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Nondestructive measurements of the full elastic strain and stress tensors from

individual dislocation cells distributed along the full extent of a 50 mm-long

polycrystalline copper via in Si is reported. Determining all of the components

of these tensors from sub-micrometre regions within deformed metals presents

considerable challenges. The primary issues are ensuring that different

diffraction peaks originate from the same sample volume and that accurate

determination is made of the peak positions from plastically deformed samples.

For these measurements, three widely separated reflections were examined from

selected, individual grains along the via. The lattice spacings and peak positions

were measured for multiple dislocation cell interiors within each grain and the

cell-interior peaks were sorted out using the measured included angles. A

comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm

provided uncertainties for the elastic strain tensor and stress tensor components.

1. Introduction

Recent advances in synchrotron X-ray techniques (Larson et

al., 2002; Yang et al., 2003; Ice et al., 2005, 2011; Jakobsen et al.,

2006, 2007; Levine et al., 2006, 2011) have provided an

unprecedented capability for probing phases, microstructure,

and elastic strains with micrometre, and even submicrometre,

spatial resolution within complex real-world materials (Larson

& Levine, 2013). For example, recent experiments on 34ID-E

of the Advanced Photon Source (APS), Argonne National

Laboratory, used energy-scanned Laue diffraction with depth-

resolved, submicrometre-focused X-ray beams to measure the

axial 006 lattice parameter of isolated large dislocation cell

interiors in heavily (30%) deformed copper (Levine et al.,

2006). In later work, improved instrumentation and techni-

ques allowed Levine et al. (2011, 2012) to measure diffraction

line profiles from numerous individual dislocation cell walls

and cell interiors within a heavily deformed Cu single-crystal,

and even from an ultrafine-grained commercial Al alloy that

was severely deformed using equal-channel angular pressing

(Lee et al., 2013; Phan et al., 2014).

These studies provided groundbreaking results, but they

were limited to just a single reflection. Thus, only a single

component of the elastic strain could be measured. Ultimately,

a primary, long-range goal of that microbeam diffraction

facility is to enable full strain and stress tensors to be extracted

from buried submicrometre-scale sample volumes within
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complex devices and microstructures. We report the

measurement of full elastic strain tensors from individual

dislocation cell interiors distributed along the 50 mm length of

a copper through-Si via (Cu-TSV). These strain tensors are

then converted to full stress tensors using the known elastic

constants for Cu. Measurement uncertainties were propagated

through the experimental design using a Monte Carlo uncer-

tainty algorithm to provide uncertainties for each strain and

stress component.

The determination of stresses within Cu-TSVs is important

for microelectronic applications, and preliminary results have

already been reported separately (Okoro et al., 2014a,b).

Here, the primary emphasis will be a detailed description of

the measurements and analysis required to determine the

strain and stress tensors, and a thorough discussion of the

uncertainty analysis.

2. Experimental

Fig. 1 is a diagram of the microbeam diffraction instrument on

APS sector 34ID. The X-ray beam from the insertion device is

followed by a translating monochromator and vertical and

horizontal slits, producing either a polychromatic or mono-

chromatic X-ray beam that is shown entering from the right of

the diagram. The beam is then focused using an orthogonal

pair of elliptically figured Kirkpatrick–Baez focusing mirrors.

In these measurements, the focused beam size was approxi-

mately 1.0 mm vertical � 0.6 mm horizontal. Diffracted X-rays

from the sample are incident upon three amorphous Si area

detectors with 200 mm square pixels. The large central detector

(designated ‘O’ for orange), has 2048 � 2048 pixels and is

roughly centered over the sample; the two smaller side

detectors (purple and yellow) have 1024� 1024 pixels and are

tilted to provide the maximum angular acceptance for the

diffracted X-rays. A 50 mm-diameter Pt wire can be inserted to

provide depth profiling. This wire is incrementally translated

parallel to the sample surface as images are acquired from the

area detectors. By subtracting successive images, the X-rays

blocked by the profiler during each step are identified and the

corresponding sample depths are obtained by triangulation. A

more thorough description of this procedure is given by

Levine et al. (2011).

Polychromatic measurements of a single reflection only

provide information on the direction of the diffracted X-rays

with respect to the incident beam. Energy-scanned measure-

ments are much slower, but they also allow the lattice para-

meter to be determined. The full strain tensor can be obtained

by conducting energy-scanned measurements using at least

three noncollinear reflections, or by conducting at least one

energy scan along with polychromatic measurements on at

least four independent reflections. In this study, energy scans

were conducted on three independent reflections that cover

the widest possible angular range to minimize uncertainties.

In principle, this method for determining the full strain

tensor is very simple, but several practical issues have

prevented this method from being employed successfully so

far. Firstly, the measured reflections must all originate from

the same sample volume for the strain tensor to be mean-

ingful. Ideally, the depth-resolving wire should allow such

volumes to be determined. However, as widely spaced

reflections intersect the wire at positions up to a few milli-

metres apart, even small uncertainties in the wire shape,

position and motion can make it impossible to determine the

true depths with adequate accuracy. Secondly, when a sample

is plastically deformed, the diffraction spots become smeared

out and the angles between the reflections can no longer be

determined with sufficient accuracy to provide meaningful

tensor components (Larson & Levine, 2013). Finally, once

these problems are solved, it is also

critical to perform a rigorous uncer-

tainty analysis to determine how the

experimental uncertainties affect

each of the extracted tensor compo-

nents.

In this study, the origin for each

reflection was primarily determined

by a combination of the sample

geometry and microstructure, rather

than relying solely upon the depth

resolving wire. Fig. 2(a) shows our

sample geometry. For this study,

blind (fully buried) Cu-TSV arrays

with pitch, diameter and depth

dimensions of 12 mm, 5.5 mm and

50 mm, respectively, were built into a

full thickness 300 mm silicon wafer.

The thickness of the isolation liner

(SiO2) and the barrier layer (TaN)

were 0.5 mm and 0.025 mm, respec-

tively. Subsequently, the wafer was

diced into separate dies; an indivi-
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Figure 1
Diagram of the microbeam diffraction instrument showing all major components discussed in the text.
The upper right corner is a photograph of the area detectors as seen from below and the laboratory-
frame coordinate system is shown in the lower left corner. The x axis extends out from the drawing.



dual die was used for this study. One hundred and seventy

nanometres of plasma-enhanced chemical vapor deposited

SiO2 was deposited on half of the die, to simulate the presence

of a back-end-of-line layer, so as to study its effect on the Cu-

TSV stress state. After the deposition of SiO2, the sample was

annealed at 420�C for 30 min in a nitrogen ambient environ-

ment. The Cu-TSV described in this study was uncapped,

meaning that it did not have any SiO2 overlayer.

The incident micro-beam enters the sample at a 45� angle

on a path that intersects multiple Cu-TSVs as shown in

Fig. 2(a). As the photon energies typically range from around

10 keV to 24 keV, the beam can easily penetrate tens of

micrometres into the specimen and the diffracted intensity on

the area detectors originates from several Cu-TSVs and the

single-crystal Si matrix. With the beam centered on the top of

the selected Cu-TSV, a wire scan was conducted using poly-

chromatic X-rays and all three area detectors. The resulting

images were reconstructed into depth-resolved white beam

Laue patterns as described previously (Levine et al., 2011,

2012), thereby identifying the diffraction peaks that originate

from the target Cu-TSV.

Fig. 2(b) is a scanning electron microscopy image of a

focused ion beam cross section of a randomly selected die. The

Cu-TSVs are clearly polycrystalline, with grain dimensions

ranging from much less than 1 mm up to at least 6 mm. Thus,

several different grains typically contribute to the measured

diffraction pattern.

After indexing the white beam Laue patterns from the

targeted Cu-TSV, a single grain was selected with clear spots

on all three detectors. A single bright reflection on each

detector was then chosen so as to cover the largest possible

angular range. An energy scan was conducted on each selected

reflection over an energy range (up to about 400 eV) large

enough to include the full range of crystallographic orienta-

tions present in the grain. The energy step size was set to 3 eV

to match the microbeam convergence.

Following the energy scans, the sample was translated

parallel to the sample surface so the incident X-ray beam

would intersect the targeted Cu-TSV 5 mm deeper along the

via axis, and the full set of polychromatic and monochromatic

measurements was repeated. This procedure was repeated

until diffraction data were obtained from the entire 50 mm

length of the Cu-TSV.

3. Analysis methods

Fig. 3 shows the energy-integrated diffracted intensity on all

three area detectors from a single grain located approximately

7.5 mm deep in the Cu-TSV. Each detector exhibits sharp

diffraction spots from low dislocation density volumes and

diffuse scattering associated with high dislocation density. The

separation of the peaks indicates that the low dislocation

regions have slightly different crystallographic orientations,

suggesting that the high dislocation density regions form walls

that separate low dislocation density cell interiors. To set the

angular scale, the subtended angle between spots A and B on

the orange detector (Fig. 3a) is about 0.45�. This pattern of

grain breakup into distinct dislocation cells was observed in

nearly all of the grains we examined, independent of their

position along the via. We also note that as we are illuminating

the microstructure with a microbeam, the relative intensity of

the diffraction spots in Fig. 3 reflects the relative intersected

volumes, and not the actual dislocation cell volumes.

The pattern of spot separations and intensities on the three

detectors in Fig. 3 suggests that the peaks marked with A

belong to a single dislocation cell interior. Comparing the

expected and measured angles between these spots on the

three detectors gives the results shown in Table 1. Note that all

uncertainties in this paper are one standard deviation. The

largest deviation from an unstrained crystal is only about

0.02�, which is consistent with all three peaks originating from

a single cell interior. All other peak combinations including an

A peak give dramatically larger deviations. Similar evaluations
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Figure 2
(a) Geometry of Cu-TSVs along with the incident X-ray microbeam and
the X-rays diffracted from the Cu. (b) Microstructure of typical Cu-TSVs
acquired using scanning electron microscopy of cross sections cut using
focused ion beams.



of the sets of peaks labeled B and C confirm that they also

originate from separate cell interiors. In nearly all of the

measurements from this via, it was found that the subtended

angles between reflections were sufficient to unambiguously

determine which peaks came from the same diffracting sample

volume.

3.1. Strained unit cell and the infinitesimal strain tensor

As mentioned above, energy scans of three widely sepa-

rated, independent reflections are sufficient to extract a

complete strain tensor, and the subtended angles between

multiple sub-peaks can be used to identify a set of reflec-

tions that originate from the same sample volume. We

proceed by first determining the location of each selected

peak on its detector. The peak center is determined using

multiple methods including visual inspection, fitting the peak

with a Gaussian surface, and finding the center-of-mass

using several detector areas around the apparent peak

center. In most cases, all of the resulting peak positions are

in good agreement and the small uncertainties are estimated

from the spread. However, the peaks are sometimes asym-

metric, making automatic peak fitting unreliable. Until

adequate routines are developed and validated, each peak

fit must be individually inspected and the uncertainties

expanded if necessary.

As described previously (Levine et al., 2011), an energy scan

gives us the X-ray intensity incident upon each pixel on

each detector as a function of photon energy (or wave-

length). Since the position of each pixel is known through

the instrument calibration, the energy-dependent intensities

can be converted into a diffraction line profile for each

pixel. We then sum the line profiles from all of the pixels

associated with a given peak on the detector, producing a

composite line profile that originates from a well defined

sample volume. This composite line profile is then fitted

with a Gaussian, Lorentzian or pseudo-Voigt function (as

called for) to find the peak center.

Once the locations in reciprocal space of all three diffrac-

tion peaks are determined, the cubic lattice vectors in the

laboratory coordinate system are found using a Gauss–Jordan

elimination algorithm. From these vectors, the distortion of

the unit cell can be directly calculated. As shown in Fig. 4, the

geometry of the cubic unit cell is described using the tradi-

tional parameters a, b, c, �, � and �, where a subscript of 0 or 1

denotes the undeformed and deformed unit cell, respectively.

Given the geometry of the strained and unstrained cubic

unit cell, the infinitesimal (Lagrangian) strain tensor compo-

nents,

"11 "12 "13

"21 "22 "23

"31 "32 "33

0
@

1
A; ð1Þ

can be calculated (Schlenker et al., 1978) using
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Table 1
Ideal and measured subtended angles between the reflections labeled A
on the three detectors in Fig. 3, along with the residuals.

All uncertainties are one standard deviation.

Reflections Ideal angle (�) Measured angle (�) Difference (�)

028 to 046 47.726 47.75 � 0.01 �0.02 � 0.01
028 to 517 35.692 35.70 � 0.01 �0.01 � 0.01
046 to 517 52.520 52.53 � 0.01 �0.01 � 0.01

Figure 3
Energy-integrated distribution of diffracted X-ray intensity on the area
detectors from a single grain in the Cu-TSV: (a) 028 on orange, (b) 046 on
purple and (c) 517 on yellow.



"11 ¼
a1

a0

sin �1 sin �1 � 1;

"22 ¼
b1

b0

sin �1 � 1;

"33 ¼
c1

c0

� 1;

"12 ¼ "21 ¼ �
a1

2a0

sin �1 cos �1;

"13 ¼ "31 ¼
a1

2a0

cos�1 and

"23 ¼ "32 ¼
b1

b0

cos �1:

ð2Þ

3.2. Euler angles

The crystallographic orientation of the measured sample

volume is important for relating the individual strain tensor

components to the sample geometry and to any anisotropic

external stresses or other processing conditions that may have

been applied. The crystallographic orientation is described

with respect to the laboratory-frame coordinate system that is

shown in the lower left corner of Fig. 1. The Z axis points

downstream along the incident X-ray beam, the Y axis is

vertical, and the X axis points out from the diagram.

The orientation of the unit cell is described using three

Euler angles that define a series of rotations that transform the

laboratory-frame coordinate system into the crystal-frame

coordinate system. All Euler angles follow the ’� conven-

tion (sometimes referred to as the x-convention for the choice

of the second rotation axis) described by Goldstein (1980) and

illustrated in Fig. 4. The unit cell is first aligned with the [100],

[010] and [001] lattice directions along the X, Y and Z axes of

the laboratory-frame coordinate system, respectively. The unit

cell is then rotated counterclockwise by ’ about Z, giving the

rotated coordinate system X1, Y1, Z. The next rotation is

counterclockwise by � about X1, giving X1, Y2, Z2. Finally, the

unit cell is rotated counterclockwise about the Z2 axis by  to

X3, Y3, Z2, which is the measured orientation of the deformed

unit cell. The rotation matrix describing this complete trans-

formation is

A ¼

cos cos ’ cos sin ’ sin sin �
� cos � sin ’ sin þ cos � cos ’ sin 

� sin cos ’ � sin sin ’ cos sin �
� cos � sin ’ cos þ cos � cos ’ cos 

sin � sin ’ � sin � cos ’ cos �

0
BBBBBBBB@

1
CCCCCCCCA
;

with the inverse

A�1 ¼

cos cos ’ � sin cos ’ sin � sin’
� cos � sin ’ sin � cos � sin’ cos 

cos sin’ � sin sin’ � sin � cos ’
þ cos � cos ’ sin þ cos � cos ’ cos 

sin � sin sin � cos cos �

0
BBBBBBBB@

1
CCCCCCCCA
:

If the measured unit cell had axes that were perfectly ortho-

gonal, the above transformation would be unambiguous.

However, shear components distort these angles and an

additional convention is required. Here, the reported Euler

angles rotate the laboratory-frame X axis into the [100]

direction of the measured unit cell, and the laboratory-frame

Z axis to a direction that is orthogonal to the sample [100] and

[010] directions.

The above rotation matrices can be used to easily determine

the orientations of crystallographic directions in the labora-

tory coordinate system, and to identify what crystallographic

axes are aligned along directions relevant to the sample

geometry. For example, the crystallographic direction u points

along the u0 = Au direction in the laboratory coordinate

system. Similarly, if the vector v0 in the laboratory coordinate

system is an important direction relevant to the sample (for

example, v0 = [011] is generally perpendicular to the sample

surface), the crystallographic orientation for this direction is

just v = A�1v0.

4. Uncertainties

The primary sources of uncertainty in the calculated strain

tensor components include the instrument calibration,

measurement uncertainties in the diffraction spot positions on

the detectors, the centroid positions of the diffraction line

profiles, and uncertainties in the lattice parameter of the

unstrained sample. When the strain tensor is converted to a

stress tensor, the uncertainties in the elastic constants must

also be considered.

Instrument calibration consists of three parts: calibration of

the monochromator energy, calibrations of the positions and

orientations of the area detectors, and calibration of the wire

position and orientation. The energy of the monochromatic
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Figure 4
Parameter definitions describing the undeformed and deformed unit cell,
and the Euler angle convention used for relating the unit-cell orientation
to the laboratory-frame coordinate system.



beam, E, was calibrated using Si (n n n) reflections (n = 4–11)

in a backscattering geometry, to within the energy resolution

of the Si (111) monochromator, namely �E/E < 1 � 10�4. To

calibrate the geometry of the detector, white-beam Laue

diffraction peaks, from a 4 mm-thick strain-free single-crystal

silicon calibration specimen, were collected by all three area

detectors. About 50 peaks were collected and indexed on the

central detector (orange), and about 10 to 20 peaks on the two

side detectors (yellow and purple). The positions and orien-

tations of the three detectors were then determined by

matching the positions of the predicted and the measured

peaks on the detectors through an optimization algorithm.

The final root-mean-square angular uncertainties of the peak

positions were ’0.005�, which is smaller than the angle

subtended by an individual pixel (’0.02�). The orientation of

the depth-profiling wire was calibrated to be perpendicular to

the incident beam and parallel to the horizontal plane; this was

carried out by fine-scanning the wire edges against the inci-

dent beam as well as the diffracted peaks from the afore-

mentioned silicon specimen over a necessary range along the

length of the wire. The resulting overall wire orientation had

an angular deviation of less than ’2 mrad. The origin of the

wire center, most importantly its vertical position relative to

the X-ray beam, was also calibrated during this process to

within 1 mm.

In all cases, the calibration uncertainties are small compared

with the uncertainties in the deformed copper diffraction data

and they will not be included in the following analysis. It is

important to note that measurements of low-defect materials

such as single-crystal Si will have smaller uncertainties, and the

calibration uncertainties may need to be included in the

analysis.

The uncertainties in the measured peak positions and

diffraction peak centers, discussed in the previous section,

must be propagated through the analysis to provide uncer-

tainties for the geometry of the strained unit cell, the Euler

angles describing the crystallographic orientation, and the

components of the strain and stress tensors. The strain tensor

uncertainties also depend upon the uncertainty in the

unstrained lattice parameter, and the stress tensor must

additionally include the uncertainties in the elastic constants.

As energy scans of three independent reflections comprise a

minimal data set for determining the geometry of the strained

unit cell and the crystallographic orientation, each such

measurement produces a unique solution. Uncertainties are

propagated using a Monte Carlo algorithm. Each measured

value (i.e. the x and y positions of diffraction spots on the

detectors and the centroids of the line profiles) has an asso-

ciated uncertainty distribution with a standard deviation that

is estimated as described above. These distributions are

assumed to be approximately Gaussian in form and a set of

40 000 Gaussian-distributed variants is generated for each

measured value, producing 40 000 variants of a complete

measurement of three reflections. Each of these variants

produces a unique solution for the strained unit cell, and the

distribution of output values, such as the angle �, is analyzed

to obtain a standard deviation uncertainty. Similarly, once an

undeformed lattice parameter and a set of elastic constants are

obtained, the Monte Carlo uncertainty propagation is carried

forward for each component of the strain and stress tensors.

Here, the unstrained lattice parameter is assumed to be

0.361496 (5) nm (Wyckoff, 1963) which is the lattice parameter

for pure copper at room temperature. The elastic constants for

copper at room temperature are c11 = (169.1 � 0.2) GPa, c12 =

(122.2 � 0.3) GPa, and c44 = (75.41 � 0.05) GPa (Ledbetter &

Naimon, 1974).

As mentioned above, it is important to consider the purity

of the sample because composition changes can affect the

unstrained lattice parameter used for obtaining the strain and

stress tensors. The elastic constants of metals are not typically

as sensitive to small composition variations. As an example, in

earlier work on Al alloys (Lee et al., 2013), the authors used

the high-resolution powder diffractometer on the APS 11-BM

beamline to directly measure the ambient temperature lattice

parameter of their Al 1055 alloy samples. They reported a

lattice parameter of 4.05000 (10) Å as compared with a value

of 4.04950 (15) Å for pure Al. This difference would produce

an artificial strain of about 1.2 � 10�4, which is only slightly

larger than the strain resolution of the microbeam diffraction

instrument. In the current work, the Cu in the TSVs was

deposited using an electro-plating technique, with bath addi-

tives that aid the complete filling of the trenches. The exact

chemical composition of the electroplating bath is proprietary

information of the manufacturer so the purity of the Cu-TSVs

is not known. If a small level of impurities is incorporated as a

solid solution, it would change the unstrained lattice constant

(proportional to the impurity level), effectively introducing a

small offset in the hydrostatic stress. Experiments on TSVs

that have been allowed to relax for nine months exhibit

stresses that are below 50 MPa, suggesting that any offset

stress is small.

5. Results

Table 2 lists all of the calculated parameters and their one-

sigma uncertainties from a single dislocation cell interior

located approximately 17.5 mm deep within the measured Cu-

TSV. These parameters include the unit-cell dimensions and

angles, the Euler angles describing the crystallographic

orientation, the full strain tensor, and the full stress tensor.

Note that the uncertainties vary considerably for the unit-cell

parameters, and thus for the extracted strain and stress tensor

components. This variation is primarily due to the angular

range of the measured reflections and their orientation with

respect to the unit cell. As an example, lattice vectors aligned

perpendicular to the sample surface can be measured much

more precisely than those with a parallel orientation.

Fig. 5 shows all six stress tensor components plotted as a

function of depth along the axis of the Cu-TSV. For all depths,

the off-diagonal components are much smaller than the

diagonal components, and the diagonal terms are approxi-

mately equal at each depth, consistent with a primarily

hydrostatic stress state. The uncertainties for the diagonal

components are also consistent with a hydrostatic stress state,
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although the overlaps suggest a slight overestimation of the

uncertainties. It is also worth noting that calculating unit-cell

parameters and stress tensors from individual dislocation cells

within a single grain gives consistent results. For example, the

lattice parameters measured in all of the cells evident in Fig. 3

vary by, at most, a strain of just 2.0 � 10�4 and the resulting

stress state is, again, mostly hydrostatic.

The pattern of the stress components shown in Fig. 5

provides strong supporting evidence that the analysis is

correct. That is because all of the likely errors in the analysis

would produce large artificial stress components. For example,

if the three analyzed reflections come from different cell

interiors, the corresponding angular misorientations of the

cells would be misinterpreted as elastic distortions of the unit-

cell geometry, resulting in large artificial elastic strains and

stresses. This condition was artificially produced and the

results are shown in Fig. 6. Here, three variants of the data

from approximately 17.5 mm deep (see Table 1 and Fig. 5) are

displayed. Variant A is the as-measured result, variant B was

obtained by shifting the peak on the orange detector in the X

direction by an amount comparable to the position difference

of nearby peaks B and C in Fig. 3, and variant C was obtained

by shifting the same peak by the same amount in the ortho-

gonal direction. As expected, the stress components for

variants B and C show considerable distortion when compared

with the as-measured variant A.

6. Summary and conclusions

We described and demonstrated a new measurement

capability of the microbeam diffraction instrument on 34ID-E

at the APS, which allows the mean geometry and crystal-

lographic orientation of a strained unit cell to be determined

for submicrometre sample volumes within a complex three-

dimensional microstructure. Given the unstrained lattice

parameter, the full elastic strain tensor can be obtained. With

additional information on the elastic constants, the full stress

tensor can be found. The one-sigma uncertainties for all

extracted parameters are determined using a Monte Carlo

uncertainty algorithm. Presently, the analysis software is

limited to cubic systems, but extending this to arbitrary lattice

systems should be straightforward.

Our approach was demonstrated by extracting full stress

tensors from individual dislocation cells spaced along the

50 mm length of a buried polycrystalline Cu-TSV. In all cases,
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Table 2
Unit cell, orientation, strain tensor and stress tensor components from a
sub-micrometre sample volume approximately 17.5 mm deep within a Cu-
TSV.

The one-standard-deviation uncertainties were calculated using a Monte
Carlo uncertainty algorithm as described in the text.

Unit-cell parameters (nm, �)
a1 0.361497 � 0.000013
b1 0.361558 � 0.000037
c1 0.361656 � 0.000017
� 90.0028 � 0.0097
� 89.9988 � 0.0043
� 89.9927 � 0.0049

Orientation (�)
� 324.4301 � 0.0093
� 149.2013 � 0.0048
� 84.341 � 0.013

Infinitesimal strain tensor components
e11 (0.04 � 0.36) � 10�4

e22 (1.7 � 1.0) � 10�4

e33 (4.42 � 0.47) � 10�4

e23 (�0.24 � 0.85) � 10�4

e13 (0.11 � 0.38) � 10�4

e12 (�0.63 � 0.43) � 10�4

Stress tensor components (MPa)
s11 76 � 20
s22 83 � 24
s33 96 � 22
s23 �4 � 13
s13 1.6 � 5.7
s12 �9.6 � 6.5

Figure 5
All six stress tensor components plotted as a function of depth along the
Cu-TSV axis. The uncertainties are one standard deviation.

Figure 6
All six stress tensor components from the same sample volume plotted
for three error conditions: A as measured, B first artificial peak shift, and
C second artificial peak shift.



the diagonal components were nearly equal in magnitude and

much larger than the off-diagonal components, consistent with

a largely hydrostatic stress state. We emphasize that it is not

possible to draw comprehensive conclusions about the role of

stresses in Cu-TSVs on the basis of seven measured stress

tensors in a single Cu-TSV, and note that very small grains in

the TSV may not be represented in this small sample.

The ability to measure full strain and stress tensors from

submicrometre sample volumes within complex micro-

structures has broad applications within materials science.

Stresses are a principle cause of device failure through

processes such as delamination, inter- and intragranular

cracking, fatigue, whisker growth, hillock formation and

driven diffusion processes. With submicrometre X-ray

diffraction, these critical processes can now be studied

nondestructively within real-world devices such as micro-

electronic devices and microelectromechanical systems.
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