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A deep machine-learning technique based on a convolutional neural network

(CNN) is introduced. It has been used for the classification of powder X-ray

diffraction (XRD) patterns in terms of crystal system, extinction group and

space group. About 150 000 powder XRD patterns were collected and used as

input for the CNN with no handcrafted engineering involved, and thereby an

appropriate CNN architecture was obtained that allowed determination of the

crystal system, extinction group and space group. In sharp contrast with the

traditional use of powder XRD pattern analysis, the CNN never treats powder

XRD patterns as a deconvoluted and discrete peak position or as intensity data,

but instead the XRD patterns are regarded as nothing but a pattern similar to a

picture. The CNN interprets features that humans cannot recognize in a powder

XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were

achieved for the space-group, extinction-group and crystal-system classifications,

respectively. The well trained CNN was then used for symmetry identification of

unknown novel inorganic compounds.

1. Introduction

It would be a very difficult to describe an actual crystal

structure perfectly using only powder X-ray diffraction

(XRD) patterns as the raw data source, because the three-

dimensional electron-density distribution is condensed into

just one dimension in the powder diffraction pattern. Such

data condensation leads to both accidental and exact peak

overlap, which complicates the determination of individual

peak intensities. This complication is the reason that the

crystal symmetry (space group) cannot be obtained correctly

from a powder XRD pattern for many low-symmetry phases,

no matter what type of measurement tool is employed. Single-

crystal diffraction data improve this complication and ease

structural analysis compared with the use of powder diffrac-

tion. However, sample preparation for single crystals remains

a challenge, although a small-sized single-crystal technique has

recently become available for single-crystal XRD (Hirosaki et

al., 2014). It should also be noted that the most frequently

encountered type of structural data in scientific and engi-

neering fields is powder diffraction data, because the generally

usable form of most engineering materials is in either a

polycrystalline or a powder form.

A typical structural analysis for inorganic compounds

should be able to extract the structural descriptors from the

spectral descriptors. The typical structural descriptors are

lattice parameters, overall symmetry and site symmetries,
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atomic type and position, site occupancy and thermal factor.

Raw powder XRD pattern data are simplified by spectral

descriptors such as peak position, height, width and shape,

which are parameterized mathematically by introducing well

defined peak profile functions such as pseudo-Voigt and

others. The Rietveld refinement method (Rietveld, 1967,

1969) is known to treat powder XRD patterns not as discrete

structure factors (Fhkl) but as a full-profile continuous spec-

trum, and even includes some parameters designating the

instrumental and sample conditions. Nonetheless, the Rietveld

refinement method still employs only a number of discrete

spectral descriptors, although the number of parameters is

dramatically enhanced compared with other traditional

analyses. More importantly, it should be noted that the utility

of the Rietveld refinement method has been restricted to

limited cases where the structure was roughly known. While

we have successfully implemented the structure determination

of many unknown novel compounds using either the direct

method or the direct-space method (Park, Shin et al., 2012;

Park, Singh et al., 2012; Park et al., 2013, 2014), we find that

initial steps such as indexing and space-group determination

play crucial roles. These can be extremely difficult to establish,

however, particularly in the presence of a small number of

impurity phases with peaks that overlap the main phase.

There has been a great deal of progress in state-of-the-art

software for indexing and space-group determination: ITO

(Visser, 1969), TREOR (Werner et al., 1985), DICVOL

(Boultif & Louër, 1991), McMaille (Le Bail, 2004), EXPO

(Altomare et al., 2009) and X-CELL (Neumann, 2003).

Despite this progress, correct indexing and the ensuing space-

group determination require considerable expertise. In fact,

the performance of the indexing software would be perfect

under the premise that the correct choice of peaks has been

secured. However, none of the auto-peak choice programs has

provided us with satisfactory indexing results (please see the

supporting information). Among all the above-mentioned

indexing programs, X-CELL has been reported to be quite

advantageous in terms of the consideration of impurity peaks,

but this program also requires some sort of human interven-

tion to provide impurity tolerance levels (e.g. 0–5 to reflect the

number of allowed impurity peaks) during the indexing

process for an acceptable outcome. This implies that human

intervention is inevitable in judging peak positions and, more

importantly, in sorting out peak overlap complications. There

are other critical human intervention issues besides peak

overlap complication, such as impurity peak identification,

and these must be resolved in order to achieve a correct peak

choice that will lead to reliable indexing and space-group

determination. Without long-term experience, it would be

nearly impossible to select only the correct peaks, which is

particularly tricky for low-symmetry and large cell size

materials with a certain amount of impurities.

In our opinion, the deep machine-learning technique could

compensate for the incompleteness of rule-based powder

XRD pattern interpretation. In this context, deep learning was

introduced in the hope that it could outperform auto-peak-

search-based indexing and the ensuing space-group determi-

nation without human intervention. The final goal of the

present approach was to establish a deep-learning-based

structure analysis platform, which would be easily accessible

to non-experts who have only just begun to work in inorganic

materials science, by providing them with an equal chance that

only a well experienced expert might have grasped in the past.

Deep learning is a powerful set of techniques for learning in

neural networks and it has proved to be a promising and

effective tool that outperforms traditional rule-based methods

in many areas, such as image classification, pattern recogni-

tion, speech recognition and natural language processing.

Deep learning has recently become mainstream in the bio-

logical and pharmaceutical research fields (Spencer et al.,

2015; Heffernan et al., 2015; Mamoshina et al., 2016). However,

there have been no noticeable attempts to introduce deep-

learning techniques into work on inorganic functional mat-

erials. Deep learning is a form of modelling that is based on a

convolutional neural network (CNN) (Lecun et al., 1998). A

CNN confers versatility for classification tasks and for discri-

minating among a number of classes (labels). In particular, a

CNN works best for image classification and hand-written text

identification. Weight sharing at certain layers of the network

via filters (kernels) is key to a CNN, and this weight sharing

makes it possible to build up a deep structure composed of

many more layers than the conventional artificial neural

network (ANN). Weight sharing through a kernel also allows a

CNN to achieve an equivariance representation of basic

feature data. In addition, either maximum- or average-pooling

layers provide invariance to image (or pattern) transforma-

tions by reducing spatial resolution via down-sampling, details

of which are given in the supporting information. CNNs have

recently been successfully applied to large-scale image

classification tasks (Krizhevsky et al., 2012) and have yielded

many state-of-the-art achievements in other areas. One of the

most outstanding achievements has been AlphaGo (Silver et

al., 2016), which employed a CNN for both the policy and

value networks in reinforcement learning and thereby

defeated a human champion. Inspired by such successful

achievements, we have developed an appropriate CNN to be

used with powder XRD pattern classification, and have

utilized it for crystal-system, extinction-group and space-

group determination.

Prior to the boom in the art of deep learning, a number of

powder XRD-related modelling studies used a conventional

ANN. However, most of the previously reported cases were

dealing with various feature engineering skills, such as manual

featurization (Tatlier, 2011; Kustrin et al., 2000), principal

component analysis (PCA) (Obeidat et al., 2011; Mitsui &

Satoh, 1997; Chen et al., 2005; Matos et al., 2007), partial least-

squares regression (PLSR) (Lee et al., 2007) and various

special statistical approaches (Gilmore et al., 2004; Barr et al.,

2004). Feature engineering can simply be thought of as data

contraction, which is more precisely defined as data-dimension

contraction. It should also be noted that all of these previous

machine-learning approaches were far removed from big-data

analysis, and were restricted to a small data set consisting of

manipulated data that shared common features, such as a
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small number of powder XRD patterns for mixtures consisting

of a few previously well identified inorganic compounds. Less

positively, all the previous machine learning for powder XRD

pattern analyses has been associated with shallow ANNs.

Consequently, the excessive feature engineering (dramatic

data-dimension contraction), the shallow ANN and the small

size of the training data set constituted a somewhat vicious

circle, which imparted machine learning-based analysis with

no merit by comparison with rule-based analysis prior to the

advent of deep learning.

In contrast with such conventional approaches, we adopted

a novel approach that coupled a deep convolutional neural

network (CNN) with a seemingly overwhelming amount of

powder XRD pattern data without the use of any handcrafted

feature engineering. Neither data contraction nor knowledge-

based data manipulation were involved in the preparation of

the raw data for use in the CNN training. The full-profile

powder XRD pattern was not treated as deconvoluted

discrete peak-position and intensity data, but was instead

regarded as nothing but a pattern, as if it were a picture. We

prepared 150 000 powder XRD patterns that represented

almost all of the inorganic compounds that exist on earth.

Finally, we constructed a virtuous circle that was composed of

no feature engineering (no data contraction), but only

contained a deep CNN architecture, and big data. Such

revolutionary and unprecedented CNN modelling for a

powder XRD pattern classification enabled us to predict the

crystal systems, the extinction groups and ultimately the space

groups of totally unknown materials.

2. Data-set preparation

To achieve a reliable CNN model, we prepared as much

powder XRD pattern raw data as possible, with no feature

engineering involved. The larger the data set, the more

successful will be the modelling. It is unfortunate, however,

that no database can provide raw data for powder XRD

patterns. The International Centre for Diffraction Data

(ICDD; http://www.icdd.com) does not allow subscribers to

download all of their Powder Diffraction File (PDF) data in

any type of primitive data file format. Therefore, we used the

crystal structure solution data from the Inorganic Crystal

Structure Database (ICSD; http://www.fiz-karlsruhe.de/icsd.

html) to produce sufficient powder XRD pattern data for

CNN modelling. In fact, the ICSD provided only structure

solution data rather than experimental measured powder

XRD patterns. It is practically impossible to collect an

acceptable number of experimentally measured powder XRD

patterns that would be sufficient for use in CNN learning. Thus

the powder XRD patterns that we used for the CNN model-

ling were not experimentally measured real data, but were

instead the calculated data from the structure solutions of

every entry registered in the ICSD.

We produced a very large number of plausible powder

XRD patterns calculated from the refined structure solution

data. The structure solution data presented in the ICSD

include symmetry information (space group), refined lattice

parameters, atomic coordinates, occupancies and thermal

factors. To simulate realistic powder XRD patterns from such

a refined solution requires additional parameters such as the

multiplicity for each peak, the Lorentz polarization factor, the

preferred orientation, the background shape and the peak

profile function. The first three parameters can be uniquely

determined and fixed for each entry. The multiplicity can be

obtained with ease from the symmetry data presented in the

ICSD, the polarization correction was applied for laboratory

XRD in the Bragg–Brantano geometry fitted with a graphite

monochromator in the incident beam and the preferred

orientation was considered to be non-existent. However, the

background shape and the peak profile functions were varied

randomly. The background was varied randomly using sixth-

order polynomial functions. The peak profile function

(pseudo-Voigt) was also varied by a random choice of mixing

parameters as well as Caglioti parameters (Caglioti et al.,

1958). By adopting these random parameters, we produced ten

slightly different powder XRD patterns for every single entry

residing in the ICSD. Thereafter, we selected only one out of

the ten and used it for CNN learning. Finally, Poissonian noise

was added to the deterministic calculated pattern. Among the

plausible powder XRD patterns created by all entries

(181 362) registered in the ICSD up to January 2016, some

erroneous and heavily duplicated data were eliminated. As a

result, we finally secured 150 000 simulated powder XRD

patterns. The entire procedure for the acquisition of these

powder XRD data is described schematically in Fig. 1.
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Figure 1
Schematic description of the acquisition of powder XRD data from the
ICSD.



3. CNN architecture setup and test results for the
powder XRD pattern classification

The CNN for the powder XRD pattern classification is

composed of an input layer, three pairs of convolutional and

pooling layers, two fully connected layers, and an output layer.

Each layer has a number of neurons that collect information

from the previous layer. This information is converted into a

specific value by using an activation function to be transferred

to neurons in the next layer. The rectified linear unit (ReLu)

has been a breakthrough in improving the performance of

deep learning by replacing the conventional sigmoid activa-

tion function (Nair, 2010). This enhancement is doubled when

a ReLu is coupled with a dropout that arbitrarily skips some

neurons when conducting the back-propagation algorithm to

derive the weight parameters of a CNN. The rate of the

dropout was set at 30% in all three CNNs that were used for

XRD classification.

The performance of a CNN depends upon its architecture,

which is based on the selection of hyper-parameters such as

the numbers of convolutional, pooling and fully connected

layers, the number of neurons in each layer, the size and

number of convolutional filters with their stride size, and the

rate of dropout. Unfortunately, there is no rigorous principle

for determining the hyper-parameters. We chose them on a

trial-and-error basis. The proposed architecture was deter-

mined after testing as many plausible versions as possible. The

final versions of the architecture for the three different

classifications are depicted in Fig. 2. Fortunately, the CNNs

used for the three different structural classifications shown in

Fig. 2 shared a common structure until flattening of the last

pooling layer. They all had the same number (= 2) of fully
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Figure 2
The CNN, composed of an input layer, three pairs of convolutional and pooling layers, two fully connected layers, and an output layer. Each layer has a
number of neurons that collect information from the previous layer. This information is converted into a specific value using an activation function to be
transferred to the neurons in the next layer. The filter size was halved from one layer to the next.



connected layers, whereas the number of neurons in the layers

differed. The output layer for each CNN was compatible with

the number of classes (230 space groups, 101 extinction groups

and seven crystal systems).

What follows is a description of how the proposed CNNs

performed the XRD classification. Powder XRD data can be

regarded as a string (vector), which is similar to a generic

signal sequence. The dimensions of the XRD string are 10 001

� 1 � 1. The first convolution layer was created using eighty

100 � 1 � 1 filters, each of which slid through an input string

with a stride value of 5. Each cell value of the convolutional

hidden layer was computed by the linear combination of a

filter’s weight and the values of the portion of a target

sequence that the filter covered, and then the filter was acti-

vated by a ReLu. At this stage, each filter captured its own

basic feature regardless of the feature location within a

sequence. In addition, the adoption of filters had the advan-

tage of reducing the number of weight parameters to be

estimated, since each filter shared weight parameters wher-

ever it resided (so-called weight-sharing). Following convo-

lution, a new layer was created by pooling each of the 3� 1� 1

cells of the convoluted layer with average values, which had a

smoothing effect on the original sequence and also provided a

basis on which the subsequent convolutional filters could

capture composite features by remote cells in the target

sequence. The latter effect cannot be accommodated by

mathematical tools based solely on a linear interaction

between variables.

In the next stage, a second convolution layer was created by

allowing eighty 50 � 1 � 80 filters to slide through the

previous pooled layer. The second-level convolution filters

extracted more complex features than those elicited from the

first-level filters. The stride size (= 5) remained the same as the

first convolutional layer. Following average pooling, a third

convolution layer was created using eighty 25 � 1 � 80 filters.

As shown in Fig. 2, the filter size was halved layer-by-layer.

After average pooling again, the third convolutional hidden

layer was flattened to facilitate connection to a fully connected

hidden layer. The connection between the flattened layer and

the next fully connected layer was the same as that between

two consecutive hidden layers of a generic feed-forward

neural network. After accommodating another fully

connected layer, the second fully connected layer linearly fed

neurons in the final output layer. The neurons of the final

output layer were then activated with a soft-max function

(Bridle, 1990), unlike the neurons within previous hidden

layers which were activated by a ReLu. The final activation

values from the soft-max function corresponded to the prob-

ability that an input data point belonged to each specific XRD

class.

We tested the performance of the CNN model using a

randomly selected test data set, the size of which amounted to

20% of the total data set. The test accuracies were evaluated

to be 81.14, 83.83 and 94.99% for space-group, extinction-

group and crystal-system classifications, respectively. This

represents an amazingly accurate crystal-system prediction.

However, the predictions for the extinction and space groups

did not reach 90%. In fact, these numbers are very similar to

the accuracy of human performance for the indexing and

symmetry-determination process. It may appear that deep

learning is little more than a mimicry of human behaviour, but

it should be noted that, while what deep learning can do

cannot surpass what humans can do, the efficiency and speed

of a task are greatly improved when deep learning is substi-

tuted for learning by humans. However, it is certain that the

CNN outperformed indexing based on auto-peak selection, as

shown in sections S1 and S2 of the supporting information.

Deep learning was prepared based on a personal coding using

well established libraries, such as Keras and tensorflow in

Python. The complete source code for our CNN model has

been provided in the supporting information for convenience.

Interested researchers may easily reproduce our CNN archi-

tecture using the above-mentioned libraries and test their own

compounds for a tentative crystal system, extinction group and

space group.

4. The structure-system, extinction-group and space-
group classifications

In principle, indexing is a process by which reflection indices,

hkl, are assigned to all the peaks in a powder diffraction

pattern. Accurate indexing leads to the correct determination

of a crystal system and the correct estimation of lattice para-

meters. However, the lattice parameter was not taken as an

output for this particular CNN, since our primary concern was

a systematic classification of powder XRD patterns in terms of

symmetry. In this regard, the activation function for the fully

connected output layer in our CNN was the soft-max function,

which represents probabilities rather than physical numbers.

Therefore, precisely speaking, the CNN that we set up is not a

model for indexing but is a classification platform to discern

the crystal system, extinction group and space group of all the

entries in the ICSD. In other words, the CNN could be a

prediction model for the crystal systems, extinction groups and

space groups of unknown inorganic compounds. This means

that the labels for our XRD pattern data were comprised of

the crystal system, the extinction group and the space group.

The architecture of this CNN has three different output layers

with seven, 101 and 230 neurons, which designate the prob-

ability density values for seven crystal systems, 101 extinction

groups and 230 space groups, respectively. On the other hand,

the input layer includes 10 001 neurons, which represent every

intensity value in the 2� range from 10 to 110�. The adoption

of the full profile of the XRD pattern data as an input

contrasts sharply with conventional analysis, which uses a

dramatically contracted input vector via various feature

engineering skills.

One might doubt why we employ a deep machine-learning

technique for such a simple task as crystal-system determi-

nation, since the indexing can be completed perfectly well,

using only a few peak positions, by the already well established

commercial (or free) computational software packages,

although determination of the ensuing extinction groups (or

space groups) is difficult. Once �20–40 exact peak positions
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have been pinpointed, commercially available software

enables us to index them with an acceptable figure of merit.

The extinction group (or space group) can then be determined

by checking the systematic absences. More precisely speaking,

even when an exact extinction group can be identified,

determination of the exact space group may be thwarted in

many cases, because some extinction groups include a large

number of probable space groups that are by definition not

distinguishable.

Accurate peak selection is the most important prerequisite

for reliable indexing and for determination of the exact

extinction group (or space group). The correct peak selection

for indexing could never be chosen without some type of

human intervention (even sometimes expert intervention),

because actual XRD pattern data always include distortions

that cause uncertainties in judging peaks and pinpointing their

exact positions. Examples include overlap (the most serious

problem), a small number of impurity phases, data blurring

due to the bad quality of measurement, and a researcher’s lack

of crystallographic knowledge. Among all the indexing

programs, TREOR requires much less time for indexing and is

much more convenient for the initial level of indexing. The

overall success rate of the TREOR program is better than

90%, and it is even higher than this for orthorhombic and

higher symmetries (Werner et al., 1985). The TREOR

program, however, occasionally gives rise to unsatisfactory

results in more complex systems (= lower-symmetry systems).

Lower-symmetry systems usually result in many solutions with

identical figures of merit and cell sizes. Thus, deciding the true

solution can be very tricky, particularly for low-symmetry

structures (please see the supporting information).

In order to show that conventional indexing software

programs will fail without appropriate expert intervention, we

employed two novel inorganic compounds that we had

recently discovered, with exact crystal structures that had been

clearly proven. These will be referred to as S-1 and S-2,

Ca1.5Ba0.5Si5N6O3 (monoclinic Cm) (Park et al., 2013) and

Ba(Si,Al)5(O,N)8 (orthorhombic A21am) (Park et al., 2014),

respectively. The actual XRD patterns of these compounds

even include some impurity peaks, although they are extre-

mely small. We adopted an auto-peak-selection function to

pinpoint the peak positions and used the TREOR program for

indexing. We have tried indexing many times by varying the

peak-selection conditions in the TREOR program, but have

never had a correct indexing result. It is obvious that there is

no way to index properly via auto-peak selection without

human intervention. This failure could have originated from

either the peak overlap or the impurity peaks. Of course, an

expert in crystallography would never fail to index them

correctly if many more trial-and-error efforts were made, as

we did previously for these two compounds (Park et al., 2013,

2014). Details of the indexing process on the synchrotron

X-ray powder diffraction patterns of S-1 and S-2 are given in

the supporting information.

As a matter of fact, the CNN model cannot perform the

complete indexing of a powder XRD pattern, but simply

identifies the crystal system, extinction group and space group.

Both the choice of correct peaks and the ensuing considera-

tion of systematic absences require a great deal of human

expertise. However, our CNN model allows even novices to

quickly reach the correct determination of a crystal system

and probable space groups for novel compounds. It should be

noted that our CNN is not intended to outperform experts

who have much experience but, rather, it is meant to relieve

their cumbersome burden in carrying out indexing and space-

group determination. When non-experts are faced with

unknown novel structures in the inorganic science research

field, they can scarcely solve the structure given the current

status of software development. Precisely speaking, our CNN

model competes with neither well trained experts nor the well

established indexing programs. The assistance is intended

either for non-experts or for use with an auto-peak-search

program. It is evident that, once a peak search has been

correctly completed, then the TREOR program, or any of the

other currently available indexing programs, would work

perfectly.

Generally, it is difficult to account for why a CNN can

classify a powder XRD pattern with a relatively high degree of

accuracy. Deep-learning models have been criticized by many

researchers as resembling a black box. The present study

depended on deep CNN models and will not escape this

criticism. The following explanation is intended to be a plau-

sible answer to such criticism.

The CNN treats the powder XRD pattern as a sort of

picture, rather than as a set of deconvoluted discrete peak

position and intensity data, and thereby it excavates key

features from the raw data through a number of filters. An

implicit advantage of the use of CNN over conventional rule-

based indexing comes from the fact that equal weight is placed

not only on the low-angle data but also on the high-angle data,

which are full of high-index peaks with tiny intensities and

complicated multiple overlaps. In addition, the use of high-

angle side data in the conventional rule-based indexing

process creates some complications, which inherently origi-

nate from Bragg’s equation. For example, if we are working

with a cubic material, then the following relationship holds

�� ¼ � tan �
�a

a
: ð1Þ

Based on this equation, a small erroneous change in the lattice

parameter (a) can induce a huge change in the angle (�).

Therefore, the high-angle side data are considered to be

problematic and difficult to treat. However, due to the

pictorial consideration of the XRD patterns in the CNN, the

higher-angle data are treated the same as all the other data.

A CNN is known to recognize features within an input

sequence irrespective of scale and location. In particular,

signals located far from each other in the original sequence

could constitute a single hidden feature and a CNN could

capture that feature. This can be recognized neither by human

intuition nor by any shallow-learning model. Also, the filters

of the convolution layers at higher angles were expected to

capture features from small-scale signals in the input
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sequence, which has never been considered in rule-based

XRD studies.

The filters were expected to abstract the features of an

XRD profile, and the profile was then classified into a specific

class via the last fully connected layer fed by the features. Each

filter’s role of extracting a specific feature could be visualized

by weight parameters. Each filter of a convolutional hidden

layer had weights, each of which corresponded to a cell within

the filter. For example, if the weight value of a filter cell is

large, the filter captures a cell of the input sequence that is

covered by the filter cell. On the other hand, if a filter cell

value is small, the filter discards a cell of the input sequence

that is covered by the filter cell.

The abstracted features then contributed to classifying

XRD patterns, although the features were not intuitively

recognizable enough to be linked to the known characteristics

of an XRD pattern. Fig. 3 depicts different features of the

three convolution layers that were abstracted by each filter,

where the weights are shown on a red-and-blue scale. A large

positive value is represented by a strong red, whereas a large

negative value is represented by a strong blue and white

designates zero. The patterns at the top of Figs. 3(a), 3(b) and

3(c) depict 100 weights of 80 filters of the first convolution

layer. Each row of the pattern represents a specific feature

that the corresponding filter extracted from the input XRD

profile sequence. The other elongated patterns show 50 � 80

and 25 � 80 weights of 80 filters of the second and the last

convolution layers, respectively. Each row of these patterns

indicates a more complex feature at a higher level than those

extracted by a filter in the lower layers. Unfortunately, the

visualized features look like random codes, but with a certain

pattern that defies interpretation. These patterns might be

successful in classifying the XRD pattern. It should be noted,

however, that interpreting the performance of deep learning

at the level of human intuition is meaningless.

Although we are not fully aware of how the CNN works, it is

clear that it extracts information evenly from the full profile of

data, which is in sharp contrast to the conventional indexing

process where only a few low-angle peaks are taken into

account. If a material of concern has a high symmetry with a

relatively small unit cell then there would be fewer peaks

available, which would make the indexing much easier for use

of the conventional method. On the other hand, if the

symmetry of an unknown material is low and the cell is large,

then the number of peaks would be tremendously increased,

and thereby the CNN would function as an auxiliary tool

along with the conventional method.

5. Case study with actual XRD patterns of two novel
structures

Although we have already tested the performance of the

trained CNN using a randomly selected test data set, an

additional checkup is needed for a better understanding of our

deep CNN model for prediction of the crystal system. For this

double-check, we prepared two novel compounds (S-1 and

S-2), which were discussed previously (Park et al., 2013, 2014).

The actual XRD patterns were measured experimentally for

both S-1 and S-2 (Fig. 4) and were tested by the trained CNN.
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Figure 4
XRD patterns for Ca1.5Ba0.5Si5N6O3 (S-1) and BaAlSi4O3N5:Eu2+ system
(S-2), along with the Rietveld refinement fits. The black dots, red lines,
blue lines and vertical tick marks represent the experimental, calculated,
difference profile and peak positions, respectively. The vertical tick marks
in the second and third rows represent the peak positions corresponding
to impurity phases.

Figure 3
Filter visualizations of the three convolution layers. (a) The CNN for
crystal-system classification, (b) for extinction-group classification and (c)
for space-group classification. For each set of three, the top visualization
shows 100 weights of 80 filters in the first convolution layer, the middle
shows 50� 80 weights of 80 filters in the second convolution layer and the
bottom shows 25 � 80 weights of 80 filters in the third convolution layer.
Red and blue represent different weights: a large positive value is
represented by a strong red, whereas a large negative value is represented
by a strong blue and white designates zero.



As a result, the CNN correctly predicted the crystal systems. It

should be noted that we removed both S-1 and S-2 from the

training data set and included them in neither the training nor

the test data sets. Many entries in the ICSD exhibit similar

compositions with similar structures. Such entries also give rise

to similar powder diffraction patterns. In this regard, although

test accuracies of 81.14, 83.83 and 94.99% were obtained for

the space-group, extinction-group and crystal-system classifi-

cations, respectively, it was worthwhile to test whether or not

our CNN could predict a completely unique structure with no

similar structure types in the training set. However, it is very

difficult to obtain experimental powder diffraction patterns of

compounds that have unique structures. We pinpointed S-1

and S-2 because we had recently discovered them and been

assured of their structural novelty and unique nature (Park et

al., 2013, 2014).

All entries in the ICSD are regularly categorized and those

results are announced several times each year. Such a struc-

tural categorization principle is clearly based on reasonable

crystallography-based principles (Allmann & Hinek, 2007). If

an entry of concern belongs to one of the existing structural

types (a so-called prototype), then the entry can be categor-

ized into the prototype structure. The current number of

prototype structures is 9093 according to the latest

announcement in 2017 (ICSD web page). Most of the entries

belong to one of these prototype structures, and a minor

number of entries never belong to any of them. S-1 and S-2

belong to the latter case. This means that these two

compounds have no similar compounds (XRD patterns) in the

ICSD database and therefore had no similar patterns in our

training data set. When the CNN made the correct determi-

nation of the structural system for these two, its applicability

showed great promise. Although it is not clear whether such a

wonderful result was fortuitous or not, the fact remains that

our CNN gave us the correct crystal-system determination for

these two.

The CNN architectures designed for the classification of

extinction and space groups exhibited accuracies of 83.83 and

81.14%, respectively. However, both of these CNN archi-

tectures were unsuccessful in the confirmative test, and failed

to predict the correct extinction and space groups for these

two real XRD patterns. Nonetheless, we remain optimistic

because a CNN with 101 or 230 neurons (nodes) at the output

layer would require a deeper network architecture along with

a much larger data set. We should be able to achieve success

soon, in parallel with further advancements in computation

capacity.

6. Conclusions

In summary, three CNNs were developed for the space-group,

extinction-group and crystal-system classification of 150 000

powder XRD patterns, and returned test accuracies of 81.14,

83.83 and 94.99%, respectively. The powder XRD patterns

used for the CNNs were prepared using crystal structure data

acquired from the ICSD, along with a set of random para-

meters for the background and peak width. In contrast with

conventional structure analysis, the CNN-based space-group,

extinction-group and crystal-system classification was accom-

plished by a totally data-based process from scratch. More

importantly, it incorporated neither human (expert) inter-

ference nor assistance. Two actual powder XRD patterns of

novel structures were tested, which belonged to none of the

prototype structures listed in the ICSD and even involved a

small amount of impurities. In these cases, the crystal-system

prediction by the CNN was correct. The CNN read the entire

raw powder XRD data as a picture, and it recognized the

crystal system without the need for any theoretical analysis.

This small success will be a milestone for further development

of deep-learning-based analysis for many other conventional

theoretical rule-based tasks in materials science.
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