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The pair angle distribution function (PADF) is a three- and four-atom corre-

lation function that characterizes the local angular structure of disordered

materials, particles or nanocrystalline materials. The PADF can be measured

using X-ray or electron fluctuation diffraction data, which can be collected by

scanning or flowing a structurally disordered sample through a focused beam. It

is a natural generalization of established pair distribution methods, which do not

provide angular information. The software package pypadf provides tools to

calculate the PADF from fluctuation diffraction data. The package includes tools

for calculating the intensity correlation function, which is a necessary step in the

PADF calculation and also the basis for other fluctuation scattering analysis

techniques.

1. Introduction

Fluctuation scattering techniques have been developed for

studying the structure of disordered materials such as colloidal

materials, liquid crystals and amorphous solids (Treacy et al.,

2005; Kurta et al., 2016; Zaluzhnyy et al., 2019) and for single-

particle imaging of, for example, proteins, viruses and nano-

particles (Kirian, 2012; Donatelli et al., 2015; Kurta et al., 2017;

Pande et al., 2018). Depending on the context in which they

were developed, these techniques have a variety of names

including fluctuation electron microscopy (Treacy et al., 2005),

fluctuation X-ray microscopy (Fan et al., 2005), fluctuation

scattering (Kam, 1977; Kam et al., 1981; Saldin et al., 2009,

2010) and X-ray cross-correlation analysis (Wochner et al.,

2009; Kurta et al., 2016; Zaluzhnyy et al., 2019; Lehmkühler et

al., 2014). These methods all use statistical approaches to

extract structural information from a set of diffraction

measurements (102–105 patterns) where the sample structure

and/or orientation varies randomly between measurements.

Historically, the applications to imaging and to disordered

materials have developed in parallel, because the type of

structural information extracted is different. In the imaging

applications, the goal is to recover a 3D image of a repro-

ducible particle, whereas for disordered materials the goal is to

probe some characteristic local angular structure.

In applications to disordered materials, the sample structure

is assumed to lack long-range order so that moving the beam

to a new area of the sample generates statistical fluctuations in

the scattering (Treacy et al., 2005; Fan et al., 2005). The

statistical properties such as the variance (Treacy et al., 2005)

or angular symmetries (Wochner et al., 2009) are then

obtained from the ensemble of diffraction measurements.

Many fluctuation techniques compute an angular intensity
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cross-correlation function, which captures both intensity

variance and intensity cross-correlations as a function of

angular separation (Kam, 1977; Kurta et al., 2016). The

correlation function is then used to distinguish structural

models, identify the presence of symmetric local structures or

map local structures. These methods have been applied to

colloidal particles (Wochner et al., 2009; Lehmkühler et al.,

2016; Liu et al., 2017, 2022), nanoparticles (Lehmkühler et al.,

2018, 2019; Niozu et al., 2020), (nano)crystals (Mendez et al.,

2016; Lapkin et al., 2022), liquid crystals (Kurta et al., 2013;

Zaluzhnyy et al., 2015; Martin et al., 2020b), texture in poly-

crystalline materials (Binns et al., 2022) and metallic glasses

(Liu et al., 2013). Many of these experiments observe trends in

the intensity correlations as a function of space, temperature

or sample composition. Alternatively, correlation functions

have been matched to models of local structure to extract

information about the distribution of local structures. Despite

this progress, the structural interpretation of correlation-based

analysis results remains an outstanding issue for the field.

To address the challenge of obtaining interpretable local 3D

structural information from a disordered sample, the pair

angle distribution function (PADF) technique was developed

(Martin, 2017). The PADF is a real-space three- and four-atom

distribution that can be extracted from fluctuation scattering

data by applying a linear transformation to an angular inten-

sity cross-correlation function. It was developed to probe local

3D structure in bulk disordered materials. The PADF provides

information about two atom-pair distances and the relative

angle between the two pairs. It contains bond-angle informa-

tion and other local angular structure that can be used to

‘fingerprint’ the local atomic arrangements in a disordered

material. It has been applied with X-rays to identify local

structures in self-assembled lipid phases (Martin et al., 2020b)

and with electrons to study defects in disordered carbon

materials (Martin et al., 2020a), and there are prospects for

studying proteins (Adams et al., 2020) and close-packed

colloidal particles (Bøjesen et al., 2020). The PADF is

primarily designed for fluctuation studies of disordered

materials because these are the cases where it remains difficult

to obtain structural insights from the analysis of the correla-

tion function in q space. In principle, the PADF could be

calculated from single-particle fluctuation data, but it does not

provide a 3D image of the sample unlike other approaches

(Donatelli et al., 2015).

The PADF is different from the 3D-�PDF (Schmidt et al.,

2023), which can be used to map the pair displacements of

defects in microcrystals with the 3D orientation resolved. The

3D-�PDF technique requires a crystalline structure to enable

crystallographic methods with the sample orientation

resolved. While the PADF can be applied to crystalline

materials, it does not require crystals. It is also based on the

assumption that information about sample orientation is lost

in the collection of serial (fluctuation) diffraction data. Hence,

the 3D-�PDF may have advantages for defective or dis-

ordered crystals, while the PADF has the advantage that it can

be applied to a wider class of materials.

Here we present pypadf, a Python3 package for the calcu-

lation of the PADF from diffraction data. The code provides

tools to (i) calculate a q-space correlation volume from a

fluctuation scattering data set, (ii) apply masks and geometric

corrections to the correlation volume, (iii) calculate the PADF

from the correlation volume, and (iv) plot intensity correlation

and PADF volumes.

2. Overview of the pypadf package

The pypadf package has three parts: (i) the main scripts, (ii)

the params module containing all input parameter specifica-

tions, and (iii) the fxstools module which contains the tools for

calculating, analysing and plotting correlation functions. As

shown in Fig. 1, the main scripts are difftocorr.py to

convert diffraction patterns to a correlation function,

maskcorr.py to prepare the correlation function for the

PADF calculation and corrtopadf.py which computes

the PADF from the correlation function. The correlation and

PADF functions can be plotted with the script

plotfxs3d.py. Each script imports a submodule from the

params module that defines parameters specific to that script.
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Figure 1
A schematic diagram of the workflow for computing the q-space correlation function and the PADF. The pypadf package consists of separate scripts that
are run in the order indicated by the arrows. The images are illustrative of the output at different stages and are described in more detail in Section 3 and
Fig. 3.



The scripts take input parameters from a configuration file or

via command line options. The configuration file is read first

and then command line arguments are read second. Hence,

parameter values from command line arguments take prece-

dence over (i.e. will override) parameter values defined in the

configuration file. This enables the command line options to be

used in batch scripts where a small number of parameters are

changing for each data set. In the rest of this section we detail

the main scripts for computing the PADF, including diffraction

simulation, correlation calculation and finally the PADF

calculation. For each step we outline the background theory,

the numerical implementation of the equations and the script

associated with each step.

The pypadf package includes scripts that can create test

data sets called diffract.py and diffract_and_

correlate.py. These scripts are summarized in Appendix

A and they assume elastic scattering and no absorption. We

note that, for detailed simulation studies, there are established

diffraction programs available for both single particles and

crystals, such as Reborn (Kirian et al., 2020; Chen et al., 2021),

Condor (Hantke et al., 2016) and MLFSOM (Holton et al.,

2014).

2.1. The angular intensity correlation function C(q, q0, h)

2.1.1. Intensity correlations: mathematical and numerical

details. The angular intensity correlation function is calculated

from the polar representations of the diffraction data I(q, �),

where q is the vector magnitude of q (defined in Appendix A)

and � is the angle around the beam axis:

Cðq; q0; �Þ ¼
1

N

XN

i

Z

Iðq; �0Þ Iðq0; �0 þ �Þ d�0: ð1Þ

N is the number of diffraction patterns in the data set. We

assume that the diffraction patterns have been corrected for

any solid-angle and polarization effects. The corrections are

not currently implemented in difftocorr.py. In the polar

representation, each q and q0 value labels an intensity ring.

Numerically, the 1D fast Fourier transform and the convolu-

tion theorem are used to compute the angular correlation

between each pair of rings q and q0.

In principle, equation (1) can be computed for any set of

diffraction patterns, but to make C(q, q0, �) suitable for PADF

analysis there are some extra requirements. We assume that

the local structures in a disordered material (or particles) have

no preferred orientation with respect to the beam axis.

Preferred orientation effects have been observed in PADF

experiments. The sizes of these effects depend on the beam

size (Binns et al., 2022), and they were identified because the

angular peaks in the PADF had no sensible nanostructural

interpretation.

The number of diffraction patterns required for C(q, q0, �)

to converge depends on the ratio of the beam size to the length

scale of the order in the sample (or particle size), and the

lowest number of patterns will be required if the beam can be

focused close to the structural correlation length in the sample

(or particle size). The number of patterns also depends on the

resolution and the beam intensity. Typically for high signal-to-

noise data sets, it has been found in experiments to date that

the order of 103 or 104 patterns will be required. Theoretically

it may be possible to measure weaker signals with XFELs

using 106 or 107 patterns (Martin, 2017). It is not usually

possible to estimate the precise number of patterns required in

advance, and convergence is checked by comparing C(q, q0, �)

computed from independent subsets of the data.

By default, the script difftocorr.py computes the

correlations from all odd-numbered and even-numbered

frames independently and outputs them as the ‘a’ and ‘b’

correlation functions. The PADFs computed from the ‘a’ and

‘b’ correlation results can be compared visually to detect

changes due to incomplete convergence (or alternatively q-

space correlation functions can be compared visually instead).

This convergence check is appropriate when the beam size is

smaller than the distance between neighbouring measure-

ments, so that the sample volumes in neighbouring measure-

ments contain no common atoms. If neighbouring probe

positions overlap, the ‘a’ and ‘b’ results will not be indepen-

dent and will not give a reliable indication of convergence.

In the pypadf package, the magnitude of the vector qi

associated with the ith pixel is defined to be

qi � jqij ¼
2

�
sin �S;i; ð2Þ

where the scattering angle of the ith pixel is defined as

�S;i ¼
1
2

arctanðri=zÞ, ri is the radial distance of the pixel centre

from the beam centre and z is the sample-to-detector distance.

We note that the definition of qi uses a convention common in

electron scattering applications and differs from the usual

convention in X-ray diffraction by a factor of 2�. In X-ray

sciences qX-ray = 2�|qi| = ð4�=�Þ sin �S;i.

A consequence of Ewald sphere curvature, expressed by

equation (2), is that pixels of a uniform width do not generate

uniform sampling of qi � |qi|. The diffraction data are inter-

polated onto a uniform sampling of q when it is mapped onto

polar coordinates I(q, �). The interpolation is implemented

using the map_coordinates function from the scipy.ndimage

module (Virtanen et al., 2020).

The correlation background due to static signals can be

estimated from the cross-correlation of independent diffrac-

tion patterns. Such static signals include background scattering

in the measured images that does not vary from frame to

frame. We note that this estimate is only valid for samples with

uniformly random orientations. If there are preferred orien-

tations then the cross-correlations will also include some of

the useful signal from the sample. The effect of static back-

ground signals can be estimated by randomly correlating pairs

of diffraction patterns,

CBGðq; q0; �Þ ¼
1

N

XN

i

Z

Iiðq; �
0Þ IjðiÞðq

0; �0 þ �Þ d�0; ð3Þ

where j(i) is a randomly chosen index that is not equal to i.

This background estimate can be subtracted from the estimate

of the correlation signal made by equation (1).
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A background-subtracted correlation function can be

computed in a single pass over the data by computing differ-

ence correlations (Mendez et al., 2016),

CDIFFðq; q0; �Þ ¼
1

N

XN

i

Z

�Ii;jðiÞðq; �
0Þ�Ii;jðiÞðq

0; �0 þ �Þ d�0;

ð4Þ

where �Ii, j(i)(q, �0) = Ii(q, �0) � Ij(i)(q0, �0) for pairs of

randomly picked diffraction patterns j(i) 6¼ i. It can be shown

that CDIFF = 2(C � CBG).

A mask can be applied to exclude the beamstop, detector

gaps and bad pixels from the analysis. In the pypadf package, a

binary mask is used that takes a value of 1 for included pixels

and 0 for excluded pixels. The effect of the mask on the

correlation function is corrected by dividing the correlation

function by the correlation of the mask: Ccorrected(q, q0, �) =

C(q, q0, �)/Cmask(q, q0, �) wherever Cmask(q, q0, �) > 0. In

places where the correlation of the mask is 0, the corrected

correlation function is set to zero.

2.1.2. difftocorr.py: computing correlations from

diffraction patterns. The script difftocorr.py computes

a correlation function from a set of diffraction patterns. It can

compute C(q, q0, �), CBG(q, q0, �) or CDIFF(q, q0, �) and it can

perform the mask correction. By default it calculates two

correlation functions from the odd and even frames, which can

be compared to check visually that the correlation functions

have converged. The comparison of odd- and even-frame

correlations is appropriate if the subsequent measurements

are taken from statistically independent sample regions. If

they are not independent, then different subsets of the data

may need to be compared.

The script assumes that diffraction patterns are saved in

individual files and it constructs a file list from the folder based

on a filename format specified in the configuration file. There

are parameters to centre, crop, rebin and mask the diffraction

patterns. The processed diffraction patterns can be saved to

check that the processing parameters are correct. The script

requires detector geometry parameters including the sample-

to-detector distance, the beam centre, the width of a detector

pixel and the wavelength. The output of the script is the 3D

correlation function saved in a NumPy file or as a raw binary

file.

2.1.3. maskcorr.py: applying corrections to the corre-

lation volume. The script maskcorr.py makes modifica-

tions to the correlation volume prior to computing the PADF.

Accurate calculation of the PADF requires the correlation

volume to be evenly sampled with respect to cos � due to the

orthogonality conditions of the Legendre polynomials.

However, the correlation function is most conveniently

calculated with uniform � sampling. The maskcorr.py

script can multiply the correlation function by jsin �j to correct

for this sampling effect.

In an experiment, it can occur that the effects of back-

ground scattering or other artefacts are still evident after

calculating CDIFF or subtracting CBG. If these spurious signals

are confined to a particular region of the correlation function,

such as low q values, they can be masked. The script

maskcorr.py can apply low- and high-pass filters on the q

dimensions.

Noise on the diffraction pattern causes a peak at � = 0 and

q = q0, which is equal to the variance of the noise in each q

ring. Assuming that the noise is uncorrelated on different

pixels on the detector, then the spurious noise correlations are

confined near � = 0 and do not affect the rest of the correlation

function. A mask can be applied to the region close to � = 0,

which can remove this noise-variance signal. The origin of the

noise may be detector noise or noise from spurious correla-

tions in the sample, e.g. across distances larger than the

structural correlation length in the sample or coherent inter-

ference between distant atoms.

2.2. The pair angle distribution function H(r, r0, h)

2.2.1. The PADF: mathematical and numerical details. Here

we summarize the theory and numerical implementation of

the transformation of the correlation function C(q, q0, �) into

the pair angle distribution functio �(r, r0, �).

The modulus squared of the sample’s scattering factor can

be expanded in terms of spherical harmonics as

jFðqÞj2 ¼
X

lm

IlmðqÞYlmð�; �Þ; ð5Þ

where Ylm(�, �) are spherical harmonic functions. We assume

that measurements of |F(q)|2 on the Ewald sphere are acces-

sible experimentally via kinematic scattering, which is appro-

priate for high-energy X-rays that scatter weakly. Electrons

scatter more strongly than X-rays and exhibit dynamic scat-

tering, which impacts quantitative peak-height analysis of pair

distribution functions (Anstis et al., 1988). It remains to be

verified whether this has a similar effect on the PADF.

It can be shown that the correlation function has the form

Cðq; q0; �Þ ¼
X

l

Pl

q � q0

jqjjq0j

� �

Blðq; q0Þ; ð6Þ

where Pl(x) are the Legendre polynomials. The Bl(q, q0)

matrices are given by

Blðq; q0Þ ¼
X

m

IlmðqÞ Ilmðq
0Þ: ð7Þ

The Bl(q, q0) matrices can be extracted by numerically

inverting equation (6) using singular value decomposition or

by using the orthogonality properties of the Legendre poly-

nomials. The default behaviour in the pypadf package is to use

singular value decomposition. A value of 0.5 is used to regu-

larize the small singular values, which was selected to exclude

singular values near to 0, but it can be changed by the user.

The singular values depend on the experimental geometry, via

the Ewald sphere, but do not depend on the input data. The

value of 0.5 has been found to be adequate for all applications

and tests that we have made to date.

The Bl(q, q0) terms are converted to real space using two

spherical Bessel transforms,
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Blðr; r0Þ � ð� 1Þ
l
16�2

Z Z

q2q02jlðqrÞ jlðq
0r0ÞBlðq; q0Þ dq dq0;

ð8Þ

where jl(x) denotes a spherical Bessel function of order l. The

spherical Bessel transform is implemented using the discrete

form of Lanusse et al. (2012). In the discrete form, a general

function fl(q) of order l and radial coordinate q is transformed

to a real-space function by

flðrÞ ¼
X1

n¼1

ffiffiffiffiffiffi
2�
p

R� 3

j2
lþ1ðqnlÞ

jl

qlnr

R

� �
fl

qln

R

� �
; ð9Þ

where R is the maximum value of r and qln is the nth zero of

the lth spherical Bessel function. To implement this, all

Bl(q, q0) matrices are first computed on the zero positions of

the l = 0 spherical Bessel function. Interpolation is then used

to remap matrices with l > 0 onto the appropriate q sampling

points before using equation (9) to compute the real-space

Bl(r, r0) matrices (Lanusse et al., 2012).

The code computes a real-space correlation function by

forming a weighted sum of the Bl(r, r0) matrices:

Cðr; r0; cos �Þ ¼
X

l

Pl

r � r0

jrjjr0j

� �

Blðr; r0Þ: ð10Þ

The function Cðr; r0; cos �Þ is a scaled form of the pair angle

distribution function �(r, r0, �) as follows:

Cðr; r0; cos �Þ ¼
�4

0I2
0

jsin �j
�ðr; r0; �Þ; ð11Þ

where I0 ¼ r2
eNI=A2, recalling that solid-angle and polariza-

tion effects are already assumed to be corrected. Here �0 is the

mean density in the sample and NI is the number of incident

photons (electrons) in the exposure. The jsin �j term corrects

for a factor that arises in the derivation of the PADF using

spherical coordinates (Martin, 2017).

It can be shown that the PADF can be written as

�ðr; r0; �Þ ¼

Z Z

gð2ÞðrÞ gð2Þðr0Þ �ðcos � � r̂ � r̂
0
Þ d�r d�r0 ; ð12Þ

where g(2)(r) is the two-atom distribution function in 3D, r̂ and

r̂
0

are unit vectors and d�r is the solid-angle element asso-

ciated with the coordinate r. Equivalently, the PADF can be

written as

�ðr; r0; �Þ ¼ ~g
ð2Þ
ðr; r; 0Þ þ ~g

ð3Þ
ðr; r0; �Þ þ ~g

ð3Þ
ðr; r0; � � �Þ

þ ~g
ð4Þ
ðr; r0; �Þ: ð13Þ

The functions ~gðnÞðr; r0; �Þ are multi-atom correlation func-

tions, parametrized by two pair distances and a relative local

angle. Note the n = 2 term is only non-zero where r = r0. The

tilde symbol indicates that these terms differ from the general

correlation functions of statistical mechanics by integrating

out the degrees of freedom that the diffraction is insensitive

to, such as the absolute position and absolute orientation of

the pairs and the distance between the pairs. The remaining

degrees of freedom are shown in the diagram in Fig. 2. Further

detail about the definitions of these functions can be found in

the report by Martin (2017).

2.2.2. corrtopadf.py: computing the PADF from the

correlation function. The script corrtopadf.py converts

the q-space correlation function into the PADF. It calculates

the Bl(q, q0) matrices, applies the numerical spherical Bessel

transforms to obtain Bl(r, r0) matrices and then reconstructs

the PADF. The Bl(q, q0) and Bl(r, r0) matrices can be saved as

optional output. The number of spherical harmonics is set to

control the angular resolution and only even spherical

harmonics are used, because the inclusion of odd harmonics

reduces the accuracy of the matrix inversion. The approx-

imation to remove odd harmonics is valid when absorption is

neglected. As per equation (11), the output Cðr; r0; cos �Þ can

be multiplied by sin � to produce a function proportional to

the PADF. There is an option to multiply by the constants in

equation (11) to obtain absolute values of the PADF.

We note that the current version of the pypadf code has

been developed further since the first experimental demon-

strations (Martin et al., 2020a,b; Adams et al., 2020). The

numerical accuracy has been improved via changes to the

normalization of basis functions and the inclusion of sin �

terms that arise from angular sampling considerations. These

improvements produce more accurate peak heights in the

PADFs. The structural interpretations of the early experi-

mental papers were primarily based on the angular peak

positions, which are less affected by these improvements to the

code. Hence, we consider that the conclusions of the first

PADF studies are still valid.

3. An example PADF calculation

Here we provide an example of a PADF calculated from a

simulated set of fluctuation scattering diffraction patterns. The

model sample contains six point scatterers in a hexagonal

arrangement with a nearest-neighbour distance of 15 nm. For

each pattern the diffraction pattern was rotated to a random

orientation. A data set of 1000 diffraction patterns was

simulated with diffract.py on a 512 � 512 pixel grid. The

maximum q value recorded at the edge of the detector is

1.28 nm� 1, which corresponds to a resolution of 0.78 nm.

Example diffraction patterns from the data set are shown in

Figs. 3(a) and 3(b). The regularity of the observed interference

patterns arises from the geometric arrangement of the six
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Figure 2
The relevant coordinates of (left) three-atom combinations and (right)
four-atom combinations that contribute to the PADF. The PADF is not
sensitive to absolute position, absolute orientation or, in the four-atom
case, the separation distance between the two atom pairs.



scatterers and their absolute orientation. There is a weak

attenuation at high q values due to the atomic scattering factor

and the reduced solid angle of pixels near the edge of the

detector. No noise is modelled on the detector.

The correlation function computed from all 1000 simulated

patterns is shown in Fig. 3(c). Since no background signals

have been modelled, the standard correlation function C(q,

q0, �) defined by equation (1) has been calculated. The highest

l value in the spherical harmonic expansion was 32, which

corresponds to an angular resolution of 11.25�.

There are strong features at angles of 60� and 120�, which

are expected from the hexagonal arrangement of atoms in the

sample. The correlation function is strongest at 0� and 180�,

which is expected because it has been calculated with a

regular sampling of �. Fig. 3(d) shows the correlation

function after applying a sin � scaling with maskcorr.py

(see Section 2.1.3) as this is a necessary prior step for accurate

PADF measurements. The PADF was calculated using

corrtopadf.py and the result shows the expected angular

peaks for a hexagonal arrangement of scatterers at r = r0 = 15,

26 and 30 nm and at 60� and 120� [see peaks labelled A, B and

C in Fig. 3(e)]. There are some weaker oscillatory artefacts

that are caused by the finite radial and angular sampling. Fig.

3( f) shows the result on convolving (e) with a small Gaussian

kernel (radial half-width of 0.75 nm and angular half-width of

1�), which reduces the pixelization effects at the peak location

and assists in identifying peak heights. The ratios of the peak

heights of the convolved PADF are within 11% of the ideal

peak ratio values, as shown in Table 1. This shows that both

the peak positions and the peak heights can be analysed

quantitatively.

We would expect results approaching this accuracy to be

obtainable from X-ray experiments, if the sample and

experimental conditions can be modelled by kinematic scat-

tering and no absorption. For electron diffraction, it is not yet

known how much additional error may arise from dynamic

scattering.

As mentioned above, the raw output of corrtopadf.py

is multiplied by jsin �j to generate the PADF, and this is

necessary for analysing peak heights. However this multi-

plication is inconsistent with the finite number of angular basis

functions used and artificially lowers the values near � = 0.

Hence, peak heights near � = 0 cannot be analysed quantita-

tively yet. The range of affected angles around 0 depends on

the angular resolution, as defined by the number of spherical

harmonics used, which for our example is about �6�. A

modified form of the multiplicative sin � term is needed, but a

numerically reliable modification is not yet known.

The widths of the peaks are determined by the finite radial

and angular resolution. The radial resolution is set by the

maximum q value used in the calculation of the correlation

function, which is set to be the q-space distance from the

centre of the diffraction pattern to the detector edge. The

angular resolution of the PADF is set by the maximum value

of l used in the calculation, which was lmax = 30.

There is angular structure that is not expected from the

ideal structure, which is weaker than the principal angular

peaks. These are artefacts created by truncating the basis sets

used, which are analogous to Fourier artefacts in signal

processes caused by the truncation of the Fourier series

expansion. The truncation artefacts can be reduced by

increasing the angular and radial resolution, but cannot be

removed entirely because the experimental data converge at a

finite resolution.
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Figure 3
(a), (b) Two diffraction patterns from the model hexagonal sample. (c)
The q-space correlation function for the hexagonal model calculated from
1000 patterns without the sin � correction. (d) The q-space correlation
function from panel (c) with the sin � correction. (e) The PADF of the
hexagonal structure computed from the corrected q-space correlation
function. ( f ) The PADF convolved with a narrow Gaussian kernel. (g)
The pair combinations that generate the points A, B and C that are
marked in panel (e).

Table 1
Ratios of the peak heights recovered from the diffraction simulation.

The labels A, B and C are defined in Fig. 3(e). RA/B stands for the ratio of the
height of peak A to the height of peak B, and RC/A denotes the ratio of the

height of peak A to the height of peak C.

Peak ratio Ideal value Recovered value

RB/A 1 1.11
RC/A 0.25 0.26



Aside from the r = r0 slices shown in Fig. 3, the

plotfxs3d.py script can plot other 1D and 2D sections

from the 3D PADF volume. Current options include a 2D slice

of constant � value or constant r value, and 1D radial or

angular lines.

4. Access to pypadf

The pypadf package can be downloaded from https://github.

com/amartinrmit/pypadf and is distributed under the GNU

Lesser General Public Licence (LGPL, Version 3; https://www.

gnu.org/licenses/lgpl-3.0). The pypadf package is written in

Python3 and requires the following packages: NumPy, SciPy,

MatPlotLib, Numba, the Python imaging library (PIL) and

h5py. The configuration and input files for the hexagonal

example shown here are included with the code. The readme.

md file contains instructions for installation, and a list of

possible parameters for each script can be found with the

-help command line argument.

5. Conclusion and future work

We have presented the pypadf package, which can compute

the pair angle distribution function from fluctuation scattering

diffraction data. The package includes scripts that can simu-

late diffraction patterns, compute angular correlation func-

tions, modify angular correlation functions, compute the

PADF and finally plot the results. The analysis assumes kine-

matic scattering approximations, no absorption, and that each

diffraction pattern is of a sample in a random orientation or a

statistically independent region of a bulk disordered sample.

We expect the code to be useful for probing local 3D struc-

tures in disordered materials probed with X-ray and electron

beams.

Scanning and serial diffraction experiments are well

established data collection methods with electron micro-

scopes, synchrotrons and X-ray free-electron laser facilities.

We expect that many existing fluctuation data sets are suitable

for PADF analysis and that many facilities already have the

capability of measuring these data sets.

Further work is still required to understand the conver-

gence of the correlation functions and how to reduce numer-

ical artefacts in the linear transformations, interpolations and

matrix inversions that are used. For electron diffraction

calculations, the effect of dynamic diffraction is yet to be

investigated.

APPENDIX A

Diffraction scripts

A1. The input data: far-field diffraction patterns

A1.1. Diffraction: mathematical and numerical details. The

input data for the correlation calculation are a set of diffrac-

tion patterns I(q), where q = qs � q0 is the difference between

the scattering qs and incident q0 wavevectors. The kinematic

diffraction approximation (single elastic scattering) is

assumed. The intensity for a uniform incident pulse is given by

IðqÞ ¼ r2
ePðqÞ

NI

A2
d� jFðqÞj2; ð14Þ

where re is the classical electron radius, P(q) is a polarization

factor, d� is the solid angle of a pixel, A is the beam area, NI is

the number of incident photons (electrons) and F(q) is the

molecular scattering factor, which is calculated from the

atomic positions.

Due to the Ewald sphere, the solid angle subtended by a

pixel reduces if the pixel is located further away from the

beam centre. The reduction in solid angle is approximately

given by d�i ¼ d�0 cos �S;i, where d�0 is the solid angle of a

pixel at the beam centre and �S, i is the scattering angle defined

in equation (2). There is an option to apply this approximation

in diffraction pattern simulations and the effect becomes

significant for wide-angle diffraction.

A1.2. diffract.py: computing test diffraction data. The

script diffract.py can be used to compute basic diffrac-

tion data for testing the correlation and PADF scripts. This

script computes a diffraction pattern of a randomly orientated

molecule from atomic coordinates given in a Protein Data

Bank file (.pdb; https://www.rcsb.org/). It does not use any

unit-cell or crystal lattice information and hence only simu-

lates continuous diffraction. The atomic scattering factors are

taken from Waasmeier & Kirfel (1995), and data from Henke

et al. (1993) are used for wavelength-dependent corrections. A

square detector is assumed and its distance from the sample,

pixel width and number of pixels along a side length can be

varied.

A1.3. diffract_and_correlate.py: testing large data

sets. When simulating large diffraction data sets, it can be

impractical to store every diffraction pattern prior to calcu-

lating the correlation function. The script diffract_

and_correlate.py simulates diffraction patterns and

correlates those patterns on the fly. Only a small number of

diffraction patterns are created at any one time. They are then

correlated and deleted and the cycle is repeated. A single

atomic structure can be used, which can be randomly rotated

and translated with periodic boundary conditions to generate

the diffraction patterns. This script takes the same parameters

as diffract.py and difftocorr.py.
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Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson,
D. A., Hagen, D. R., Pasechnik, D. V., Olivetti, E., Martin, E.,
Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price,
G. A., Ingold, G., Allen, G. E., Lee, G. R., Audren, H., Probst, I.,
Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J.,
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