line-term), wspace-any

wspace-lines [inline-wspace, {inline-wspace}, [comment]], line-term,
{wspace-to-eol}

wspace-any {wspace-to-eol}, {inline-wspace}

wspace-to-eol {inline-wspace}, [comment], line-term

comment ‘#’, {char}

char allchars - line-term

inline-wspace ?U+0020? | ?U+0009?

line-term (?U+000D?, [?U+000A?]) | ?U+000A?

allchars ?U+0009? | ?U+000A? | ?U+000D? | ?U+0020 - U+007E?
| ?U+00A0 - U+D7FF? | ?U+E000 - U+FDCF?
| ?U+FDF0 - U+FFFD?
| ?U+10000 - U+1FFFD? | ?U+20000 - U+2FFFD?
| ?U+30000 - U+3FFFD? | ?U+40000 - U+4FFFD?
| ?U+50000 - U+5FFFD? | ?U+60000 - U+6FFFD?
| ?U+70000 - U+7FFFD? | ?U+80000 - U+8FFFD?
| ?U+90000 - U+9FFFD? | ?U+A0000 - U+AFFFD?
| ?U+B0000 - U+BFFFD? | ?U+C0000 - U+CFFFD?
| ?U+D0000 - U+DFFFD? | ?U+E0000 - U+EFFFD?
| ?U+F0000 - U+FFFFD? | ?U+100000 - U+10FFFD?

times, including none; and parentheses group symbols. The

comma (,) expresses concatenation – text matching the symbol

or group to its left, followed by text matching the one to its

right. The vertical line (|) expresses alternation – either text

matching the symbol or group to its left, or text matching the

one to its right. The hyphen (-) represents exception – text that

matches the symbol or group to its left but not the one to its

right. The asterisk (*) expresses enumerated repetition – the

symbol or group to its right, repeated exactly the number of

times designated by the number to its left.

A file is a well formed CIF 2.0 file if and only if the following

criteria are met: its contents consist of well formed UTF-8

code sequences; the complete UTF-8-decoded contents can be

exactly matched to the CIF 2.0 symbol in this grammar

according to the rules presented therein; all data names, block

codes and frame codes expressed in it are unique within their

respective scopes, in the sense described in x3.4; and the data

values in each loop construct can be evenly divided among the

data names in that loop. An annotated EBNF representation

of CIF 2.0 grammar and syntax, corresponding to Table 1, is

available in the supporting information.

5.2. Text prefix protocol

The text prefix protocol encodes the logical content of a CIF

text field by prepending a prefix to each line in a manner that

can be recognized and accurately reversed. Its main purpose in

CIF 2.0 is to allow the text-field delimiter to appear in the

logical content of a text field, and it accomplishes that by

allowing a prefix to be inserted before the semicolon of the

delimiter, so that it does not appear at the beginning of its

physical line. The remainder of this section describes the text

prefix protocol in terms of interpreting physical text fields to

evaluate their logical content.

A ‘prefix’ consists of a sequence of one or more characters

that are permitted in a text field, except for backslash (\) or a

CIF line terminator, and it does not begin with a semicolon.

The text prefix protocol applies to text fields whose physical

content begins with a prefix, followed by either one or two

backslashes, any number of in-line whitespace characters

(including none), and a line terminator or the end of the field,

and whose subsequent lines each begin with the same prefix.

The line containing the terminating semicolon is not

accounted part of the content for this purpose. Such a text

field is called a ‘prefixed text field’, and the logical (‘un-

prefixed’) content of such a field is derived from its physical

content by the following procedure:

(1) Remove the prefix from each line, including the first.

(2) If the remaining part of the first line starts with two

backslashes then remove the first of them; otherwise remove

the whole first line.

For example, given

_example

;CIF>\

CIF>data_example

CIF>_text

CIF>;This is an embedded text field

CIF>;

; # here the field terminates.

the corresponding un-prefixed value of item _example is

data_example

_text

;This is an embedded text field

;

The cases where the initial prefix is followed by two back-

slashes are exactly those in which the text prefix protocol and

the line-folding protocol both apply to the same text field. In

that case, one of the effects of removing prefixes according to

the above procedure is to yield content in a form on which line

unfolding can be performed (see next section).

5.3. Line-folding protocol

The line-folding protocol encodes the logical content of a

CIF text field by splitting some or all of the logical lines into

shorter physical lines, in a manner that can be recognized and

reversed. The remainder of this section describes the line-

folding protocol in terms of interpreting physical text fields to

evaluate their logical content.

The line-folding protocol applies to text fields whose

content (after decoding the text prefix protocol, if applicable)

begins with a ‘fold separator’ consisting of a backslash,

followed by any number of in-line whitespace characters,

followed by a line terminator or the end of the text field. No

whitespace precedes the initial fold separator. When one is

present, the line terminator at the end of a fold separator is

included as part of that separator.

Given un-prefixed (see x5.2) text-field content to which the

line-folding protocol applies, the logical text it represents is

derived from it by removing each fold separator, including the

initial one. Different lines may have different amounts of

whitespace in their fold separators, and the field may contain

both folded and unfolded lines. This example combines text

prefixing with line folding:

_example.long_line

;prefix:\

prefix:data_example

prefix:_text

prefix:;This line was\

prefix: folded.

prefix:;

; # here the field terminates.

The corresponding un-prefixed unfolded value of item

_example.long_line is

data_example

_text

;This line was folded.

;

Note that the line-folding protocol cannot elide text-field

delimiters because the line terminator belonging to that deli-

cif applications

282 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 J. Appl. Cryst. (2016). 49, 277–284

miter is not accounted part of the field content. It follows from

the protocol specification, however, that if the physical

content of a line-folded text field ends with a fold separator

then that separator will not appear in the unfolded value.

6. Community adoption

The purpose of this paper is simply to describe the new format

specification. We do not suggest strategies or time scales for its

adoption. In order to accommodate new features, CIF 2.0 is

not upwards compatible from CIF 1.1. This has implications

for archiving and interoperability, both key design features of

the CIF standard. However, any valid CIF 1.1 file can be

readily up-converted to be a valid CIF 2.0 file. With careful

management and the development of suitable conversion

tools, CIF 2.0 can be introduced into different parts of the

crystallographic information ecosystem (journal publication,

data deposition and archiving, software processing) at the

pace with which the community is most comfortable. That

process can be followed and contributed to on an external web

site maintained by the IUCr Committee for the Maintenance

of the CIF Standard: http://cif2.iucr.org/.

We emphasize that the extent to which CIF 2.0’s new

features are employed is at the discretion of user communities.

For example, CIF dictionary designers and maintainers will

decide whether and to what extent data names containing non-

ASCII characters will be defined.

An important enabler of format adoption will be the

availability of basic tools: we note that a C library for reading

and writing CIF 2.0 files is now freely available (Bollinger,

2016).

Appendix A discusses aspects of format conversion relevant

to any strategy of gradual adoption of the new format.

7. Summary and conclusions

CIF 2.0 introduces an extended character set, a more

conventional string quoting mechanism, and new List and

Table data types to meet the evolving needs for multilingual

publication and more complex data. Many existing CIF 1.1

files are already CIF 2.0 compliant after the addition of a

version header, and any CIF 1.1 file can be converted with

minor effort. The major burden will be on software developers

as the number of CIF 2.0 files increases and changes to legacy

applications or file down-conversions are required.

APPENDIX A
Conversion issues

A1. Adapting CIF 1.1 files to CIF 2.0 applications

While it is likely that some CIF 2.0 applications will be

designed to also handle legacy CIF 1.1 files, it would be

prudent to be aware of the steps needed to make a valid CIF

1.1 file readable according to CIF 2.0 syntax. The steps are as

follows:

(i) Prepend the CIF 2.0 version code and convert to UTF-8

(see xx3.3 and 3.1) with one of the standard line endings. Note

that for most files the character set and line ending will already

be conformant to CIF 2.0 and no conversion will be required.

(ii) Re-quote character strings that contain embedded string

terminators (see x3.5). Triple quotes will normally be an

effective solution and may be stylistically preferred. Alter-

natively, converting the value to a text field will always be

effective and does not interfere with or change the file’s

interpretation as CIF 1.1.

(iii) Quote whitespace-delimited data values that anywhere

contain a left or right square bracket character or a left or

right brace character.

To adapt a CIF for use with any specific application –

especially one that is not dictionary aware – it also may be

necessary to address semantic issues with the file such as the

data names used and the form of the associated values. For

example, if the CIF 2.0 application expects matrix- or list-

valued data names and does not recognize the CIF 1.1

equivalent data names in which single matrix elements are

stored, then the matrix- or list-valued data item will need to be

constructed and inserted. This task can be automated with the

help of a CIF dictionary that defines the data names involved

and their relationships.

A2. Tailoring CIF 2.0 files for legacy applications

Owing to CIF 2.0’s richer character set and its provision for

compound data structures, there is no unique recipe for

adapting all CIF 2.0 files for legacy applications that expect

CIF 1.1 files. The steps suggested below will produce a

syntactically correct CIF 1.1 file while potentially changing the

contents of data items that use non-ASCII characters or

compound data values. Insofar as legacy CIF 1.1 applications

were written before data names that use these CIF 2.0 features

existed, legacy software will not use these data names, and any

changes to their values will not affect program operation. The

removal of the version code will ensure that the altered file is

rejected if inadvertently passed to a CIF 2.0 application.

Where the legacy application requires access to information

encoded using CIF 2.0 features (for example, Uij matrix

elements), a DDLm data dictionary may be used to drive

precise semantic conversion. With the above caveats, the

following steps can be performed to start and, in some cases,

complete the conversion process:

(a) Re-quote character strings to use only CIF 1.1 style

apostrophes, quotation marks or text fields.

(b) Convert Unicode characters that are not in CIF 1.1’s

allowed set to printable ASCII characters, including those

appearing in data names and container names. The CIF

markup convention of x2.2.7.4.13 of ITVG provides commonly

used alternatives for many of the characters that will need to

be converted.

(c) Replace lists and tables either with text fields or with

individual values.

cif applications

J. Appl. Cryst. (2016). 49, 277–284 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 283

(d) Remove the version code, or replace it with the optional

version code #\#CIF_1.1 if the resultant file is fully compliant

with the CIF 1.1 specification.

A3. ImgCIF, CBF and CIF 2.0

Many raw crystallographic diffraction images are written in

a CIF 1.1-based DDL2-style CBF/imgCIF (Crystallographic

Binary File, image CIF) format, as described in ch. 2.3 of

ITVG. The introduction of CIF 2.0 does not directly affect

CBF/imgCIF. The maintainers of this sub-format are consid-

ering a revision supporting the new CIF 2.0 constructs, but at

this time they are not supported, and as yet there is no time

line for such a revision. At present, therefore, software

producing CBF/imgCIF should not assume that CBF/imgCIF

consumers will accept or recognize any of CIF 2.0’s changes or

additions to CIF 1.1.

Acknowledgements

The authors would like to thank all those who contributed to

the discussions that led to this new CIF specification.

References

American National Standards Institute (1986). ANSI X3.4-1986 –
American National Standard for Information Systems – Coded

Character Sets – 7-Bit American National Standard Code for
Information Interchange (7-Bit ASCII). American National Stan-
dards Institute, Washington, DC, USA.

Bollinger, J. C. (2016). J. Appl. Cryst. 49, 285–291.
Hall, S. R. (1991). J. Chem. Inf. Model. 31, 326–333.
Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–

685.
Hall, S. R. & McMahon, B. (2005). Editors. International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data. Dordrecht: Springer.

Hall, S. R. & Spadaccini, N. (1994). J. Chem. Inf. Model. 34, 505–
508.

Hall, S. R., Westbrook, J. D., Spadaccini, N., Brown, I. D., Bernstein,
H. J. & McMahon, B. (2005). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic
Data, edited by S. R. Hall & B. McMahon, pp. 25–36. Dordrecht:
Springer.

International Standards Organization (1996). ISO/IEC 14977:1996 –
Information Technology – Syntactic Metalanguage – Extended
BNF. International Standards Organization, Geneva, Switzerland.

Spadaccini, N. & Hall, S. R. (2012a). J. Chem. Inf. Model. 52, 1901–
1906.

Spadaccini, N. & Hall, S. R. (2012b). J. Chem. Inf. Model. 52, 1907–
1916.

The Unicode Consortium (2014a). The Unicode Standard, Version
7.0.0, ch. 3, x3.9. Mountain View: The Unicode Consortium. http://
www.unicode.org/versions/Unicode7.0.0/.

The Unicode Consortium (2014b). The Unicode Standard, Version
7.0.0, ch. 3, x3.13. Mountain View: The Unicode Consortium. http://
www.unicode.org/versions/Unicode7.0.0/.

cif applications

284 Herbert J. Bernstein et al. � Specification of the CIF format, version 2.0 J. Appl. Cryst. (2016). 49, 277–284

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=aj5269&bbid=BB12

