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The availability of dummy-atom modelling programs to determine the shape of

monodisperse globular particles from small-angle solution scattering data has

led to outstanding scientific advances. However, there is no equivalent

procedure that allows modelling of stacked, seemingly endless structures, such

as helical systems. This work presents a bead-modelling algorithm that

reconstructs the structural motif of helical and rod-like systems. The algorithm

is based on a ‘projection scheme’: by exploiting the recurrent nature of stacked

systems, such as helices, the full structure is reduced to a single building-block

motif. This building block is fitted by allowing random dummy-atom movements

without an underlying grid. The proposed method is verified using a variety of

analytical models, and examples are presented of successful shape reconstruc-

tion from experimental data sets. To make the algorithm available to the

scientific community, it is implemented in a graphical computer program that

encourages user interaction during the fitting process and also includes an

option for shape reconstruction of globular particles.

1. Introduction

Small-angle X-ray scattering (SAXS) is an established tech-

nique to study the structural aspects, such as the size and

shape, of molecular systems in solution (Li et al., 2016). As this

structural information is not directly apparent from the

recorded scattering intensity, one requires a fitting process

that generally relies on an underlying mathematical model

(Pedersen, 1997). While a variety of such analytical models are

available in the literature (Pedersen, 1997), each of them is

bound to a given shape. The fitting process of an experimental

data set therefore requires previous knowledge of the sample

such that the appropriate model can be chosen. Dummy-atom

(DA) modelling, which describes the particle shape as a

variable bead assembly, bypasses this issue as the fitting

process is no longer constrained to a single geometry (Chacón

et al., 1998; Walther et al., 2000; Svergun et al., 2001; Franke &

Svergun, 2009; Koutsioubas et al., 2016). Consequently, no a

priori knowledge regarding the solute’s shape is necessary.

This advancement has helped to make SAXS an attractive

technique to characterize stable molecules in solution, far

beyond the community of scattering experts (Yang, 2014).

However, single molecules in solution are not always stable.

In fact, it is in their nature to interact and aggregate, often

resulting in highly organized hierarchical systems stretching

over several orders of magnitude (Palmer & Stupp, 2008;

Wasielewski, 2009; Busseron et al., 2013; Praetorius & Dietz,

2017). Helical and chiral superstructures are a common yet

spectacular class of such systems, e.g. the length of the human

genome DNA double helix exceeds several centimetres

(Venter et al., 2001) while the forces that give rise to the
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characteristic helical motif act on the molecular (nanometre)

level (Dobbs, 2007). Amyloid fibrillation, i.e. the aggregation

of proteins into insoluble, often helical, fibrils, has been linked

to critical diseases such as type 2 diabetes or Alzheimer’s

(Dobson, 2003; von Bergen et al., 2000) as well as to unwanted

drug degradation (Morozova-Roche & Malisauskas, 2007;

Vestergaard et al., 2007). Consequently, a comprehensive

understanding of these systems requires structural character-

ization at the (supra-)molecular scale. Small-angle X-ray

diffraction of aligned fibres [e.g. the famous studies of the

structure of DNA (Wilkins et al., 1953; Watson & Crick, 1953)]

is a powerful technique for this purpose. However, the

evaluation of solution scattering data from randomly oriented

helical structures faces two challenges: (i) only a few analytical

models are available from which structural information, such

as pitch and twist, can be retrieved (Schmidt, 1970; Pringle &

Schmidt, 1971; Hamley, 2008; Teixeira et al., 2010); and (ii) the

endless nature of helices does not allow DA modelling using

current programs (Volkov & Svergun, 2003; Gingras et al.,

2008).

In this work, we present a bead-modelling algorithm to

determine the structural motif of monodisperse systems,

highly elongated in one dimension, in solution from SAXS

data. We use symmetrical boundary conditions to project the

seemingly infinite nature of e.g. helical systems onto a single

building-block unit, represented by dummy atoms (DA). This

building block is altered by random DA movements while

simultaneously fitting the corresponding scattering curve

against the experimental one. The proposed method is verified

using simulated data sets of various one-dimensional struc-

tures and we subsequently apply it to experimentally obtained

SAXS data. The full algorithm is implemented in a computer

program (SasHel), which also includes an option for globular

geometries. The reduction of the system’s complexity by

symmetric projection and the fast code implementation result

in a toolkit that allows a full shape retrieval from scattering

data in the order of 3–90 min on a standard work station (see

Appendix A), depending on the level of detail.

2. Projection scheme

Dummy-atom modelling is based on the idea that a given

particle shape is represented by an assembly of N small beads

of equal scattering length density, called dummy atoms (DA).

According to the Debye formula (Debye, 1915), the scattering

intensity of this assembly can then be calculated from the bead

assembly as
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Figure 1
The projection scheme, visualized using the example of a single-stranded helix. For such seemingly endless geometries, there is a building block (upper
left-hand corner) that is recurrent along the z axis (see full helix on the right). For a full body consisting of M stacked building blocks, one finds distinct
structural motifs, such as the building block itself, neighbouring building blocks, single-spaced building blocks and so on up to (M � 1)-spaced building
blocks. The scattering intensity of the full geometry can hence be calculated by summing the contributions of these structural motifs, scaled by their
recurrence. This bypasses the demand for an actual DA model representing the full structure, as we solely evaluate projections of the building block
instead of actual stacked duplicates, hence the term projection scheme.



IðqÞ ¼ fDAðqÞ
2
XN

i¼1

XN

j¼1

sin qrij

� �
qrij

; ð1Þ

where the norm of the scattering vector is denoted as q =

4�sin(�)/� (2� is the scattering angle and � is the radiation

wavelength) and fDA(q) represents the DA form factor (given

in this work by a Gaussian sphere approximation; Koutsioubas

& Pérez, 2013; Svergun et al., 1995; Grudinin et al., 2017;

Fraser et al., 1978). A DA diameter of 0.2 nm was used for all

reconstructions. As this formalism considers the distances

between all possible DA pairs rij = |rj � ri| inside the assembly,

its mathematical complexity is OðN2Þ. Hence, the computa-

tional effort increases drastically for large N. Adequate

modelling of seemingly infinite rod-like geometries requires

very large numbers of DAs (N > 10 000), making the Debye

formula appear inadequate in its standard notation.

Rod-like structures, such as helices, often possess a certain

structural motif, a building block, which recurs along the

elongation direction. Hence, only this building block is of

interest for shape reconstruction. We define a building block

of NBB dummy atoms with its elongation direction parallel to

the z axis (see Fig. 1). The full rod-like structure is then

reproduced by duplicating the building block M times along

the z direction, with a stacking distance corresponding to the

building block’s height HBB (see Fig. 1). The evaluation of this

stacked model by means of the Debye formula [equation (1)]

now includes redundant terms, as distinct motifs inside the

structure are now recurrent. For instance, the single building-

block motif would be evaluated at each repetition along z,

such that the same computation is performed a total of M

times. It is therefore sufficient to calculate the scattering

intensity of the building block only once and scale it by the

number of stacks. The same principle applies to inter-building-

block contributions. For example, as the motif of neighbouring

building blocks can be found (M � 1) times in the full struc-

ture, we can evaluate this motif once and, again, multiply it by

the corresponding scalar.

In mathematical terms, the Debye formula can be adjusted

to neglect these redundancies, resulting in

IðqÞ ¼ fDAðqÞ
2

(
M
XNBB

i¼1

XNBB

j¼1

sin q rj � ri

�� ��� �
q rj � ri

�� ��
þ 2

XM�1

k¼1

ðM � kÞ
XNBB

i¼1

XNBB

j¼1

sin q rj þ k �HBBez

� �
� ri

�� ��� �
q rj þ k �HBBez

� �
� ri

�� ��
)
;

ð2Þ

where ez denotes the unit vector along the z axis (elongation/

stacking direction). This formalism reduces the calculation of

the scattering intensity to the sum of structural motifs found

inside the stacked model (see scheme in Fig. 1). It further

bypasses the demand for a DA model to represent the full

structure, as we evaluate only projections of the building block

instead of all stacked duplicates, hence the term ‘projection

scheme’. Its benefit, compared with the standard Debye

formula, is a reduction in the mathematical complexity from

O½ðM NBBÞ
2
� toOðM N2

BBÞ. In the case of the example shown in

Fig. 1 (NBB = 400, M = 15), this increases the calculation speed

approximately seven fold.

The notion of reducing a given model to its structural motifs

raises a critical point regarding the required number of stacks

M necessary to represent a seemingly endless structure. This

number defines the length of the entire projected model L,

simply via L = MHBB. According to scattering theory, rod-like

structures present a characteristic q�1 power-law behaviour in

the intermediate Porod regime (Glatter & Kratky, 1982),

whereas the transition from this Porod regime (q�1) to the

adjacent lower-angle Guinier regime (q�0) occurs at a specific

scattering vector q1 depending on the length of the rod, which

can be estimated using q1 = 181/2/L in the simplified framework

of the Hammouda model (Hammouda, 2010). Thus, if the

experimental data present a q�1 power law at even the smal-

lest accessible scattering angle qmin, the length of the structure

must be larger than L > 181/2/qmin. Similarly, we use this

relation to determine the minimum number of stacks required,

according to M > 2 + 181/2/(HBB qmin) (with the additional

term of + 2 to avoid truncation effects).

3. Determination of the stacking distance

The projection scheme is a faster alternative for calculating

the scattering intensity of a stacked structure compared with

the standard Debye formula. As is apparent from equation

(2), the formalism requires an additional input parameter, the

stacking distance between the building blocks HBB. In the

following, we present a pathway to determine this using the

pair distance distribution function (PDDF).

The PDDF corresponds to the surface-weighted probability

to find two points separated by a distance r inside a particle

(Glatter & Kratky, 1982). It is thus a histogram of all distances

that appear inside a given particle, weighted by the corre-

sponding electron densities. In the case of DA assemblies, the

PDDF can be also interpreted as the volume-weighted pair

correlation function p(r).

An analytically available example of this definition yields

the case of stacked spheres using the formalism based on the

work of Glatter (1980), from which a series of conclusions can

be drawn (see Fig. S1 in the supporting information for a

system of ten stacked spheres). Evidently, as the system

contains ten spheres the corresponding PDDF presents ten

peaks. The first peak (blue trace in Fig. S1) relates to the mean

shape of all the spheres involved – it is hence an intra-

building-block PDDF. The following nine peaks (red traces in

Fig. S1) are caused by the repetitive nature of the system, as

for each possible sphere-to-sphere distance a new peak is

found – they are hence inter-building-block PDDFs. These

inter-building-block PDDFs, in particular the distances

between them, therefore hold information on the stacking

distance between the building blocks.

In order to determine the stacking distance of a structure

from a given PDDF, it would be intuitive to measure the peak

distances. However, the exact peak shapes and therefore

positions are distorted due to (i) the linear high-r decay in the

PDDF (see dashed lines in Figs. S1 and S2) and (ii) the overlap
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of neighbouring peak contributions (Glatter, 1980; Feigin &

Svergun, 1987). A direct measurement of the peak positions in

the PDDF might therefore result in misdetermination of the

stacking distance. A stable approach to circumvent this issue is

to calculate the derivative of the PDDF (dPDDF). This

numerically fast and easy operation suppresses the above-

mentioned decay distortion (see dPDDF in Fig. S1). The

resulting dPDDF can then be fitted by e.g. a damped sinu-

soidal function in which the period is directly related to the

mean stacking distance (see Fig. S1 and Section S1 in the

supporting information).

A more complex example illustrating the named distortion

effects is the case of a torus (a ring with a circular cross

section; Kawaguchi, 2001). Such a torus presents two char-

acteristic dimensions: the ring–centre diameter and the ring

thickness. As a result, the PDDF of such a single torus exhibits

two distinct peaks correlating to these structural features (see

Fig. S2; the model scattering data, including an artificial error

band, were calculated according to Appendix A). Considering

now the case of multiple stacked rings (Kornmueller et al.,

2015), for each ring that is added on top of the other(s) we find

a new peak in the corresponding PDDF (see Figs. S2 and S3).

However, in this case, the radial size of the tori (diameter

20 nm) was selected to be larger than the stacking distance

between them (7 nm), resulting in an increased distortion of

the inter-building-block peak positions [see distortion

phenomenon (ii) above, as well as Fig. S2]. As shown in Fig. S2,

the determination of the stacking distance by fitting of the

dPDDF yields a stable result.

We employ this approach to determine the stacking distance

from all repetitive structures presented in this work. The

advantage of this choice is that we avoid the use of a

complementary characterization technique, as the underlying

PDDF can be determined from a given data set using a variety

of available software packages. A more detailed discussion of

the limitations and possible causes of misdetermination can be

found in Sections S1.2 and S1.3 and Figs. S1–S6.

4. Fitting algorithm

According to the presented projection scheme, we reduce a

seemingly infinite structure to a building-block motif together

with two boundary conditions, the stacking distance HBB and

the number of necessary stacks M. As these two values are

determined directly from either the PDDF or the scattering

data, the modelling occurs within the single building-block

volume. We thus represent the building-block motif by a

dummy-atom configuration X such that the scattering inten-

sity Icalc(qm) (where qm denotes the q value of the measured

data points) can be calculated using equation (2). To find a

configuration that best fits the experimental scattering inten-

sity Iexp(qm), the relation

�2 ¼
1

Nexp

XNexp

m

Iexp qmð Þ � Icalc qmð Þ

�exp qmð Þ

" #2

; ð3Þ

needs to be minimized, where �exp(qm) denotes the experi-

mental error and Nexp the number of data points.

In DA modelling, the principle idea behind this minimiza-

tion procedure is straightforward: a given initial configuration

is gradually altered until the best agreement between the

corresponding scattering curves is found. Here, we randomly

fill an initial building-block volume with DAs that are set free

at the start of the fitting procedure (500–1500 DAs per

building block are suggested, depending on the experimental

resolution – see Section S2). In order to optimize the target

function �2, various metaheuristic methods exist such as

Simulated Annealing (Kirkpatrick et al., 1983) or the Genetic

Algorithm (Mitchell, 1996). In our case, we employ a meta-

heuristic fitting procedure (Boussaı̈d et al., 2013; Gogna &

Tayal, 2013) with an antifragile implementation (Taleb &

Douady, 2013) and the algorithm improves �2 by randomly

moving single DAs. In contrast with current DA modelling

programs, the DAs do not move on an underlying grid. As the

magnitude of the movement is scaled by a temperature factor,

we force the system to freeze eventually in a given condition

and the algorithm to converge.

DA modelling faces the general problem of uniqueness: as

models consist of >103 DAs, the information content given by

the scattering data is highly overdetermined by a given

configuration. Fitting of the scattering data without restraints

can therefore lead to physically unfeasible results, in particular

with regard to the model homogeneity and compactness.

Current algorithms control and optimize these two properties

during the fitting process by means of a ‘looseness penalty’

regularization term as a quantitative measure of the DAs’

local vicinity: by counting and maximizing the number of

contacting neighbours of each DA, a compact and homo-

geneous configuration is achieved (Svergun, 1999; Franke &

Svergun, 2009; Koutsioubas et al., 2016). We adapt this proven

technique to our grid-free algorithm in two ways. First, we

introduce the parameter dN12 , denoting the distance between

a given DA and its 12 (close-packed limit) nearest neighbours.

Similar to the looseness penalty, dN12 quantifies the local

vicinity of each DA, acting as a homogeneity classifier for the

algorithm to decide if a given DA position is accepted or not.

Second, we apply the idea of a regularization term and

introduce a ‘radial compactness’ parameter RC(X) into the

minimization procedure, keeping the DA close to the (radial)

centre of mass of the configuration.

As the choice of a grid-free DA algorithm is a departure

from current implementations, we face challenges for which

no readily available solutions exist. In particular, we must

introduce new concepts, (i) to obtain a hard-contact limit for

neighbouring DAs, (ii) to allow model scalability over

different length scales and (iii) to generate a random move-

ment depending on the current annealing temperature. In the

following subsections we discuss these topics in more detail,

starting with the introduction of the scaling parameter DX and

the random-movement generator, and then moving to the

mathematical definitions of dN12 and RC(X) regarding

homogeneity and compactness. A general overview of these

concepts and their parameters is given in Table 1. At the end
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of this section, we further address the topic of model

uniqueness and repeatability and give a conclusive overview

of the algorithm’s implementation in the program SasHel.

4.1. Scalability – scaling parameter DX

Allowing DAs to move randomly without an underlying

grid brings an advantage in terms of the model volume and

therefore the radial size. In a fixed grid system, the final DA

density is predefined by the grid resolution, which is related to

the resolution of the scattering pattern in reciprocal space. In

the case of reconstruction of a highly elongated structure,

radial expansion of the DA configuration during the fitting

process is only possible by the addition of new DAs, hence

increasing the numerical overhead (NDA ’ D 2
X for radial

growth). Radial compression, on the other hand, is limited by

the grid resolution, such that at a certain point the grid type

(e.g. hexagonal packing of the DAs) may impose artificial

structural features. This is particularly true for the case of

highly elongated structures, where the grid resolution is likely

to be more coarse than the experimental limit as a reasonable

computational overhead (NDA < 10 000) must be maintained.

Our grid-free approach does not present such limitations: as

the number of DAs per building block (mainly determined by

the experimental resolution) is kept constant, the algorithm on

its own adapts to a change in DA density while at the same

time maintaining the relative model resolution and computa-

tional resources (see Section S2.2 for a discussion of model

resolution). This in particular benefits users who have chosen

the wrong radial size for the starting configuration, as the

algorithm adapts according to the scattering curve without

computational drawbacks. We exploit this adaptive potential

of our algorithm using an estimated diameter DX of a given

configuration X, which acts as a scaling parameter throughout

the algorithm.

We quantitatively track the growing or shrinking of the DA

configuration X throughout the fitting process via the radius of

gyration RG,X. For elongated cases, we assume a cylindrical

reference geometry, such that we estimate DX after every DA

movement according to

DX ¼ 2ð21=2ÞRG;X ¼ 2ð21=2Þ
1

NBB

XNBB

i¼1

x2
i þ y2

i

 !1=2

: ð4Þ

Along the z axis we introduce a continuity condition (see the

limited building-block height in Fig. 1) such that DAs leaving

the building block in the vertical direction are re-projected

back inside the building-block volume.

4.2. Random-movement generator

As we pursue the concept of grid-free random DA move-

ments to find an optimal configuration, we require a random-

movement generator that depends on a series of parameters,

including (i) the dimensions of the current DA configuration

(HBB and DX), (ii) the current temperature T of the fitting

process (1>T> 0) and (iii) the helical chirality of the sample

(helical field bias �). In every numerical iteration throughout

the fitting process, a chosen DA is moved along the unit axes

ex, ey and ez by the random vector rrand(T), where

rrandðTÞ ¼

DXT Randx þ �T cos 2�zi

HBB

� �h i
ex

DX T Randy þ �T sin 2�zi

HBB

� �h i
ey

�HBBT Randzez

0
BB@

1
CCA: ð5Þ

Here, a random number generator Rand returns any value

between �1 < Randx,y,z < 1 every time it is called. In order to

adjust the random movement by the size of the current

configuration, the radial and longitudal contributions are

scaled by the current diameter DX or the building-block height

HBB, respectively (movement along the z direction is scaled by

� to ensure axial homogeneity, with a standard value of � =

0.1). Further, each movement along the x, y or z direction is

scaled by the current temperature T. In the case of radial

movement along the x or y direction, we added a helical bias

term (depending on the DA’s current ez position zi ; the

building-block motif extends from z = 0 to z = HBB). This bias

term is scaled by the helical field bias � (user defined with

values of the order of 0< � < 1, default value 0.3) as well as by

the current temperature T, such that it favours counter-

clockwise solutions motivated by the first structural model of

DNA (Watson & Crick, 1953). It is important to note that,

mathematically, the helical bias term correlates quadratically

with the current temperature T. Therefore, its contribution is

only significant in the early stages of the fitting process (see

Fig. S11 for its influence on the reconstruction) such that,

using its default value of 0.3, it does not influence the
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Table 1
Main concepts of the proposed grid-free fitting algorithm, the corresponding mathematical parameters, their function and their implementation
compared with current solutions in fixed-grid DA modelling programs.

For details of current fixed-grid methods, see Svergun (1999), Franke & Svergun (2009) and Koutsioubas & Pérez (2013).

Concept Fixed-grid methods Parameter Function Implementation

Scalability Grid size DX Scaling parameter dN12, RC(X), random movement
generator

Homogeneity Fixed grid/looseness penalty dN12 Avoid DA clustering/disconnected
DAs

Movement classifier/forced recon-
figuration

Compactness Looseness penalty/limited search
volume

RC(X)/DX,crit Keep DAs close to (radial) centre
of mass/avoid model explosion

Regularization term/forced recon-
figuration



modelling of non-helical systems (Fig. S15) but facilitates the

reconstruction of high-aspect helical motifs.

In the case of fitting globular structures (M = 1), the

random-movement vector rrand(T) is significantly simplified

according to

rrandðTÞ ¼

DX T Randx ex

DX T Randy ey

DX T Randz ez

0
@

1
A; ð6Þ

where the current diameter DX is now evaluated over all three

directions, such that equation (4) now also includes the

contribution of the DAs’ current z positions z2
i .

4.3. Homogeneity – the dN12 parameter

The random nature of DA movements causes a side effect

with regard to the uniqueness of the fitted model: as there are

infinite possibilities for describing a given structure by

randomly filling it with point scatterers, the terminology of a

unique model is not reasonable in this context. However,

certain criteria related to the homogeneity of the DA config-

uration make a fitted DA reconstruction, in a physical sense,

very unlikely. These scenarios are (i) high-density DA clusters

and (ii) single disconnected DAs far away from the remaining

configuration.

We optimize the homogeneity throughout the fitting

process by analogy with the established looseness parameter

in fixed-grid systems (Svergun, 1999; Franke & Svergun, 2009;

Koutsioubas & Pérez, 2013), namely by evaluating the local

vicinity around each DA. In these fixed-grid implementations,

the distance between neighbouring DAs is known such that

only the number of contacts needs to be counted. In our grid-

free case, we use the same principle in an inverted manner: we

assume an ideal close-packed condition with 12 neighbours

and calculate their mean distance to the central DA, resulting

in the parameter dN12 . In the extreme case of a DA within a

high-density cluster [scenario (i) above], dN12 will be very

small. On the other hand, for a single free-floating DA that is

far away from the core DA assembly [scenario (ii)], dN12 will

be very large. The magnitude of dN12 is hence inversely

proportional to the DA density around a given DA. Equally,

the average dN12 over the full DA configuration dN12,X denotes

an inverse measure of the mean DA density of the config-

uration.

We use the dN12 parameter for a twofold purpose. In order

to avoid scenario (i), we do not allow DAs to come closer than

0.1hdN12,Xi. This acts as a hard-contact limit so that we

circumvent DA clustering and therefore unfeasible singula-

rities throughout the fitting process. In order to avoid scenario

(ii), we repeatedly force DAs with dN12 > 2hdN12,Xi that are

outside the mean radial distance h|r|iX to move towards the

centre of mass of the closest fraction of DAs. This avoids free

floating of a single DA and therefore forces the DAs to remain

in a compact configuration. A detailed description of how the

dN12 parameter is implemented in the fitting algorithm can be

found in Section S3 and Fig. S27.

4.4. Compactness – the radial compactness parameter RC(X)

In order to prevent unphysical disassembly of the DA

configuration during the fitting procedure, we retain the DAs

close to the radial centre of mass (RCOM) of a given

configuration. We achieve this by introducing a potential well

such that the DAs are weighted as a function of their radial

distance from the centre of mass rCOM
i . DAs inside the

potential well should be unaffected, so that they move freely

regardless of their position. Once DAs drift towards the well

border, a force should push them back towards the centre of

mass, hence avoiding radial disassembly. To find an adequate

mathematical description of this potential field ’ we specified

the following criteria: (i) radial continuity to avoid non-

linearities; (ii) asymptotic behaviour, such that

’ðrCOM
i ! 0Þ ! 0 and ’ðrCOM

i !1Þ ! 1; (iii) scalability in

magnitude (0 < ’ < 1); and (iv) scalable potential-well size

and steepness. Based on these requirements (and inspired by

the potential field for a Gaussian distribution of electrostatic

charges; Schlick, 2010), we use the mathematical properties of

the error function erfðxÞ to define a radial-symmetric potential

well acting on each DA. As a result, we obtain the radial

compactness parameter RC(X) according to

RCðXÞ ¼
1

NBB

XNBB

i¼1

1

2
1þ erf

�rCOM
i

DX

�
�þ 1

2

	 
� �
; ð7Þ

where rCOM
i represents the radial distance between the RCOM

of configuration X and the i th DA (in the case of globular

geometries, rCOM
i represents the distance between the centre

of mass of configuration X and the i th DA). With regard to the

specifications defined above, this formalism fulfils the above-

mentioned points (i)–(iv) by means of the scaling parameter

DX (which is evaluated after every DA movement). In parti-

cular, for point (iv), scalable potential-well size and steepness,

the potential-well boundary (half-height position) will be

found at ðrCOM
i Þ=DX = (� +1)/2� = 0.66, where its derivative is

1/�. In absolute terms, for a very compact structure such as a

cylinder with a smooth surface or an infinitely thin cylindrical

shell, RC(X) will be approximately 0.06 or 0.24, respectively.

Each single atom moving further away from DX will cause

RC(X) to increase towards 1.

We account for this radial compactness throughout the

fitting process by using RC(X) scaled by the compactness

weight 	 as a regularization term. Thus, the algorithm in fact

minimizes the function

f ðXÞ ¼ �2 þ j	jRCðXÞ; ð8Þ

instead of only �2 alone.

As an ultimate radial boundary, similar to the search-

volume diameter in DAMMIN (Svergun, 1999), we apply a

critical diameter DX,crit = 2DX such that single DAs moving far

away from the RCOM are repeatedly forced into a more

compact configuration (see Section S3 and Fig. S27 for a

detailed description of how the radial compactness is imple-

mented in the algorithm).
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4.5. Model resolution and uniqueness

The most obvious visual side effect of using random

movements is related to the outer surface of the fitted model.

For example, if DAs can only move on an artificial grid, the

fitted configuration of a globular particle will present a surface

smoothness according to the lattice planes of the grid. As

already discussed above, allowing random DA movements

results in infinite possibilities for representing a given particle

volume and thus also its surface. Consequently, the surface of

a random-movement fitted configuration will be significantly

rougher than a corresponding fixed-grid model. However, this

increased surface roughness is just a visual symptom of the

information content provided by the scattering curve, as we

discuss in the following.

In absolute terms, we can expect to end up with a fitted

configuration that presents structural features, both on the

surface and within the volume, that are below the resolution

limit of the experimental data (dmin = �/qmax , where qmax is the

upper angular range of the experimental data). This implies

that e.g. thin helical tapes require a large accessible angular

range in order to be resolved properly. If this is not the case,

the retrieved model is at high risk of being over-interpreted.

On a less obvious note, a low angular resolution can further

lead to artefacts within the configuration that might not be

seen by a common surface representation (we address this

topic in more detail in Section S2).

A common technique to avoid misinterpretation of such

artefacts is to test the reproducibility of the reconstruction

(Volkov & Svergun, 2003). This approach brings a series of

advantages. First, the overall stability and reliability of the

reconstruction from a given data set are assessed. Second, a

consecutive averaging process of all reconstructions projects

the DAs onto an artificial occupancy-weighted grid, which

provides a straightforward procedure to determine DA

validity and volume inhomogeneity. Third, this occupancy map

helps to identify structural artefacts in single reconstructions

caused by insufficient information content of the scattering

data, thus avoiding over interpretation. Fourth, the recon-

struction of an arbitrary shape from scattering data is a

(highly) underdetermined problem so it is not guaranteed to

obtain a unique result from a given fitting algorithm.

Performing a reproducibility analysis when reconstructing a

structural motif from experimental scattering data, in parti-

cular when the information content and validity of the data

are questionable, is hence highly recommended. In quantita-

tive terms, the reproducibility of a reconstruction may be

judged by the mean normalized spatial discrepancy hNSDi of

parallel reconstructions, which represents an measure of

dissimilarity (hNSDi = 0 for identical models) for the inde-

pendent runs (Volkov & Svergun, 2003).

4.6. Implementation

We implemented the fitting algorithm in the computer

program SasHel, a Qt graphical user interface (GUI) written

in C++ that allows user interaction. When starting a fitting

procedure, the program generates a random cylindrical

starting configuration according to a user-defined diameter,

the building-block stacking distance and the number of DAs

per building block. Once started, the fitting algorithm under-

goes Nk iterations: starting from a temperature T0, the system

cools down as defined by the quenching coefficient qT (0 < qT

< 1) such that the current temperature at a given iteration k is

Tk = T0 q k
T (we recommend the default values Nk = 100, T0 = 1

and qT = 0.99 as an initial set of parameters for convergence).

In each k iteration, all the DAs are randomly moved using the

random-movement generator (see Section 4.2) under the

restraints explained in Section 4.3, such that a movement is

only accepted if (i) the new DA position complies with the

hard-contact limit 0.1hdN12,Xi (if not, up to 100 new move-

ments are considered) and (ii) an improvement in the function

f(X) is found [see equation (8)]. After each k iteration the

sequence of DAs is randomly mixed to avoid sequential

biasing of the algorithm.

Throughout the fitting procedure, we pursue the concept of

antifragility (Taleb & Douady, 2013), a concept applicable to

metaheuristic optimization (Boussaı̈d et al., 2013; Gogna &

Tayal, 2013): the converging system is repeatedly forced out of

its local minimum such that a global minimum is more likely to
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Figure 2
Scattering curves computed from the seemingly endless model geome-
tries A–G shown in Fig. 3 (red circles; see Appendix A for model details)
and fits from the reconstruction (black lines). For better visualization, the
scattering patterns are shifted vertically and error bars have been omitted
(see Fig. S14 for high-q magnifications of these curves).



be found. These non-optimal moves are forced onto the

configuration without consideration of the damage caused to

the model, making the algorithm less prone to distortion of the

solution space by regularization terms. A summary of the full

algorithm, including an example implementation in pseudo-

code, can be found in Section S3 and Fig. S27.

The program SasHel further includes a ‘parallel mode’ that

runs a unique reconstruction on each available CPU core, so

the model’s validity and reproducibility can easily be tested

using e.g. DAMAVER (Volkov & Svergun, 2003).

5. Model examples

To test the implemented algorithm, we simulated a number of

scattering intensities from seemingly endless bodies (see

Appendix A for detailed dimensions). All reconstructions

were performed using the default fitting parameters as follows:

starting temperature T0 = 1, quenching coefficient qT = 0.99,

number of iterations Nk = 200, helical bias parameter � = 0.3,

compactness weight 	 = 1, DA form factor diameter DDA =

0.2 nm and number of stacked building blocks M = 10. The

dimensions of the initial random configuration, including the

stacking distance of the building blocks, were determined from

the relative dPDDFs (see Figs. S12 and S13). For all recon-

structions, we used 500–800 DAs per building block, resulting

in computation times for each run between 20 and 60 min on a

standard workstation, respectively.

The scattering intensities of the theoretical models are

shown in Fig. 2, along with the fits from the reconstructions.

For all geometries used, we find agreement between the

theoretical and fitted scattering intensities (the �2 value of all

fits is below the threshold of 0.1). Yet, cases A–D show slight

oscillations in the higher-q regime 1 < q < 2 nm�1 (see

Fig. S14), which is a resonance effect caused by the stacking

nature of identical building blocks (see Section S2.3).

Fig. 3 presents the corresponding three-dimensional models

and reconstructions (see Fig. S15 for point representations).

Models A and B show a circular cross section in agreement

with the model, while in the case of the cylindrical shell the

empty core is present. Further, the rectangular cross section of

model C is visible in the reconstructed model. However, the

sharp corners are not fully resolved, which is most likely the

effect of insufficient resolution from the scattering data (dres’

1.6 nm compared with the rectangular cross section a � b = 4

� 20 nm). In cases D–G, the helical fingerprints (single- or

double-stranded nature) are well resolved in the reconstructed

models. Cases D and E, and F and G, present noticeable

differences in their cross sections, helping to distinguish

between a helical filament (empty core) and a helical tape

(filled core). Further, variations in the thickness of the helical

strands can be observed. The overall agreement between

model and reconstruction for the main features demonstrates

the functionality of the algorithm for similar seemingly endless

bodies.

In order to evaluate the stability and reproducibility of the

reconstruction algorithm, eight independent runs for each

model geometry were analysed using DAMAVER according

to the literature (Volkov & Svergun, 2003). Accordingly, we

obtained the mean normalized spatial discrepancy hNSDi as a

measure of the similarity of independent reconstructions of

each model (hNSDi = 0 for identical configurations). As

shown in Fig. 3, the hNSDi of models A–G gradually increases

from 1.01 to 1.37 with the complexity of the model. On an

absolute scale, these hNSDi values are higher than those in the
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Figure 3
Theoretical and reconstructed three-dimensional models of the seemingly endless geometries used here. The numbers below the labels denote the mean
normalized spatial discrepancy hNSDi, obtained from eight independent reconstructions (random artificial cylinder: hNSDi = 1.03 � 0.01, random
artificial single-strand helix: hNSDi = 1.06� 0.01). The PDDFs and dPDDFs used to determine the stacking distance between the building blocks can be
found in Figs. S12 and S13. See Fig. 2 for the corresponding scattering intensities and Fig. S15 for point representations, as denoted by the letters A–G.



literature (Volkov & Svergun, 2003), where stable recon-

structions were linked to an hNSDi of 0.4–0.7. The reason for

this difference is found in the grid-free nature of our approach:

NSD values for grid-free programs such as GASBOR are

generally higher (Svergun et al., 2001). To validate our find-

ings, we constructed eight randomly filled artificial cylinders

and single-strand helices (NDA = 700), yielding hNSDi values

of 1.03 � 0.01 and 1.06 � 0.01, respectively. These values, in

context with the hNSDi of the above reconstructions, provide

a reference for grid-free models where an hNSDi between 1

and 1.4 is observed.

It is also possible to run the fitting algorithm using only M = 1

stacks, which corresponds to the case of the building block

alone. Thus, the same program can also be used to fit globular

particles. We tested this option in a similar way to the method

outlined above by simulating a number of scattering inten-

sities from globular bodies (see Appendix A for detailed

dimensions). For all reconstructions, we used the same default

fitting parameters as mentioned previously. The dimensions of

the initial random configurations were determined from the

maximum dimension found in the relative PDDFs (see

Fig. S12). However, we increased the number of DAs to 800–

1200, now resulting in computation times between 5 and

10 min per run on a standard workstation, respectively.

The scattering intensities of the theoretical models and the

fits from the reconstructions are shown in Fig. 4(a). For all

geometries used, we find agreement between the theoretical

and fitted scattering intensities (the �2 value of all fits is below

the threshold of 0.1). Evidently, the oscillations previously

found for the repeating motif in the higher-angle regime (see

Fig. 2) are not present. The three-dimensional models and

reconstructions corresponding to the scattering patterns are

shown in Fig. 4(b) (see Fig. S16 for point representations).

Also in this case, the fitted morphologies clearly represent the

corresponding models, including the hollow geometries I and

L. The hNSDi values for eight independent reconstructions of

each geometry are within the range 0.96–1.28, as denoted in

Fig. 4(b) [in relative terms, the hNSDi values for eight

randomly filled artificial spheres and cubes (NBB = 1500) were

1.04 � 0.01 and 1.06 � 0.01, respectively]. These findings

validate the use of the algorithm for globular bodies as well.

6. Experimental examples

As final example, we applied the described reconstruction

procedure to experimental data for a self-assembled peptide

double-strand helix (Kornmueller et al., 2015). Prior to the

fitting process, we determined a building-block stack spacing

of 53 nm from the corresponding PDDF (see inset in Fig. 5 and

Fig. S13). The scattering data were then fitted using 800 DAs

over the angular range 0.08 < q < 2.14 nm�1, resulting in a

real-space resolution of approximately �/qmax = 1.5 nm, where

the default fitting parameters according to Section 4 were

used.

As shown in Fig. 5(a), we again find agreement between the

experimental and fitted scattering curves (�2 = 0.08). The

corresponding real-space reconstruction (Fig. 5b) presents two

independent tapes within the building block (see Fig. S17a for

point representations). However, the two tapes do not appear

to be symmetric along the z direction, suggesting a displace-

ment angle of ’ 6¼ 180� between them. The cross section of the

helical tapes presents a rather rough surface that does not

allow more detailed interpretation, as is typical for such

random-movement DA models. Nevertheless, a comparison of

the reconstruction with the model according to the previously

published dimensions (Kornmueller et al., 2015) gives good
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Figure 4
(a) Scattering curves computed from globular model geometries (red
circles; see Appendix A for model details) and fits from the reconstruc-
tion (black lines). For better visualization, the scattering patterns are
shifted vertically and error bars have been omitted. The PDDFs of all
models can be found in Fig. S12. (b) Theoretical and reconstructed three-
dimensional models of the globular geometries used here (see Fig. S16 for
point representations of the reconstructions). The numbers below the
labels denote the mean normalized spatial discrepancy hNSDi, obtained
from eight independent reconstructions (random artificial sphere: hNSDi
= 1.04 � 0.01, random artificial cube: hNSDi = 1.06 � 0.01).



agreement (see the red model in Fig. 5c). A movie of the

rotating helices can be found in the supporting information. To

obtain a measure of the uniqueness of the final model, we

repeated the fitting procedure to end up with 16 independent

reconstructions. The average of all 16 models (Volkov &

Svergun, 2003), as shown in Fig. S18(a), is consistent with the

single reconstruction. In agreement with the reference values

shown in Fig. 3, the hNSDi was found to be 1.27 � 0.02, hence

confirming the reproducibility of the reconstruction.

Analogous to the above, we further applied the recon-

struction procedure to experimental data for the globular

protein alcohol dehydrogenase 1 (ADH) in phosphate-

buffered saline at pH 7.5. The data set was taken from the

SASBDB database (Valentini et al., 2015; date of download
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Figure 5
Verification of the reconstruction algorithm using experimental scattering data. (a) Experimental scattering data (error bars omitted for clarity) and
fitted curve from the reconstruction of the self-assembled peptide double helix. The corresponding PDDF is shown in the inset, whereas the dPDDF used
to determine the stacking distance can be found in Fig. S13. (b) Orthogonal views of the model reconstructed from the scattering pattern in panel (a)
(green) compared with the previously published structure (blue). (c) Experimental data, fitted curve and PDDF for alcohol dehydrogenase 1 (ADH). (d)
Orthogonal views of the model reconstructed from the scattering pattern in panel (c) (green) compared with the crystal structure model (blue). See Fig.
S17 for point representations of the reconstructions shown in panels (b) and (d), and Fig. S18 for a numerical stability analysis of both reconstructions.



12 December 2016), corresponding to the identifier

SASDA52. Again, we first determined the size of the initial

random configuration (d = 9 nm) from the PDDF, as seen on

the right of Fig. 5. We then fitted the scattering data over the

angular range 0.13 < q < 6 nm�1, corresponding to a real-

space resolution of approximately 0.5 nm. The default fitting

parameters (M = 1) according to Section 4 were used, but this

time the number of DAs was increased to 1500, due to the

outstanding angular range.

Also in this case, the experimental data were fully fitted

throughout the reconstruction procedure (�2 = 0.24; see

Fig. 5c). Interestingly, the corresponding real-space model

(Fig. 5d) presents a characteristic triangular cross section that

is recurrent from different perspectives (see Fig. S17b for

point representations). We thus compared the reconstruction

with the ADH crystal structure found in the literature (Raj et

al., 2014), and an overlay of the two models can be seen in

Fig. 5(d). Undoubtedly, the reconstructed model is qualita-

tively in agreement with the molecular structure; quantita-

tively, we find an NSD between the crystal structure and the

reconstruction of 0.93. Also in this case, we performed a total

of 16 independent reconstructions (hNSDi of 1.20 � 0.02),

where the averaged representation is consistent with the

molecular structure (see Fig. S18b).

This, in congruence with the previous example, demon-

strates the applicability of the proposed fitting algorithm for

the real-space reconstruction of seemingly infinite and glob-

ular geometries from experimental small-angle scattering

data.

7. Conclusions

In conclusion, we have presented a new method for the

reconstruction of the structural motif of seemingly endless

rod-like systems, such as helices. In this regard, the following

points were critical:

(i) We optimized the numerical complexity of the Debye

formula for the unique case of recurrent symmetry along the

elongation direction, resulting in the proposed projection

scheme.

(ii) Based on this projection scheme, we developed a

metaheuristic fitting algorithm. Instead of minimizing a variety

of structural penalties (Franke & Svergun, 2009), the system is

repeatedly forced out of the current numerical equilibrium by

forcing the DA to move, regardless of the damage caused.

(iii) The algorithm is implemented in the multi-platform

compatible graphical computer program SasHel, which allows

live tracking of the fitting progress in real and reciprocal space

and encourages user interaction.

We have demonstrated the functionality and reliability of

the presented method using a variety of analytical and

experimental examples. These showcases provide a compre-

hensive reference for future users. We have further addressed

and discussed the risks of wrongly chosen fitting parameters or

insufficient data quality: we have illustrated a series of nega-

tive examples to discuss which reconstructed features might be

true or not (see Section S2 and Figs. S7–S11 and S19–S26).

SasHel, the computer program corresponding to this work,

also includes an option for shape reconstruction of globular

particles. This, in congruence with its originally intended use,

makes the program applicable over a wide range of SAXS-

based structural studies, expanding the scope of currently

available dummy-atom modelling software.

The program SasHel is freely available for academic use.

The most up-to-date version can be obtained from http://

sashel.tugraz.at or upon request from the authors.

8. Related literature

The following references are cited in the supporting infor-

mation: Damaschun et al. (1968); Konarev & Svergun (2015);

Shannon & Weaver (1949); Taupin & Luzzati (1982).

APPENDIX A
Model calculations

All scattering patterns shown throughout this work were

calculated according to the literature, with the exact dimen-

sions and references shown in Table 2. The error band of each

data set was estimated according to �(q) = 0.2(cm�1/2)[I(q)]1/2

(see Section S2 and Figs. S19–S23 for test cases with noisy

data). For models A–L we used a total of 124 data points in the

angular range 0.01 < q< 2 nm�1. In case of seemingly endless

geometries, we further ensured that the stacking distance HBB

was resolvable in the lower angular limit (HBB < �/qmin). All
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Table 2
Detailed dimensions of the models shown in Figs. 3 and 4; explanations of the model variables can be found in the corresponding references.

Model

Parameter A B C D E F G H I J K L

Reference (a) (a) (a) (b) (b) (b) (b) (a) (a) (a) (c) (d)
Ro (nm) 10 10 10 10 10 10 10 10 10 10
Ri (nm) 0 5 5 0 5 0 5 5
a, b (nm) . 8, 20 15
L = c (nm) 1000 1000 1000 1000 1000 1000 1000 15 5
P (nm) 50 50 50 50
! (�) 45 6 45 6
’ (�) 180 180

References: (a) Feigin & Svergun (1987), (b) Pringle & Schmidt (1971), (c) Guinier & Fournet (1955), (d) Kawaguchi (2001).



PDDFs throughout this work were calculated using the GIFT

software package (Bergmann et al., 2000).

All reconstructions were performed on a ‘standard work

station’ from Hewlett–Packard, using an Intel Core i7

4800MQ processor with four cores, each operating at 2.7 GHz.
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