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Dynamic ensembles of macromolecules mediate essential processes in biology.

Understanding the mechanisms driving the function and molecular interactions

of ‘unstructured’ and flexible molecules requires alternative approaches to those

traditionally employed in structural biology. Small-angle X-ray scattering

(SAXS) is an established method for structural characterization of biological

macromolecules in solution, and is directly applicable to the study of flexible

systems such as intrinsically disordered proteins and multi-domain proteins with

unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et

al. (2007). J. Am. Chem. Soc. 129, 5656–5664] was the first approach introducing

the concept of ensemble fitting of the SAXS data from flexible systems. In this

approach, a large pool of macromolecules covering the available conformational

space is generated and a sub-ensemble of conformers coexisting in solution is

selected guided by the fit to the experimental SAXS data. This paper presents a

series of new developments and advancements to the method, including

significantly enhanced functionality and also quantitative metrics for the

characterization of the results. Building on the original concept of ensemble

optimization, the algorithms for pool generation have been redesigned to allow

for the construction of partially or completely symmetric oligomeric models, and

the selection procedure was improved to refine the size of the ensemble.

Quantitative measures of the flexibility of the system studied, based on the

characteristic integral parameters of the selected ensemble, are introduced.

These improvements are implemented in the new EOM version 2.0, and the

capabilities as well as inherent limitations of the ensemble approach in SAXS,

and of EOM 2.0 in particular, are discussed.

1. Introduction

Small-angle X-ray scattering (SAXS) of particles in solution is

a widely used technique for the structural characterization of

biological macromolecules (Svergun et al., 2013; Feigin &

Svergun, 1987). Perhaps one of the most exciting applications

of the technique is in the field of unstructural biology (Tompa,

2011), where SAXS is increasingly employed to extract

information from extremely challenging systems including

flexible multi-domain proteins with disordered inter-domain

linkers and intrinsically disordered proteins (IDPs). Flexible

particles are difficult objects to study and often little is known

about their structural organization or lack thereof. It is

increasingly recognized that structural disorder appears to be

a common feature of functional macromolecules with

approximately 40% of proteins in the human genome

presenting at least one disordered region (� 30 residues) and

25% likely to be completely disordered (Chouard, 2011),

obviating to some extent the traditional dogma of structural

biology: function requires structure. An increasing number of
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studies demonstrate that the absence of a stable predefined

shape does not prevent biomolecules such as proteins from

performing important biological functions (Rubio-Cosials et

al., 2011; Devarakonda et al., 2011; Pérard et al., 2013; Uversky

et al., 2008). Instead, structural plasticity is often essential for

the execution of specific roles, in particular for proteins that

perform both multiple and single tasks. Consequently the

concept of disorder has been revisited and associated with a

macromolecule’s complexity; however, the standard high-

resolution approaches of structural biology are limited in their

ability to characterize disordered systems. Crystallization of

flexible systems for macromolecular X-ray crystallography

(MX) is challenging, and the inherent size limitations

(�60 kDa) of nuclear magnetic resonance (NMR) hinder

applicability. Furthermore, when applied to flexible particles

electron microscopy (EM) and atomic force microscopy

(AFM) often yield complex and ambiguous results. Without

the requirement for crystals and without effective size

limitations, SAXS in near-native solutions is becoming more

and more popular for the characterization of such systems.

Qualitative and quantitative scattering studies can be

conducted on disordered systems, with flexible particles

represented as collections of spheres (Calmettes et al., 1993) or

more commonly using an ensemble of molecular conforma-

tions (Ozenne et al., 2012). Ensemble representations of such

supertertiary structure (Tompa, 2012) were initially developed

for NMR studies (Bernadó et al., 2005), but were quickly

extended to other techniques in structural biology including

solution scattering. The Ensemble Optimization Method

(EOM) (Bernadó et al., 2007) was the first ensemble-based

fitting strategy proposed to address the structural character-

ization of IDPs by SAXS, and a number of other imple-

mentations of this approach have followed e.g. MES (Pelikan

et al., 2009), BSS-SAXS (Yang et al., 2010), EROS (Różycki et

al., 2011), ENSEMBLE (Krzeminski et al., 2013). These

SAXS-driven ensemble modelling programs have enabled

effective characterization of a number of IDPs and modular

single-chain proteins that was not possible by MX, NMR and

microscopy alone. This success is now pushing development of

the method for even more challenging studies in unstructural

biology. These include complexes of protein and nucleic acids,

mixtures of oligomeric states and assemblies, specification of

surface contacts and interfaces, and symmetry operations. This

work presents an enhanced version, EOM 2.0, introducing

new developments that aim to expand the utility of the

approach for solution scattering studies. Some limitations of

the original implementation are addressed, and case studies

where the prototypal version of EOM 2.0 has been success-

fully employed are discussed. Further, we analyse the capacity

of the ensemble approach in SAXS to resolve distinct

conformational states and also provide quantitative metrics

for characterizing the results provided by the ensemble fitting.

2. The ensemble concept in SAXS

When a solution of non-interacting chemically identical

particles is illuminated in a SAXS experiment, the recorded

scattering pattern I(s) is a sum of that produced by each

particle averaged over all orientations, where I is the scattered

intensity and s refers to the magnitude of the scattering vector

defined as s = 4� sinð�Þ=� (where 2� is the scattering angle and

� is the wavelength of the incident X-rays). For a system of

flexible macromolecules, each conformation of each particle

will contribute on the timescale of the SAXS measurement

(typically, from sub-seconds to minutes). As the particles in a

dilute system scatter independently, the time average due to

changing conformation of a single particle is equivalent to the

average over the entire ensemble. As a result, I(s) represents

the sum of the average scattering intensities of all conforma-

tions present in the conformationally polydisperse solution

(Svergun et al., 2013). Thus the scattering data themselves will

encode the degree of structural order/disorder. Qualitative

assessment of structural disorder versus compactness of e.g.

proteins can often be achieved by a transformation of the

experimental data to a Kratky representation [s2 I(s) versus s]

(Glatter & Kratky, 1982), or using a dimensionless plot (sRg)2

I(s)/I(0) versus sRg, where Rg is the radius of gyration (Durand

et al., 2010). In these simple but informative plots globular

macromolecules follow asymptotic behaviour at high scat-

tering angles and display a bell-shaped peak with a well

defined maximum at low angles. For disordered protein chains

and polymers the peak at low angles is absent and an increase

in intensity to a plateau followed by a monotonic increase at

higher angles is observed [see reviews for details (Receveur-

Brechot & Durand, 2012; Bernadó & Svergun, 2012). A

distinct lack of features in the real-space distance-distribution

function, P(r), computed by a Fourier transformation of I(s)

(Bernadó, 2010) as well as the absence of a plateau in a Porod–

Debye representation [s4 I(s) versus s4] (Rambo & Tainer,

2011) may also indicate disorder/flexibility. Additionally,

failure to generate a satisfactory single model during rigid-

body refinement against the experimental scattering data from

a potentially flexible system may additionally suggest confor-

mational polydispersity (Petoukhov et al., 2012). In such cases

an ensemble approach to modelling is likely to be more

appropriate and may yield greater insight into the biology of

the system. In such cases, an ensemble of conformationally

polydisperse particles is approximated as a mixture according

to equation (1):

IðsÞ ¼
P

k

vkIkðsÞ ð1Þ

where Ik(s) is the scattering intensity from the kth component

and vk the volume fraction for that component (Konarev et al.,

2006). For flexible systems, the deconvolution of the scattering

pattern into those from single components is clearly impos-

sible given the very large number of conformers and an

indirect approach is required. The strategy on which EOM is

based consists of three main steps: (i) generate a large pool of

possible conformations in order to approximate the (other-

wise infinite) conformational space; (ii) compute the scattering

profile for each conformation; (iii) select a subset of confor-

mations that minimizes the discrepancy �2 [equation (2)]:
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�2
¼

1

K � 1

XK

j¼1

�IðsjÞ � I expðsjÞ

�ðsjÞ

� �2

ð2Þ

where Iexp(s) is the experimental scattering, K is the number of

experimental points, �(sj) are standard deviations and � is a

scaling factor (Bernadó et al., 2007).

EOM employs a genetic algorithm (GA) to select subsets of

conformations from the random pool that best fit the experi-

mental data. This selected ensemble then represents a low-

resolution sample space which is used to generate distribu-

tions of structural parameters, and it is these distributions of

parameters and not the ensemble members themselves that

form the basis of the analysis. Results are then reported for the

selected solutions as distributions of the parameters Rg and

the maximum particle dimension (Dmax). These parameters

are pre-calculated in real space from all conformers at the

stage of pool generation. The distributions are then compared

with those derived from the initial pool, representing the

unrestricted conformational freedom of the system, in order to

visually delineate overall properties of biomolecules such as

compactness and flexibility (Bernadó et al., 2007).

The widespread use of the original implementation of the

EOM software and the subsequent adaptation of ensemble

approaches in biological scattering studies demonstrate the

usefulness of the method. However, the studies conducted

have highlighted a number of limitations of SAXS-driven

ensemble fitting and its applicability that necessitate further

development for the extension of the method to more

complicated cases. Also to be addressed is the often non-trivial

interpretation of the results by visual comparison of the Rg

and Dmax distributions. An unambiguous approach based on

widely shared metrics must also be introduced to enhance the

fidelity of the ensemble method. These concerns are addressed

in the following sections.

3. Advanced EOM 2.0: enhanced ensemble generation,
selection and optimization

The successful use of an ensemble approach to describe a

solution of biomacromolecules rests on the following: (i)

realistic and adequate sampling of conformational space

during pool generation; (ii) the employment of an appropriate

search technique (usually Monte Carlo-based) for the selec-

tion of an ensemble that optimally describes the experimental

data; (iii) the presentation of results in a clear, straightforward

and, whenever possible, quantitative way. The pool generation

task must produce feasible models (e.g. avoiding steric clashes

and maintaining chain connectivity) that cover the possible

conformational space and, if available, incorporate high-

resolution information from complementary techniques, e.g.

MX and NMR. The search procedure should also be able to

optimize the number of conformations in the ensemble. It

should be noted here that the best strategy may not necessa-

rily lie in the minimal number of conformations that can

describe the experimental data (this principle is hardly

applicable to very flexible systems like IDPs). Instead, a

possibility should be provided to adjust

the number of conformers in the search

for the optimized ensemble contributing

to the final scattering. These considera-

tions form the basis for the develop-

ments discussed below.

3.1. Intelligent generation of missing
fragments

SAXS is commonly employed to

account for mobile regions absent from

high-resolution structures. Often these

regions are disordered and must be

modelled taking into account particular

features of unstructured and/or flexible

macromolecules (e.g. dihedral angles).

For the ensemble generation as applied

to proteins, a heuristic algorithm for

intelligent browsing of the bond versus

dihedral angle distribution represented

by the C�–C� Ramachandran plot

(Kleywegt, 1997) (Fig. S1 in the

supporting information) has been

implemented. This approach allows

missing regions or ‘linkers’ to be

feasibly modelled without size limita-

tions, using a random or native sequence

designation for the generation of ‘fully
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Figure 1
(i) Different views of an example multi-domain protein composed of two domains [solved by MX:
(a) grey and (b) yellow], connected by a disordered linker 30 amino acids long (transparent red
spheres, left area). (ii) Multiple inter-domain linker reconstructions (multiple colours) computed
with EOM (upper-right area). (iii) Different views of multiple inter-domain linker reconstructions
computed with EOM 2.0 using the new possibility to fix domain positions in three-dimensional
coordinates (bottom-right area).



disordered’ and ‘less disordered’ regions, respectively. Both

modes generate the chains following Flory’s relationship

[equation (3)] (Flory, 1953):

Rg ¼ R0Nv ð3Þ

where N is the number of monomeric units in a polymer chain,

R0 is a constant that depends on the persistence length of the

polymer and v is an exponential scaling factor [for IDPs, R0 =

1.927�0.27 and v = 0.598�0.028 (Kohn et al., 2004), and for

chemically denatured proteins R0 = 2.54�0.01 and v =

0.522�0.01 (Bernadó & Svergun, 2012). The impact/robust-

ness of the introduction of this feature is discussed below.

3.2. Oligomer generation and symmetry operations

In the original EOM implementation, tools for oligomer

generation and for the definition of specific interfaces and

inter-domain/subunit contacts were not available. To over-

come this shortcoming, the ability to fix all the subunits in

defined positions and orientations is now introduced, signifi-

cantly reducing the probability of obtaining nonsensical

conformations and allowing for the generation of specific

structural assemblies (Fig. 1).

Oligomeric assemblies with flexible regions are an impor-

tant class of biological macromolecules, and their study adds

an extra level of complexity to the ensemble-based modelling.

Disordered regions in a multi-domain protein may retain the

symmetry observed for the high-resolution core, and the

generation of symmetric configurations of the full-length

protein based on this core can help to significantly restrict, as

well as better describe, the conformational space from which

the search algorithm samples (Fig. 2a). As symmetry may not

necessarily be preserved beyond the core structure, it is also

important that modelling asymmetric flexible sections is

possible (Fig. 2b). The options to import a high-resolution

oligomeric core structure and the generation of user-defined

interfaces have been introduced into EOM 2.0, with the latter

option using a contact distance restraint between specified

sequence positions. In cases where a definite oligomeric core

structure is not available, complementary biophysical techni-

ques and tools, e.g. PISA (Krissinel & Henrick, 2007), can be

used to detect potential interfaces. Non-crystallographic

symmetry (i.e. symmetry P7, P9, P11 etc.) can also be applied.

The current implementation provides interface definitions and

symmetry operations, allowing for the modelling of complex

inter-particle interactions (e.g. protein–protein or protein–

nucleic acids), while still broadly sampling the available

conformational space and generating configurations free of

steric clashes.

3.3. Optimization of the ensemble size

In the original EOM it was assumed that each member of

the selected ensemble contributes equally to the overall

scattering intensity, with the ensemble size predefined (by

default, 20 conformations). In the present version, the

ensemble size may be optimized during the minimization

procedure together with the selection of the conformers. The

search procedure randomly selects ensembles within a custo-

mizable range of sizes, uniformly distributed. The ensemble

that best minimizes the discrepancy �2 is selected and its size

represents the refined number of conformations, each with

individual weights (fractions of occupancy). Accordingly,

more flexible proteins are described by more populate

ensembles (typically between ten and 20; up to a maximum of

50 conformers are allowed) whereas the scattering from more

rigid molecules can still be fitted by a small number of

conformations (between two and five but theoretically down

to one, if there is a single conformer that provides an excellent

fit). In other ensemble fitting approaches, weighting of parti-

cular conformers has been adopted, although implemented

differently, and a minimal set of several dominant conforma-

tions was searched to describe the scattering data (Pelikan et

al., 2009; Yang et al., 2010). Looking for a minimum set may

provide good results for macromolecular systems adopting a

few defined conformations, but this is not likely to be an

optimum strategy for very flexible systems, such as IDPs,

which adopt an astronomic number of configurations in

solution.

3.4. Ensemble fitting with multiple pools

SAXS-driven ensemble fitting can also be applied to the

study of mixtures, including oligomeric equilibria and solu-
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Figure 2
Different views of a hexameric multi-domain protein with a symmetric
oligomeric core. Each monomer is composed of two domains connected
by a flexible linker and with disordered N- and C-termini. (a) Generated
full-length hexamer where P6 symmetry is applied to the core and to the
disordered regions. (b) Asymmetric modelling where the generated
chains are independent of each other and the symmetry is present in the
core only.



tions of multiple distinct particle species. In such cases, when

complementary methods provide additional information on

the components and/or assemblies present, multiple pools can

be generated for each species (e.g. monomer, dimer,

tetramer). These pools can be obtained externally or gener-

ated by EOM 2.0, and compose an expanded search space. If

warranted (e.g. based on analytical ultracentrifugation data),

the percentage of models selected from each pool may be

defined prior to optimization. Care must be taken with the

interpretation of such an analysis as the systems containing

multiple species are yet less determined compared to those

with only conformational polydispersity. Supporting infor-

mation from other sources is often required to draw mean-

ingful conclusions from the analysis of multiple pools (see x5).

3.5. Measures of flexibility, Rflex and Rr

The major result of EOM analysis are the distributions of

low-resolution structural parameters (Rg and Dmax), which

describe the flexibility of the system. These distributions are

obtained by averaging multiple runs of the GA (Bernadó et al.,

2007) and encode information about the states assumed by the

particles in solution. They can be described as probability

density functions S = (X;P), where P = (p1; . . . ; pn) is the

probability ascribed to the interval X = {x1; . . . ; xn} such that

Pn
i¼1

p xið Þ ¼ 1: ð4Þ

The characteristics of the selected ensemble are compared to

those displayed by the pool allowing one to assess the flex-

ibility of the system. Previously, decoding of this information

was left to the visual perception of the user leaving room for

potential misinterpretations; here we introduce a quantitative

measure utilizing the concept of information entropy.

The entropy Hb(S) (Shannon & Weaver, 1949)

HbðSÞ ¼ �
Pn
i¼1

pðxiÞlogb½pðxiÞ�

with logb½pðxiÞ� ¼ 0 if pðxiÞ ¼ 0 ð5Þ

can be conveniently applied to enable a quantitative char-

acterization of EOM size distributions (see the supporting

information for further details). Indeed, a protein showing a

broad Gaussian-like distribution of parameters, where it is

assumed the disordered regions move randomly in solution,

can be viewed as a carrier of high uncertainty. Here, Hb(S)

tends to �1, which is expected to be close to the Hb(S)

calculated for the pool. Conversely, a protein with a narrow

size distribution (a scenario where the particle exhibits limited

flexibility) provides low uncertainty, with Hb(S) tending to 0.

Consequently, the distributions, i.e. uniform [Hb(S) = �1] and

single value [Hb(S) = 0], are then considered as representa-

tions of extreme, albeit theoretical, cases of maximal flexibility

and complete rigidity, respectively. The information content,

or entropy, can therefore be used as a quantitative measure of

flexibility (Figs. 3a, 3b) with a metric we define as Rflex2 [0,1]:

Rflex ¼ �HbðSÞ: ð6Þ

Using Rflex, the selected ensemble distribution can be

numerically compared to that of the pool, the latter repre-

senting a reference for flexibility. For convenience, Rflex can be

reported as a percentage in the range 0 to 100%, with Rflex =

100% indicating maximum flexibility. This convention will be

followed here.

The Rflex metric allows one to quantify the difference

between flexible and rigid systems; it is especially useful in

conjunction with the additional metric R�:

R� ¼
�S

�P

ð7Þ

where �S and �P are the standard deviations for the distri-

butions of the selected ensemble and of the pool, respectively.

R� indicates the variance of the ensemble distribution with

respect to the original pool, yielding values close to 1.0 when

the ensemble distribution describes a fully flexible system and

largely reproduces the conformational space of the pool.

Therefore, in cases where Rflex is smaller than that of the pool
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Figure 3
Qualitative characterization of particle flexibility from various character-
istic Rg distributions. (a) Pool (black), which represents the case of
complete randomness; EOM(1) (purple), EOM(2) (orange), EOM(3)
(pink) and EOM(4) (dark green) which represent the real outcome of
independent EOM 2.0 runs in terms of Rg distributions; uniform (cyan),
compact (light blue), bimodal (red) which represent extreme (theore-
tical) cases. (b) Hb(S) values computed from the distributions in (a). (c)
Combination of Rflex values for all the distributions (and compared to the
threshold of randomness computed from the pool, in brackets, �89%)
with the associated R� values. The last example (red curve) indicates a
potentially inconsistent result.



distribution, R� should be below unity. Conversely, when Rflex

tends to values greater than that of the random pool, R� > 1.0.

For the cases where Rflex is significantly smaller than that of

the random distribution but R� > 1, further investigation is

required as this combination may point towards poor data

quality. The above-mentioned cases (Fig. 3a) are therefore

compared in Fig. 3(c) where conclusions regarding ensemble

flexibility based on the Rflex and R� metrics are reported,

allowing also an automated check for discovering potential

artifacts e.g. due to poor data quality or aggregation. In

addition to Rflex and R�, distributions are also compared using

a set of standard descriptors: standard deviation, average

absolute deviation, kurtosis, skewness and geometric average

(see the supporting information).

4. Applications of EOM 2.0: tests and case studies

The major prerequisites for successful application of the

SAXS-driven ensemble-based modelling are: (i) the initial

search pool is populated with models that describe well the

available conformational space, and (ii) that a robust

ensemble selection is driven appropriately by the experi-

mental data. The following tests and case studies demonstrate

that the new implementation of EOM does successfully meet

these conditions.

4.1. Adequate sampling of the conformational space of
unfolded proteins

The population of end-to-end distances of unfolded

proteins is expected to follow that of a Gaussian distribution,

with a mean squared end-to-end distance equal to 70(� 15) Å2

� N, where N is the number of amino acids in the polypeptide

chain (Fitzkee & Rose, 2004). It is thus important to ensure

that the members of a search pool generated for unfolded

proteins conform to this behaviour.

In the first test of EOM 2.0 for unfolded proteins, pools of

10 000 polyalanine models of sequence length 100 or 500

amino acids were generated in random mode. This process was

repeated five times for each sequence length and the end-to-

end distances for individual models were calculated using the

statistical package R (R Core Team, 2014). Histogram plots of

each pool were then generated and compared to the theore-

tical Gaussian distributions calculated using the same mean

and standard deviation values as extracted from the pool (Fig.

4). In both cases the resulting distributions well approximate

the theoretical Gaussian with averaged RMSDs (between

densities of normal and pool distributions) of 1.6 � 10�4 (N =

100) and 1.2� 10�4 (N = 500), respectively. The mean squared

end-to-end distances were 5591 Å2 (�56 � N, N = 100) and

33 057 Å2 (�66 � N, N = 500) for smaller and larger chains,

respectively, in agreement with the experimental data for

unfolded proteins (Tanford et al., 1966). This result indi-

cates that a pool of 10 000 conformations is sufficient

to approximate the conformational space of unfolded

proteins.

4.2. Evaluation of amino-acid number-to-Rg ratio

The radius of gyration, Rg, is one of the most important

parameters for the analysis of macromolecules by SAXS. In

EOM 2.0, generation of disordered regions is based on an

intelligent usage of the native or random dihedral angle modes

derived from the C�–C� Ramachandran plot. The capability of

the method to generate feasible models that satisfy the theo-

retical Rg values described in x3.1 for

IDPs and chemically denatured proteins

was therefore tested for both native and

random modes.

According to Flory’s equation

[equation (3)] the Rg of a peptide chain

is power-law dependent on the number

of amino acids. To investigate the

concordance of EOM 2.0 with this

expectation, multiple pools (15) of

10 000 conformers of polyalanine were

constructed in random as well as native

modes. This was repeated for sequences

of varying length (10, 20, 50, 100, 200

amino acids) and the average Rg was

calculated. Fig. S3 shows the agreement

of the average Rg for the pools gener-

ated in both modes with the theoretical

estimations of Rg using equation (3).

Thus search pools generated in both

modes by EOM 2.0 well represent

chemically denatured proteins as well as

IDPs. Moreover, the a posteriori-
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Figure 4
Distribution of end-to-end distances computed from pools containing 10 000 structures of 100 and
500 amino-acid chains and compared with the expected normal distribution having the same mean
and standard deviation values.



extracted parameter v is in agreement with the theoretical

values found in the literature (Fig. S4).

4.3. Discrimination between distinct conformations

EOM is often employed for the analysis of flexible multi-

domain particles, especially proteins, for which high-resolution

fragment structures are available (i.e. domains, subunits,

ligands). These modular systems often provide regulatory

mechanisms by adopting specific subsets of conformations in

solution. For example, open and closed protein conformations

can expose or hide important surface residues essential for

interaction with specific or generic partners, with conforma-

tional flexibility the key driver of the function. SAXS-driven

ensemble fitting approaches are well suited to the study of

these systems, providing the means to examine the degree of

flexibility and to discriminate between the dominant confor-

mations present under specific solution conditions.

The high-resolution structures of the protein calmodulin, a

Ca2+-binding protein with a myriad of cellular functions

dependent on its conformational state, were used to test the

power of EOM 2.0 to discriminate between open [PDB entry

1cll (Chattopadhyaya et al., 1992), Rg = 22.6 Å] and closed

[PDB entry 1ctr (Cook et al., 1994), Rg = 16.7 Å] conforma-

tions. As calmodulin has two well defined EF-hand domains

connected by a labile helical linker, it provides an excellent

case to test the capacity of EOM 2.0 to identify dominant

conformational states from an ensemble of configurations. The

theoretical scattering intensities of the open and closed forms

of calmodulin were calculated using CRYSOL (Svergun et al.,

1995), and the theoretical scattering intensity of a mixture of

open and closed conformations (no intermediate conforma-

tions are here considered) simulated by averaging the inten-

sities of the open and closed forms using PRIMUS (Konarev et

al., 2003). Three pools of 30 000 conformations were gener-

ated, each with a different flexible sequence length between

the two EF-hand domains (zero, six or 12 amino acids). The

theoretical SAXS profiles of calmodulin corresponding to the

open, closed and mixture states were used as input for EOM

2.0 and the ability of the program to identify the dominant

conformations tested. The resulting distributions of Rg

presented in Fig. 5 show that in all cases the genetic algorithm

was able to resolve the two conformations (i.e. open versus

closed), demonstrating that EOM 2.0 has sufficient discrimi-

nating power for the successful resolution of distinct confor-

mations from a solution mixture.

4.4. EOM resolution and multimodal distributions

The question of the ‘resolution’ of EOM is clearly impor-

tant, especially when dealing with multimodal distributions. In

a bimodal distribution of Rg, for example, what is the
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Figure 5
Distributions of Rg pools (blue) and selected ensembles (red) for determination of open and closed conformations of calmodulin using three different
lengths of inter-domain disordered linkers (zero, six and 12 amino acids) for the pool generation. Violet and light blue triangles show Rg for closed and
open conformations, respectively.



minimum difference between the two dominant Rg peaks or

‘subpopulations’ that can be distinguished? To test the reso-

lution of EOM 2.0, an initial pool (10 000 models) of poly-

alanine (either 100 or 500 amino acids) was generated and a

subset of conformers representing two subpopulations, each

with a different mean Rg and standard deviation, extracted.

The theoretical scattering intensities of the members of the

subset were calculated by CRYSOL and averaged, producing

a simulated test data set. These data were then used as input

for selection against another independently generated pool

(10 000 models of either 100- or 500-residue polyalanine), and

the resulting selected size distributions were examined. The

test was repeated several times varying the difference between

the mean Rg of each subpopulation and also their standard

deviations. The Rg distributions produced from these tests

demonstrate the resolution capability of EOM 2.0, where the

bimodal distributions expected are indeed observed, indi-

cating that subpopulations of structures can be resolved (Fig.

S5). The results show that the resolution does not depend on

the width (standard deviation) of the subpopulations, up to the

point of intersection, but strongly depends on the absolute

difference in the value of mean Rg. As shown in Fig. 6, two

subpopulations should show a relative difference greater than

approximately two times the standard deviation of the pool

from which they come in order to be distinguished. This result

did not depend on the number of amino acids in the protein.

4.5. Robust ensemble fitting and the impact of noise

Any method based on fitting experimental data with

generated models is subject to the presence of experimental

errors. To test the robustness of EOM 2.0 to random noise, the

following simulations were conducted: (i) a pool of 10 000

polyalanine structures (100 amino-acid residues) was gener-

ated and five models with Rg close to the mean of the pool

(29.05 Å) were selected. The theoretical scattering curves of

the selected models were computed with CRYSOL and

averaged. The scattering curve was then modified by adding

random noise with the magnitude from 0 to 20% of the

intensity values in order to simulate errors and varying data

quality in experimental data (Fig. S6A). The procedure was

repeated 50 times and all these simulated scattering curves

were used as input for EOM 2.0. The same initial pool was

used for the genetic algorithm as the software should provide

similar solution, irrespective of the noise level. Strikingly, even

at a high noise level (up to 20%) and with a good fit, the

average Rg for the final ensemble solution is found to be in

very good agreement with the Rg computed from the Guinier

region (Fig. S6B). This remarkable stability of the average Rg

is not surprising if one considers that the value is effectively

determined using the information from the entire scattering

pattern, and not just from the Guinier region. It can therefore

be concluded that EOM 2.0 is able to provide reliable solu-

tions up to a 20% noise level in the experimental data.

5. Discussion

Techniques and strategies targeting unstructured systems such

as IDPs and flexible modular proteins are increasingly used by

researchers. Understanding how structural disorder relates to

function requires modification of approaches in structural

biology, as such systems are not, for example, readily crystal-

lized for MX studies. Ensemble-based methods have been

introduced for the characterization of flexible biological

macromolecules and have been shown to be a highly useful

addition to the tools employed in unstructural biology (Tompa,

2011). The main goal of the present work was the enhance-

ment of the capability of a widely used ensemble-based SAXS

approach for the characterization of

flexible particles. The original EOM was

applied frequently since its release in

2007 (over 370 citations as to September

2014), yielding interesting results and

new insights for numerous flexible

systems. The functional limitations of

the approach have also been highlighted

by the active user community, providing

the impetus for further development of

the method.

In the present work we describe an

enhanced EOM 2.0, which has been

redesigned in a modular format

allowing also for further modifications

and future developments. An artificial

intelligence approach for the generation

of ad hoc flexible linkers has been

introduced, enabling an adequate pool

generation, and tools for the generation

of multi-subunit assemblies with defined

interfaces, symmetry and flexible linker

regions were introduced. These
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Figure 6
Comparison of Rg distributions showing that subpopulations of conformers can be identified from a
large ensemble if the difference between their mean Rg is greater than approximately two times the
standard deviations of the original pool (bottom left). The Rg values of the two subpopulations are
indicated as vertical lines on each plot.



improvements overcome the limitations of the original

implementation, where only single-chain particles could be

modelled and symmetry was not considered. EOM 2.0 has

already been successfully employed in a prototypal study of

the flexible, trimeric protein gephyrin (Sander et al., 2013),

where the new multi-subunit capabilities facilitated the first

structural study of this dynamic protein in solution.

A question often asked of ensemble-based methods

concerns the number of conformations required to represent

the selected ensemble. In EOM 2.0 an optimal ensemble size

can be automatically determined during the selection proce-

dure driven by the genetic algorithm. This new optimization

reduced potential overfitting as shown by the application of

both EOM and EOM 2.0 to the work of Soykan et al. (2014)

where a point mutation of the enzyme collybistin

(CBSH3+
E262A) favours the flexibility of its SH3 domain and

thus the synaptogenic activity of collybistin in recruiting the

partner protein gephyrin. The ensemble of runtime-optimized

number of conformations provided by EOM 2.0 yields similar

results with a smaller number of conformers compared to that

of the user analysis with a manually defined number of

conformations (Fig. S7). Generally, the fewer conformers

selected by EOM 2.0, the more rigid the protein; flexible

systems still need dozen(s) of conformers in the optimized

ensemble. The automated selection of the number of confor-

mers is an alternative to the approaches implemented by other

groups, e.g. minimal set (Pelikan et al., 2009) or jackknife

procedure jointly using NMR and SAXS data (Sterckx et al.,

2014).

EOM 2.0 makes it possible to combine multiple indepen-

dently generated pools, expanding the search space of the

method. This capability was critical in the study of an oligo-

meric mixture of full-length mitochondrial glutaminase C

(Møller et al., 2013), where EOM 2.0 was used to search

simultaneously through three different search pools (dimer,

tetramer and octamer). The results obtained explain how the

disordered regions of this protein influence the distribution of

oligomeric states and thus the enzymatic activity. This study

provided the first ever experimentally derived structural

model of the full-length mitochondrial glutaminase C, high-

lighting the crucial role played by the disordered regions in

keeping the enzyme tetrameric – which corresponds to the

active state.

The results of the original EOM were analysed through

visual inspection of the distributions. Structural features were

identified qualitatively by the user and the discrimination of

significant differences between distributions was performed

interactively. Here, two metrics facilitating a quantitative

measure of flexibility have been introduced, Rflex and R�,

complementing the low-resolution structural descriptors, Rg

and Dmax. The combined use of the new metrics provides a

powerful tool for the automatic detection of potential artifacts

that may lead to spurious conclusions. The utility of the

combined Rflex and R� is well illustrated in cases where the

distributions of selected ensembles are multimodal. For

example, an extreme bimodal distribution (Fig. S2B, red),

interpreted naively based only on visual inspection, may lead

to the conclusion that the system has maximum possible

flexibility. If this is indeed the case, Rflex of both the random

pool and the selected ensemble will be similar (with Rflex

approaching 100%). However, if the naive conclusion is

wrong, Rflex of the selected ensemble will be significantly lower

than that of the pool (Rflex of the selected ensemble lower than

�50%) suggesting a reduced flexibility.

The application of Rflex and R� to reanalyse the data of the

multi-domain urokinase-type plasminogen activator receptor

(uPAR) (Mertens et al., 2012) demonstrates the suitability of

these new metrics for systematic studies of domain flexibility.

In this study the recalcitrant uPAR was investigated by solu-

tion SAXS due to an inability to crystallize the receptor,

suggesting that the domains of uPAR may be flexible and

hinting that perhaps such flexibility may also drive function.

The analysis demonstrated that the wild-type receptor was

indeed flexible, compared with a stabilized mutant [for which

the crystal structure of a closed conformation could be

determined (Xu et al., 2012)]. Using the metric Rflex the flex-

ibility of wild-type uPAR – previously only qualitatively

assessed (Fig. 7a) – is quantified as Rflex = �82% suggesting a
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Figure 7
Characterization of the flexibility of uPARWT and the mutated uPARH47C-N259C using EOM 2.0. (a) Size distributions (Rg) of uPARWT and uPARH47C-

N259C, providing only a qualitative assessment through direct comparison of the distributions of the selected ensembles and the pool. (b) The metrics Rflex

and R� enable characterization of the flexibility quantitatively, with Rflex = �82% and Rflex = �45%, for uPARWT and uPARH47C-N259C, respectively,
reflecting a significant change in compactness of the particle upon mutation (with a threshold of randomness of �85% calculated from the pool).



nearly random conformation of the linkers (with a threshold

of randomness derived from the pool of �85%). Conversely,

the cysteine-bridged mutant of the receptor, uPARH47C-N259C,

shows significantly reduced flexibility quantified by an Rflex =

�45% (Fig. 7b).

EOM 2.0 has been extensively tested in order to demon-

strate the benefits as well as identify the limitations of its use.

Random coils as well as more ordered/native structures

conforming to theoretical expectation in terms of Rg can be

generated and pools of 10 000 conformations have been

shown to well approximate the entire conformational space

(otherwise infinite) for very flexible particles such as IDPs.

The capability and limitations of EOM 2.0 to discriminate

between open/closed conformations have also been studied.

The program with the manual can be freely downloaded as

part of the ATSAS package from http://www.embl-

hamburg.de/biosaxs/software.html and the users may post

queries to the discussion forum http://www.saxier.org/forum/

viewforum.php?f=10.

6. Conclusions

Ensemble Optimization Method, EOM 2.0, for the character-

ization of flexible systems using SAXS in solution has been

redesigned, and its application range broadened to oligomeric

systems as well as macromolecular complexes. In addition,

metrics for quantitative measurement and identification of

flexibility have been introduced facilitating quantitative and

systematic analysis of the studies of flexible macromolecules in

solution.

Physical simulation methods using molecular dynamics and

energy minimization to predict macromolecular trajectories

are providing more and more impact in the modelling of

flexible systems (e.g. Banavali & Roux, 2011; Brewer et al.,

2011; Das & Pappu, 2013; Luan et al., 2014). Consequently, a

lively discussion has emerged on the relations between

experimentally derived ensembles and those predicted by

physical simulations (Jensen & Blackledge, 2014; Wang et al.,

2014). EOM 2.0 can easily be used for bridging SAXS,

computational methods or other experimental techniques

given the possibility to use any external pool (e.g. generated

with molecular dynamics, based on NMR or others) in the

ensemble selection. The developments presented here should

therefore enhance the role of solution SAXS as an essential

structural method to be synergistically coupled with comple-

mentary high-resolution techniques in the study of flexible

particles.
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Różycki, B., Kim, Y. C. & Hummer, G. (2011). Structure, 19, 109–116.
Rubio-Cosials, A., Sidow, J. F., Jiménez-Menéndez, N., Fernández-
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