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The defect structure of �-Al2O3 derived from boehmite was investigated using a

combination of selected-area electron diffraction (SAED) and powder X-ray

diffraction (XRD). Both methods confirmed a strong dependence of the

diffraction line broadening on the diffraction indices known from literature. The

analysis of the SAED patterns revealed that the dominant structure defects in

the spinel-type �-Al2O3 are antiphase boundaries located on the lattice planes

ð00lÞ, which produce the sublattice shifts 1
4 h101i. Quantitative information about

the defect structure of �-Al2O3 was obtained from the powder XRD patterns.

This includes mainly the size of �-Al2O3 crystallites and the density of planar

defects. The correlation between the density of the planar defects and the

presence of structural vacancies, which maintain the stoichiometry of the spinel-

type �-Al2O3, is discussed. A computer routine running on a fast graphical

processing unit was written for simulation of the XRD patterns. This routine

calculates the atomic positions for a given kind and density of planar defect, and

simulates the diffracted intensities with the aid of the Debye scattering equation.

1. Introduction

�-Alumina (�-Al2O3) is one of the intermediate aluminium

oxides that accompany the temperature-induced transition of

boehmite [�-AlO(OH)] towards the thermodynamically

stable corundum (�-Al2O3), see Euzen et al. (2002):

boehmite! � ! �! �! �-Al2O3: ð1Þ

Because of its large surface area and high catalytic activity,

metastable �-Al2O3 is often used as a functional constituent of

catalytic converters or surface coatings. However, as �-Al2O3

is only stable below 700oC (Paglia et al., 2004; Rudolph et al.,

2017), it must be stabilized for high-temperature applications.

All intermediate alumina phases possess a slightly distorted

cubic close-packed (c.c.p.) sublattice of oxygen anions. This

sublattice is already present in the octahedral double layers of

boehmite (Christensen et al., 1982; Wilson, 1979). It survives

the topotactic phase transition � ! �! � and is rearranged

only by the formation of �-Al2O3 at approximately 1200oC

(Euzen et al., 2002). Aluminium cations occupy octahedral and

tetrahedral sites in the crystal structures of most intermediate

alumina phases. However, in contrast to the fully occupied

oxygen sublattice, the aluminium sublattice contains structural

vacancies, which balance the [Al]/[O] ratio. In consecutive

intermediate alumina phases, these vacancies show different

degrees of ordering that increases in general from �-Al2O3 to

�-Al2O3.

The different distribution of vacancies on the cation sites is

one of the reasons why different structural descriptions of

�-Al2O3 can be found in the literature for differently prepared

samples, for samples with different crystallite size etc. Thus,

there is a need for a generalized structure model of �-Al2O3,
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which would take into account the presence of structural

vacancies with partially correlated positions and which would

allow for quantitative description of these structure defects.

Such a structure model is a first step towards understanding

the successive phase transformation in metastable alumina

phases and a prerequisite for targeted manipulation of their

thermal stability.

Zhou & Snyder (1991) described the crystal structure of

�-Al2O3 as a defective spinel structure. The term ‘defective’

stands for a small tetragonal distortion of the cubic lattice, for

small static displacements of atoms from their ideal positions,

for the presence of vacancies in the cation sublattice and for

the displacement of some cations into the non-spinel sites. In

an ideal spinel structure with the structural formula AB2O4

and with the space group Fd3m, the O2� anions occupy the

Wyckoff positions 32e within the c.c.p. sublattice, the A2+

cations occupy the tetrahedral sites 8a and the B3+ cations

occupy the octahedral sites 16d (Sickafus et al., 2004). From

the cation valency and from the cation-to-anion ratio (2/3) in

Al2O3, it becomes evident that the trivalent Al3+ cations have

to be located on both, tetrahedral and octahedral, sites.

Moreover, a non-integer number of cation sites have to

remain vacant to obey the stoichiometry of Al2O3.

In the structure models of �-Al2O3 based on the analysis of

integral intensities obtained from the X-ray or neutron

powder diffraction patterns, the structural vacancies are

typically randomly distributed over the standard tetrahedral

and octahedral spinel sites (8a and 16d). In order to be able to

reproduce the measured integral intensities more accurately,

the sites 8b, 16c and 48f, which are empty in ideal spinel

structures, were assumed to be partially occupied by Al3+

cations (Verwey, 1935; Ushakov & Moroz, 1984; Zhou &

Snyder, 1991; Paglia et al., 2003; Smrčok et al., 2006). As a

random distribution of vacancies at the cation sites can lead to

an energetically unfavorable clustering of Al3+ cations

(Cowley, 1953), specific ordering of vacancies is usually

assumed when the local structure is investigated, e.g. in ab

initio calculations (Digne et al., 2004; Menéndez-Proupin &

Gutiérrez, 2005).

However, none of the above crystal structure models can

explain the observed dependence of the X-ray diffraction

(XRD) line broadening on the diffraction indices, which was

already reported by Zhou & Snyder (1991). Alternative

microstructure models of �-Al2O3 are based on the assump-

tion that the anisotropy of the line broadening observed is

caused by planar defects, which are known to broaden the

diffraction lines differently even for equivalent hkl (Warren,

1990; Guinier, 1994). Typical examples of the planar defects

reported in conjunction with the microstructure models of

�-Al2O3 are antiphase boundaries (Dauger & Fargeot, 1983)

and stacking faults (Cowley, 1953; Fadeeva et al., 1977; Paglia

et al., 2006; Tsybulya & Kryukova, 2008). In these models, a

coalescence of vacancies at the planar defects was assumed in

order to avoid unwanted occupation of neighboring cation

lattice sites (Kryukova et al., 2000).

Based on these considerations, Tsybulya & Kryukova

(2008) and Pakharukova et al. (2017) developed a three-

dimensional model of the real structure of �-Al2O3, which

consists of small unperturbed nano-sized domains of

�-alumina with spinel-like crystal structure. The nano-

domains are terminated by the lattice planes {001}, {011} and

{111} and possess polyhedral shapes. Neighboring nano-

domains are mutually shifted along the gliding planes {001},

{011} and {111}. The shift vectors are summarized in Table 1.

The defects from Table 1 act as stacking faults for the cation

sublattice, but they keep the anion sublattice intact. Conse-

quently, they do not cause any broadening of the diffraction

lines, which stem predominantly from the scattering of X-rays

on the oxygen sublattice, whereas the diffraction lines

produced by the scattering on the aluminium sublattice are

strongly broadened. The capability of this model to explain

the observed anisotropy of the XRD line broadening was

recently illustrated by Pakharukova et al. (2017) for �-Al2O3

derived from a boehmite-based aerogel precursor.

In the present study, we extend the microstructure models

invented by Tsybulya & Kryukova (2008) and Pakharukova et

al. (2017) by considering not only fractional lattice translations

but also selected lattice rotations, and discuss the influence of

resulting microstructure defects on selected-area electron

diffraction (SAED) and XRD patterns. In all cases, only the

planar defects are considered, which do not affect the atomic

ordering within the oxygen sublattice.

The SAED patterns were simulated using JEMS (Stadel-

mann, 2012) and DIFFaX (Treacy et al., 1991). For simulation

of the XRD patterns, a fast algorithm based on the Debye

equation (Debye, 1915) was written for a graphical processing

unit. The simulated diffraction patterns were compared with

the diffraction patterns measured on �-Al2O3 that was

obtained by annealing of highly crystalline boehmite. As the

�-alumina derived from boehmite exhibits a small tetragonal

distortion, the defect crystal structure is described in space

group I41=amd instead of Fd3m (Paglia et al., 2003). For the

orientation relationship between cubic and tetragonal

�-alumina,

ð110Þc k ð100Þt ½001�c k ½001�t

ac ¼ 21=2at ac > ct; ð2Þ

the equivalent lattice planes and Wyckoff positions are

summarized in Table 2.
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Table 1
Gliding planes in �-Al2O3 and the corresponding shift vectors as
suggested by Tsybulya & Kryukova (2008).

Resulting stacking faults preserve the atomic ordering within the oxygen
sublattice but produce a phase shift within the aluminium sublattice.

Gliding plane Shift vector

f001g 1
2 h100i 1

4 h110i

f011g 1
2 h100i 1

4 h110i

f111g 1
4 h110i



2. Experimental

The �-Al2O3 under study was prepared by heating highly

crystalline boehmite powder (Actilox1 B20, Nabaltec) in air

for 20 h at 600oC. The heating rate was 2�C min�1. In the

original state, the boehmite particles had the shape of thin,

almost rhombic platelets (Fig. 1). Their size varies between a

few hundred nanometres and several micrometres (Rudolph

et al., 2017). After annealing, this particle shape was

preserved, but the corresponding crystallographic directions

changed according to the orientation relationship

½010�boehmite k ½110�� ð001Þboehmite k ð001Þ� : ð3Þ

The SAED patterns were recorded using a JEM-2200 FS field-

emission transmission electron microscope (TEM) that was

operated at the acceleration voltage of 200 kV. The TEM was

equipped with a high-resolution objective lens (Cs = 0.5 mm)

and a corrector of the spherical aberration that was located in

the primary beam. The XRD experiments were performed on

a Bragg–Brentano diffractometer (URD6 from Seifert/FPM)

using Cu K� radiation (�K�1 = 1.5406 Å, �K�2 = 1.5444 Å) and

a scintillation detector. The XRD patterns were collected in a

2� range between 15 and 70� with a 0.02� step size and a

counting time of 12 s per step. For calculation of the XRD

patterns the same wavelengths and 2� range were utilized.

3. Results

3.1. Models of planar defects in c-Al2O3 obtained from
analysis of the SAED pattern

SAED pattern of �-Al2O3 derived from boehmite (Fig. 2)

consists of narrow diffraction spots and streaks, which are

elongated in the c� direction. This kind of line broadening

indicates the presence of planar defects on the lattice planes

ð00lÞ, which was already described by Cowley (1953). The

observed dependence of the line broadening on the diffraction

indices confirms different degrees of disorder in individual

sublattices. As it can be seen from equation (7), the strongly

elongated diffraction spots (111, 113, 220, 224, 331, 333 etc.)

stem from the disordered cation sublattice, while the narrow

diffraction spots (004, 222, 440, 444 etc.) are dominated by the

scattering on a fully occupied and well ordered c.c.p. anion

sublattice (Lippens & de Boer, 1964; Paglia et al., 2004;

Tsybulya & Kryukova, 2008).

The difference in shape of the elongated diffraction spots

with even (220, 224 etc.) and odd (111, 113, 331, 333 etc.)

indices stems from different arrangements of Al3+ cations on

regular (8a and 16d) and irregular (8b, 16c and 48f) Wyckoff

sites. It follows from Table 4 and equation (7) that the struc-

ture factors of the reflections with odd diffraction indices

depend on the occupancy of the regular Wyckoff positions 8a,

16d and the irregular Wyckoff positions 8b and 16c, while the

structure factors of the reflections with even diffraction indices

depend on the occupancy of the regular Wyckoff position 8a

and on the occupancy of the irregular positions 8b and 48f.

The observed dependence of the line broadening on

diffraction indices (Fig. 2) confirms that in �-Al2O3 derived

from highly crystalline boehmite, the anion sublattice remains

intact, while the cation sublattice is disordered in such a way

that the tetrahedral sites 8a, 8b and 48f with x ¼ 0:375 are
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Figure 1
(a) Scanning electron micrograph of large boehmite particles in initial
state and (b) transmission electron micrograph of a small particle in the
annealed state.

Figure 2
SAED pattern of �-Al2O3. Diffraction indices are given for the cubic
structure. The corresponding tetragonal diffraction indices are shown in
Table 2.

Table 2
Equivalence of lattice planes and Wyckoff positions in �-Al2O3 that is
described either in the space group Fd3m or in the space group I41=amd.

In the tetragonal crystal structure, the interplanar spacings are fully equivalent
only if ct ¼ ac. The typical relative difference between ct and ac is below 2%
(Zhou & Snyder, 1991).

Lattice planes Wyckoff positions

Fd3m I41=amd Fd3m I41=amd

{111} $ {101} Aluminium Tetrahedral position

{220} $ {200}, {112} 8a 4a
{311} $ {211}, {103} 8b 4b
{222} $ {202} 48f 8e + 16g
{400} $ {220}, {004} Aluminium Octahedral position

{331} $ {301}, {213} 16c 8c
{422} $ {312}, {204} 16d 8d
{333} $ {303} Oxygen

{511} $ {321}, {105} 32e 16h
{440} $ {400}, {224}



more disordered than the octahedral positions 16d and 16c, as

already proposed by Zhou & Snyder (1991) and Paglia et al.

(2004).

In our microstructure models derived from non-distorted

�-Al2O3 (Fig. 3a), the defect structures were produced by

antiphase boundaries (APBs). The examples of the micro-
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Figure 3
(a) Projected unit cell of an idealized (cubic) �-Al2O3 spinel structure.
The numbers located within the circles representing the atomic positions
give the z coordinates in multiples of 1

8 a. Further panels give an overview
of considered planar defects: (b) conservative APB of the type
ð001Þ 1

4 ½110�, (c) non-conservative APB ð001Þ 1
4 ½101�, (d) non-conserva-

tive APB ð001Þ 1
4 ½211� introduced by the rotation of the �-Al2O3 unit cell

around the ½001� direction, (e) non-conservative APB ð110Þ 1
4 ½101� and

( f ) conservative APB ð111Þ 1
4 ½101�. More detailed models are provided in

the supporting information.

Figure 4
SAED patterns simulated using JEMS (Stadelmann, 2012) for (a) a
�-Al2O3 nanocrystallite with idealized crystal structure, (b) with
conservative APBs ð00lÞ 1

4h110i, (c) with non-conservative APBs
ð00lÞ 1

4h101i, (d) with rotational boundaries ð00lÞ that resemble non-
conservative APBs, (e) with non-conservative APBs ðhh0Þ 1

4h101i and ( f )
with conservative APBs ðhhhÞ 1

4h101i and ðhhhÞ 1
4h110i. These SAED

patterns correspond to the defect types shown in Fig. 3. (g) The
experimental SAED pattern once more for comparison. (h) The intensity
profiles of the reflections 113 and 220 calculated using DIFFaX (Treacy et
al., 1991) for non-conservative APBs ð004Þ 1

4h101i with a probability of
10%.



structure models include simple glide (Figs. 3b and 3f), which

is connected with a shift of the atoms within the glide plane,

APBs producing out-of-plane shifts of the atoms (Figs. 3c and

3e) and rotational boundaries (Fig. 3d). The simple glide,

which corresponds to the model suggested by Tsybulya &

Kryukova (2008), produces conservative APBs. The out-of-

plane shift, which corresponds to the model proposed by

Dauger & Fargeot (1983), produces non-conservative APBs.

Rotational boundaries (RBs) can produce either conservative

or non-conservative APBs. The model presented in Fig. 3(d)

corresponds to non-conservative APBs. Conservative APBs

do not change the local chemical composition, while some of

the non-conservative APBs change the local stoichiometry of

Al2O3. The SAED patterns that correspond to the models

from Figs. 3(a)–3( f) are shown in Figs. 4(a)–4( f).

The SAED patterns were simulated using the computer

program JEMS (Stadelmann, 2012) for orthorhombic super-

cells, which contained six APBs of the respective kind. The

size of the respective supercell was about 5.6 Å along the

electron beam and approximately 50:5� 46:9 Å2 in the in-

plane directions ½110� and ½001�, respectively. Thus, the mean

distances between the planar defects were approximately

6.7 Å for the APBs from Figs. 3(b)–3(d), 7.2 Å for APBs from

Fig. 3(e) and 9.9 Å for APBs from Figs. 3(e) and 3( f). Such a

high defect density suppressed automatically the formation of

superstructure reflections.

For simulations of the SAED patterns, the specific APBs

from Figs. 3(a)–3( f) were complemented by the antiphase

boundaries with crystallographically equivalent shifts and

gliding or rotation planes. A full set of APBs that belong to the

APB system fh00g 1
4h110i is presented as an example in

Table 5. The positions of individual atoms within the supercell

were generated as described in Appendix A.

The simulations of the SAED patterns (Figs. 4c and 4d)

confirmed that only non-conservative APBs with the gliding

planes ð00lÞ can produce the streaks in the c� direction and the

anisotropic broadening of the diffraction spots, which were

observed in the experimental SAED pattern (Fig. 4g).

Conservative APBs ð00lÞ 1
4h110i (Fig. 4b) can be excluded as a

possible source of the observed line broadening, as these

planar defects do not affect the shape of the reflections with

even diffraction indices (220, 224 etc.).

The APBs located on the lattice planes ðhh0Þ, ðhhhÞ and

ðhhhÞ broaden the diffraction spots along the normal direction

to the respective lattice plane (Figs. 4e and 4f), thus the

presence of these defects can be excluded as well. Analo-

gously, planar defects on other lattice planes can also be

eliminated, as they would not broaden the diffraction spots in

the c� direction.

3.2. Possible models of planar defects in c-Al2O3 from the
point of view of powder XRD

Although the structural information contained in the

SAED pattern of a single crystal is much more comprehensive

than the information contained in the powder XRD pattern,

the powder XRD patterns were additionally consulted in

order to obtain statistically relevant information about the

density of microstructure defects. Furthermore, powder XRD

provides direct access to all reflections in reciprocal space in

contrast to the SAED experiment. Without laborious sample

preparation, the plate-like particles were transparent in the

electron beam only in the vicinity of the ½110� direction,

because the facets of the particles have a specific orientation

with respect to the crystallographic axes. Consequently, our

SAED experiments were limited to the diffraction spots hhl

(in cubic notation).

The XRD pattern measured in the powder sample of

�-Al2O3 is displayed in Fig. 5 together with the XRD patterns

simulated for the APBs discussed above. The diffraction

patterns in Figs. 5(a), 5(b), 5(c), 5(e) and 5( f) were simulated

using the same structure models as the SAED patterns in

Figs. 4(a), 4(b), 4(c), 4(e) and 4( f). Additional XRD patterns

were simulated for conservative APBs fh00g 1
2h100i,

fhh0g 1
2h100i and fhh0g 1

4h110i suggested by Tsybulya &

Kryukova (2008), and for non-conservative APBs

fhhhg 1
4h110i. In analogy with the SAED simulations, the

powder XRD patterns were simulated by taking into account

the crystallographically equivalent APBs. For the APB system

fh00g 1
4h110i, the distribution of the APBs is shown as an

example in Fig. 8 and the individual shift vectors are listed in

Table 5.

It follows from the comparison of simulated and measured

XRD patterns (Fig. 5) that conservative APBs fh00g 1
2h100i,

fhh0g 1
2h100i and fhh0g 1

4h110i can be excluded from further

considerations, because these defects do not reproduce the

experimentally observed broadening of diffraction lines 220,

422 and/or 511/333 satisfactorily. On the contrary, the

conservative APBs fh00g 1
4h110i and fhhhg 1

4h110i as well as

the non-conservative APBs fh00g 1
4h110i, fhh0g 1

4h110i and

fhhhg 1
4h110i reproduce the observed anisotropic line broad-

ening quite well. The simulated XRD patterns show differ-

ences mainly in the intensities of the diffraction lines 111, 311

and 222. The best agreement was achieved for the conserva-

tive APBs fhhhg 1
4h110i. The simulations of the powder

diffraction patterns for rotational boundaries (RBs) (Fig. 6)

revealed that RB fh00g is the most probable defect of this

kind.

However, it must be kept in mind that the APBs

fhhhg 1
4h110i, fhh0g 1

4h110i and fh00g 1
4h110ic were excluded

by SAED simulations, as they broaden the diffraction spots in

a wrong direction (Figs. 4e and 4f) or as they do not broaden

the diffraction spots 220, 224 etc. (Fig. 4b). Thus, the only

promising candidates for description of the planar defects in

�-Al2O3 derived from boehmite are the non-conservative

APBs fh00g 1
4h110i and the RBs fh00g.

3.3. Quantitative description of planar defects in c-Al2O3

based on the analysis of the XRD patterns

The powder XRD patterns in Fig. 5 were simulated for

cuboidal crystallites with the edge length of 10.8 nm, which

contain 24 equally distributed planar defects of the respective

kind. The mean distances between the defects were approxi-
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mately 1.2, 3.1 and 2.7 nm, which corresponds to the planar

defect densities of 16.7, 4.5 and 8.3% if the planar defects are

located on the planes f400g, f440g and f222g, respectively. The

size of the cuboidal crystallites (10.8 nm) was determined from

the broadening of the ‘narrow’ diffraction lines 222, 400, 440

and 444.

For calculation of the XRD patterns, a fast computer

routine (cuDebye) was written. It is based on the Debye

equation (Debye, 1915) and runs on a graphic processing unit.

Individual atomic positions are generated as described in

Appendix A. The overall isotropic temperature factor [B in

equation (9)] was �2 Å2. As an idealized structure was used

for the simulations, this factor accounts mainly for static

displacements in the structure of �-Al2O3. The performance of

the simulation routine can be illustrated by the short

computing time, which was less than 5 min when calculating

the XRD powder pattern with 6500 data points for a structure

model consisting of 1:2� 106 atoms. A drawback of this

routine is that it produces intensity oscillations in the low-

angle region (2� < 30�) and near the tails of the Bragg peaks

(Dopita et al., 2013).

4. Consequences of the proposed structure model of
c-Al2O3

4.1. Effect of the parameters of the proposed structure model
on the XRD patterns

From the point of view of the kinematical diffraction theory

(Warren, 1990; Guinier, 1994), one reason for the anisotropic

line broadening is a limited coherence of the crystal structure

in certain crystallographic directions, which leads to the

broadening of the reciprocal lattice points along the corre-

sponding directions in the reciprocal space. In �-Al2O3

derived from boehmite, the coherence of the crystal structure

is interrupted by planar defects like non-conservative APBs

fh00g 1
4h110i and RBs fh00g, as they modify the atomic
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Figure 5
Powder XRD patterns simulated for different APB types (black lines).
The patterns, which are labeled (a), (b), (c), (e) and ( f ), were simulated
using the corresponding models from Fig. 3. The symbols c and nc denote
conservative and non-conservative APBs, respectively. Measured XRD
patterns are plotted in gray. For the sake of simplicity, the diffraction lines
are labeled with cubic indices. For tetragonal indices, the reader is
referred to Table 2.

Figure 6
XRD patterns simulated for equally distributed rotational boundaries.
The diffraction pattern (d) was simulated using the corresponding model
from Fig. 3(d).



ordering and fragment the aluminium sublattice into very

small coherent domains. From the crystallographic point of

view, the APBs and RBs in �-Al2O3 produce disordered

polytypes with broad diffraction maxima instead of distinct

superstructure satellites. However, as the change in the atomic

ordering concerns only the cation (Al3+) sites, the diffraction

lines stemming from the scattering on oxygen anions are

always unaffected.

The change in the atomic ordering is caused by the shift

vectors belonging to the APBs. For instance, the non-conser-

vative APBs ð00lÞ 1
4h101i shift some of the Al3+ cations from

the regular positions 8a and 16d to 8b and 16c or even to 48f,

which corresponds basically to the structure models published

by Verwey (1935), Ushakov & Moroz (1984), Zhou & Snyder

(1991), Paglia et al. (2003) and Smrčok et al. (2006). However,

the crystallographic description of these structure defects

implies equal occupancies of crystallographically equivalent

atomic positions, while the APBs shift only some of the Al3+

cations from their regular positions to the irregular positions.

The positions of oxygen anions that occupy the Wyckoff sites

32e remain unaffected in all cases.

Frequently, a sequence of APBs ð00lÞ 1
4h10�11i is required to

achieve the specific shift vector. The shift of the tetrahedral

cations from the Wyckoff sites 8a to 8b and the shift of the

octahedral cations from the Wyckoff sites 16d to 16c are

associated with one of the translation vectors 1
2 h010i, which

result, for example, from the sum of the shift vectors 1
4 ½011�

and 1
4 ½011�. The migration of tetrahedrally coordinated Al3+

cations from the Wyckoff sites 8a to some of the sites 48f is

simply produced by a single non-conservative shift of the type
1
4 h101i, cf. Table 6. The shift of the Al3+ cations from the 8a

sites to the remaining 48f sites is associated with one of the

translation vectors 1
4 h110i that results, for instance, from the

sum of the shift vectors 1
4 ½101� and 1

4 ½011�.

In comparison with the non-conservative shifts, the

conservative shifts of the Al3+ cations produce less disorder in

the crystal structure. The conservative counterpart of the

APBs ð00lÞ 1
4h101i discussed above causes a shift of the Al3+

cations from the tetrahedrally coordinated Wyckoff sites 8a to

16 of the 48f sites only. The 32 atomic positions ð18 ;
3
8 ; zÞ,

ð18 ;
7
8 ; zÞ, ð38 ;

1
8 ; zÞ, ð38 ;

5
8 ; zÞ, ð58 ;

3
8 ; zÞ, ð58 ;

7
8 ; zÞ, ð78 ;

1
8 ; zÞ and

ð78 ;
5
8 ; zÞ, where z is an odd multiple of 1

8, are inaccessible

(Fig. 3a). This example shows that the non-conservative shifts

within the APB system fh00g move the Al3+ cations to the

‘non-spinel’ positions with a higher probability than the

conservative ones.

A consequence of the above atomic shifts is a change in the

phase of the scattered wave that primarily modifies the

structure factor of a crystallite with APBs and consequently

the intensities of diffraction lines. For APBs, the phase shift

can be concluded easily from the scalar product of the shift

vector of the respective APB with the diffraction vector. The

change in the structure factor at the APB is given by the

multiplicative factor:

AhðRÞ ¼ exp 2� i h RT
� �

; ð4Þ

where h ¼ ðhklÞ is the vector of diffraction indices and RT is

the transposed shift vector. When AhðRÞ ¼ 1, the shift vector

does not change the phase of the structure factor at the APB.

The domains separated by such APBs are fully coherent and

the corresponding diffraction lines are not affected by these

defects. The factor AhðRÞ ¼ �1 changes the sign of the ‘local’

structure factor, the magnitude of the structure factor calcu-

lated over the whole crystallite and finally the diffracted

intensity.

An overview of the AhðRÞ values calculated for heavily

broadened diffraction lines 111, 220 and 311 and for possible

shift vectors is given in Table 3. For the narrow diffraction

lines 222, 004, 440 and 444, the multiplicative factors calcu-

lated for these shift vectors are always equal to unity. It also

follows from equation (7) that the structure factors of the

diffraction lines 222, 004, 440 and 444 are not affected by the

displacement of the aluminium cations from the Wyckoff

positions 16d to 16c and from the Wyckoff positions 8a to 8b

or 48f.

As the phase shift and the fragmentation of the cation

sublattice are two concurrent consequences of the presence of

specific APBs that limit the coherence of the crystal structure

from the point of view of the diffraction methods, the prob-

ability of the change in the multiplicative factor AhðRÞ can be

related to the broadening of individual diffraction lines. This

feature can be illustrated in the different broadening of the

reflections 220 and 113 (Figs. 4g and 4h). As can be seen from

Table 3, all crystallographically equivalent shifts producing
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Table 3
The phase-change factors AhðRÞ calculated using equation (4) for the
crystallographically equivalent shift vectors 1

4 h110i and for the diffraction
lines 111, 311 and 220.

The phase-change factors are not shown for opposite, i.e. ‘negative’, directions,
because they yield the same values as the shown directions. The shifts that lead
to the non-conservative APBs on the lattice planes ð00lÞ according to Table 6
are highlighted in bold.

hkl=uvw 1
4 ½110� 1

4 ½110� 1
4 ½101� 1

4 ½101� 1
4 ½011� 1

4 ½011�

111 �1 1 1 �1 1 �1
111 1 �1 �1 1 1 �1
111 1 �1 1 �1 �1 1
111 �1 1 �1 1 �1 1
113 �1 1 �1 1 �1 1
113 1 �1 1 �1 �1 1
113 1 �1 �1 1 1 �1
113 �1 1 1 �1 1 �1
131 1 �1 1 �1 �1 1
131 �1 1 �1 1 �1 1
131 �1 1 1 �1 1 �1
131 1 �1 �1 1 1 �1
311 1 �1 �1 1 1 �1
311 �1 1 1 �1 1 �1
311 �1 1 �1 1 �1 1
311 1 �1 1 �1 �1 1
220 1 1 �1 �1 �1 �1
220 1 1 �1 �1 �1 �1
202 �1 �1 1 1 �1 �1
202 �1 �1 1 1 �1 �1
022 �1 �1 �1 �1 1 1
022 �1 �1 �1 �1 1 1



non-conservative APBs on the lattice planes ð00lÞ yield

negative AhðRÞ for the reflection 220, while only half of the

AhðRÞ values are negative for the reflections 111 and 113.

At equal probabilities of the crystallographically equivalent

shifts, only half of the non-conservative APBs contribute to

the broadening of the reflections 111 and 311, while more than

half of the crystallographically equivalent shifts ‘broaden’ the

reflections of the type 220. The particular reflections 220 and

220 are broadened by all non-conservative shifts of the APBs

ð00lÞ 1
4h101i, see Table 3. In other words, the diffraction on the

lattice planes f111g and f311g does not recognize half of the

non-conservative APBs ð00lÞ 1
4h101i as domain boundaries,

while the fraction of these APBs that are active as domain

boundaries for the diffraction lines 220 is higher. This

phenomenon is apparent in the measured and simulated

SAED patterns (Figs. 4c, 4g and 4h), where the reflection 220

is approximately two times broader than the reflections 111

and 113.

In powder XRD patterns, the line broadening induced by

APBs is additionally modified by the integration of the

diffracted intensities over a certain reciprocal-space volume

that is usually performed using the powder pattern power

theorem (Warren, 1990). In the case of the APBs fh00g, which

broaden the reciprocal lattice points along the a�, b� and c�

directions, this integration makes strongly broadened diffrac-

tion lines asymmetric. Another phenomenon, which addi-

tionally affects the broadening and the shape of individual

diffraction lines, is the partial coherence of neighboring nano-

domains (Rafaja et al., 2004) that are separated from each

other by APBs. Nevertheless, the powder pattern power

theorem and the partial coherence of the nano-domains are

considered a priori, if the Debye equation is utilized for

calculation of the diffracted intensities.

The comparison of measured XRD patterns with the XRD

patterns simulated for non-conservative APBs fh00g 1
4h110i

(Fig. 5c) and RBs fh00g (Fig. 6d), both having the mean

distance of 1.2 nm, shows that the corresponding models can

reproduce the defect structure of �-Al2O3 derived from

boehmite quite well. The only noteworthy discrepancy can be

seen for the diffraction line 111, which is extremely weak in

the simulated pattern. Partial extinction of this diffraction line

is caused mainly by the almost equidistant distribution of

APBs and RBs in the microstructure model used for the

diffraction pattern simulation. Fragments of the crystal

structure separated by a planar defect with a phase change

factor AhðRÞ ¼ �1 scatter with opposite phases, thus their

structure factors (scattered amplitudes) are fully subtracted if

these regions have the same size.

An irregular distance between planar defects with negative

phase-change factors counteracts this extinction and conse-

quently increases the diffracted intensity. This effect is further

enhanced by the partial coherence of neighboring regions,

which is the strongest for short diffraction vectors and

becomes weaker with increasing magnitude of the diffraction

vector (Rafaja et al., 2004). In this context, it is worth noting

that the sequence of the phase-change factors is different for

111 and 311 (Table 3) and that the magnitude of the diffrac-

tion vector is almost twice as large for the diffraction line 311

than for 111, as it follows from jqj ¼ 2�ðh2 þ k2 þ l2Þ
1=2
=a.

From this point of view, the intensity of the diffraction line 111

is much more sensitive to the regularity of the APB or RB

distribution than the intensity of the diffraction line 311.

4.2. Influence of the proposed antiphase boundaries on the
local stoichiometry of c-Al2O3

From the crystallographic point of view, �-Al2O3 crystallizes

in a defect spinel structure, in which the Wyckoff positions 32e

are fully occupied by oxygen and the Wyckoff positions 8a and

16d partially occupied by aluminium. The partial occupation

of the lattice sites is needed to retain the Al2O3 stoichiometry.

On the local scale, where microstructure defects like APBs

and RBs are considered, the lattice sites cannot be occupied

partially. They can either be fully occupied or stay vacant.

In the APB model discussed above, the formation of

‘virtual’ vacancies is a necessary consequence of the local

lattice shift. As illustrated in Fig. 7, the non-conservative APB

ð001Þ 1
4 ½101� moves the tetrahedral cations located at the

Wyckoff positions 8a near the antiphase boundary very close

to the octahedral cations 16d of the original crystal lattice.

Thus, the distance between both kinds of the cations would be

solely 1
8 h111i a, where a is the lattice parameter of the cubic

structure.

In order to avoid such atomic proximity, one of the two

close cations located at the APB must be removed (Cowley,

1953; Dauger & Fargeot, 1983; Tsybulya & Kryukova, 2008).

The removal of the cations located within the APBs implies a

clustering of vacancies in the vicinity of these defects. Based

on the ab inito calculations performed by Wolverton & Hass

(2000), the cations at the octahedral sites are preferentially

replaced by vacancies in our model. This replacement

produces two vacancies per unit area of the APB (a2). In
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Figure 7
Non-conservative APB ð001Þ 1

4 ½101� as shown schematically in Fig. 3(c)
with the anion and cation positions projected on the plane ð010Þ. The y
values of the atomic positions are given in multiples of 1

8 a. The
bidirectional arrows mark the face-sharing tetrahedral and octahedral
cations at the APB.



Fig. 7, these vacancies are located on a ð001Þ plane. In a

general case, two octahedral sites on an fh00g plane remain

vacant.

The number of vacancies related to a single APB can be

used to estimate the number of APBs (NAPBs) in a single

crystallite that are necessary to maintain the stoichiometry of

�-Al2O3. In the defect spinel structure of �-alumina, the

stoichiometry ratio [Al]/[O] is given by

N3nAl � N2NAPBsnV

N3nO

¼
2

3
; ð5Þ

where nV ð¼ 2Þ is the number of vacancies per unit area of

APB. N3 is the number of elementary cells in a cuboidal �-

Al2O3 crystallite. nAl ¼ 24 is the number of the Wyckoff

positions 8a and 16d that accommodate Al3+ cations and

nO ¼ 32 is the number of the Wyckoff positions 32e that are

occupied by the O2� anions. It follows from equation (5) that

the number of APBs scales with the linear size of the crys-

tallite (N) as

NAPBs ¼
3nAl � 2nO

3nV

N ¼
4

3
N: ð6Þ

The simulations of the SAED and XRD patterns were

performed with cuboidal �-Al2O3 crystallites that had the

edge length of 10.8 nm and that consisted of 13 to 14 cubic

elementary cells with the lattice parameter a ¼ 7:942 Å.

Consequently, the volume of a single crystallite contained

about 18 non-conservative APBs fh00g 1
4h110i.

If the APBs would be equally distributed on all crystal-

lographically equivalent lattice planes fh00g, i.e. on ðh00Þ,

ð0k0Þ and ð00lÞ, their mean distances would be equal to

1.53 nm. The mean distances of the APBs located only on the

lattice planes ð00lÞ would be 0.56 nm. The theoretical mean

distance between the APBs distributed over the crystal-

lographically equivalent lattice planes fh00g, i.e. 1.53 nm, is

very close to the experimentally determined mean distance of

the APBs fh00g 1
4h110i from Section 3.3, which was about

1.2 nm. This comparison indicates that the APBs are located

with almost the same probability on all crystallographically

equivalent lattice planes fh00g.

Finally, it should be noted that the mean distance of APBs is

slightly affected by the size of the cuboidal crystallites. As the

APBs cannot be located on the crystallite surface in the model

their distances become smaller with decreasing crystallite size

although their density (number per crystallite volume) is kept

constant. For an infinitely large crystallite, the mean distance

of APBs fh00g 1
4h110i distributed over the lattice planes fh00g

and ð00lÞ approaches 9
4 a ¼ 1:79 nm and 3

4 a ¼ 0:59 nm,

respectively.

4.3. Phase transition c-Al2O3 ! d-Al2O3

With increasing temperature and consequently higher

cation mobility, the cation vacancies in �-Al2O3 start to re-

arrange, which leads to the formation of a periodic sequence

of APBs that is interpreted as formation of the �-Al2O3

supercell (Dauger & Fargeot, 1983). The periodic ordering of

cation vacancies in �-Al2O3 leads to the formation of super-

structure reflections, which gradually replace the strongly

broadened reflections in �-Al2O3. The first indications of the

superstructure formation are already visible in Fig. 2. The

progress of the continuous transition �-Al2O3! �-Al2O3, the

formation of several intermediate states between the meta-

stable phases �-Al2O3 and �-Al2O3, and the completed

formation of �-Al2O3 at 975oC were reported by Rudolph et al.

(2017).

An indirect consequence of our model of �-Al2O3 is that the

atomic ordering in �-Al2O3 (as well as the space group and the

size of the �-Al2O3 unit cell) may depend on the density and

distribution of the planar defects in original �-Al2O3. As

already pointed out by Tsybulya & Kryukova (2008) and

Pakharukova et al. (2017), the distribution of planar defects in

�-Al2O3 can depend on the synthesis procedure. Therefore, it

is not surprising that different unit cells were found for plasma

sprayed �-Al2O3 and for �-Al2O3 derived from boehmite

(Levin & Brandon, 1998).

5. Conclusions

Based on the results of selected-area electron diffraction and

powder X-ray diffraction, a defect-structure model of �-Al2O3

was proposed. It was shown that in �-Al2O3 prepared from

boehmite, the dominant defects are non-conservative anti-

phase boundaries fh00g 1
4h110i and rotational boundaries

fh00g, which affect the occupancy of the cation sites in the

spinel-like structure of �-Al2O3. Both kinds of defect disrupt

the coherence of the cation sublattice for diffraction and

consequently broaden certain diffraction lines. Furthermore, it

was shown that the antiphase boundaries fh00g 1
4h110i and

rotational boundaries fh00g induce a shift in the Al3+ cations

located in the nano-domains from the Wyckoff sites 8a and

16d to some of the Wyckoff sites 8b, 16c and 48f, while the

positions of the O2� anions remain unaffected.

In contrast to the previously published crystal structure

models, in which the Wyckoff sites 8b, 16c and 48f are occu-

pied statistically, the presented model occupies the Wyckoff

positions 8b, 16c and 48f non-uniformly.

The shift of atoms caused by the planar defects leads to a

convergence of the cations in the vicinity of the planar defects,

which is avoided by replacing half of the unfavorably coor-

dinated cations with structural vacancies. The presence of

these vacancies retains the stoichiometry of Al2O3. For

quantification of these planar defects, a computer routine

based on the Debye scattering equation was written. The

comparison of measured and simulated X-ray diffraction

patterns revealed that the relevant planar defects in �-Al2O3

obtained from boehmite annealed for 20 h at 600oC have

distances of approximately 1.2 nm and that they are located on

all crystallographically equivalent lattice planes ðh00Þ, ð0k0Þ

and ð00lÞ.
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APPENDIX A
Modeling of planar defects and simulation of X-ray
diffraction patterns

The presented structure model of �-Al2O3 is based on an

idealized cubic spinel structure with the space group Fd3m, in

which the Wyckoff positions 8a and 16d are occupied by

aluminium cations and the Wyckoff positions 32e by oxygen

anions. The fractional coordinates of the idealized structure

are given in Table 4. The partial occupancy of the Wyckoff

position 16d balances the stoichiometry of Al2O3.

The Wyckoff positions 8b, 16c and 48f can be found with a

marginal occupancy in several structure reports (Verwey, 1935;

Ushakov & Moroz, 1984; Zhou & Snyder, 1991; Paglia et al.,

2003; Smrčok et al., 2006). Partial occupancy of these Wyckoff

positions modifies the structure factors (and intensities) of the

diffraction lines with odd indices, and the structure factors and

intensities of the diffraction lines 220, 422, 442 etc. see the

following equation:

F111 ¼� fAl 5:657 O8a �O8bð Þ þ 8 O16c �O16dð Þ
� �

F311 ¼� fAl 5:657 O8a �O8bð Þ � 8 O16c �O16dð Þ
� �

F331 ¼� F111

F333 ¼ fAl 5:657 O8a �O8bð Þ � 8 O16c �O16dð Þ
� �

F511 ¼ F333

F220 ¼� fAl 8 O8a þO8b � 2 O48fð Þ
� �

F422 ¼� F220

F222 ¼ fAl 16 O16c þO16dð Þ
� �

� fO 32 O32e

� �
F400 ¼ fAl 16 O16c þO16dð Þ � 8 O8a þO8b þ 6 O48f

� �� �
þ fO 32 O32e

� �
F440 ¼ fAl 16 O16c þO16dð Þ þ 8 O8a þO8b þ 6 O48f

� �� �
þ fO 32 O32e

� �
F444 ¼ F400 ð7Þ

In this equation, fAl and fO are the atomic scattering factors of

aluminium and oxygen, and O is the occupancy of the corre-

sponding Wyckoff site. For the modeling of the planar defects,

a Matlab routine was written. In this routine, the planar

defects are generated on the respective lattice planes i.e. fh00g,

fhh0g or fhhhg. The planar defects are distributed randomly

with the desired probability over the respective lattice planes,

as it is illustrated in Fig. 7 for lattice planes fh00g. In the next

step, the respective shift vectors were applied, as shown in the

example in Fig. 8 for conservative antiphase boundaries

fh00g 1
2h100i. In the case of non-conservative shifts, the

overlapping parts of the structure are considered only once.

The APBs fh00g 1
2h100i from Fig. 8 move the aluminium

cations from the Wyckoff positions 16d (small filled circles) to

the Wyckoff positions 16c (empty positions between the

oxygen anions). The Wyckoff positions 32e occupied by

oxygen anions (large open circles) are unaffected by all planar

defects under consideration.

The APBs fh00g 1
2h100i were chosen, because they can be

depicted quite demonstratively in 2D. The entire set of the

shift vectors belonging to the respective lattice plane is shown

in Table 5. The kind of APB (conservative or non-conserva-

tive) is distinguished by the respective upper index. The APBs

located on other lattice planes are classified in Table 6.

Successive application of such sublattice translations

tessellates the original �-Al2O3 crystallites into small domains

(thin lines in Fig. 9), which can scatter both in the same phase

or in the antiphase, as discussed above and illustrated in

Table 3. When the rotational boundaries are modeled, the

lattice planes defining the positions of these planar defects are

set up in a similar way to the antiphase boundaries. However,

the respective rotation axis, i.e. two-, three- and fourfold for

the RBs fhh0g, fhhhg and fh00g, is applied instead of the shift

vector.

The atomic positions within the nanocrystallites were

simulated for the crystallite size of 10.8 nm, which was deter-

mined from the width of the ‘narrow’ diffraction lines 222, 400,

440 and 444. This size corresponds to the size of the coherent

oxygen sublattice. For the typical defect densities, such a

crystallite contains between 100 and 1000 nano-domains of

different shape and size. The planar defects were modeled for

a cubic structure with the elementary cell size of a = 7.942 Å,

which was afterwards tetragonally distorted in order to arrive

at the measured c/a ratio of 0.985.

The XRD patterns were calculated with the aid of the

general scattering equation (Debye, 1915)

IðqÞ ¼
X

i

X
j

CijðqÞ
sin q rij

q rij

; ð8Þ
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Table 4
Positions of Al3+ cations and O2� anions in an idealized crystal structure
of �-Al2O3 based on the cubic space group Fd3m and their occupancies
(O).

Aluminium cations occupy tetrahedral (t) and octahedral (o) positions in a
c.c.p. sublattice of oxygen anions.

Element Wyckoff site x y z O

Aluminium 8a (t) 0.125 0.125 0.125 1
16d (o) 0.5 0.5 0.5 0.833
8b (t) 0.375 0.375 0.375 —
16c (o) 0 0 0 —
48f (t) 0.375 0.125 0.125 —

Oxygen 32e 0.25 0.25 0.25 1

Figure 8
Schematic diagram of planar defects randomly distributed over the lattice
planes fh00g in a �-Al2O3 nanocrystallite (black cube).



which intrinsically accounts for the powder pattern power

theorem and for the partial coherence of nano-domains in a

nanocrystallite. In equation (8), q is the magnitude of the

diffraction vector (4� sin �=�), 2� is the diffraction angle and �
is the wavelength of the X-rays. rij denotes the distances

between the atoms i and j within the crystallite. The factor Cij

contains the atomic scattering factors f, the occupancies O and

the temperature factors B for each atomic pair

CijðqÞ ¼ fiðqÞ fjðqÞOi Oj exp �
q2

16�2
Bi þ Bj

� �� �
: ð9Þ

The temperature factors were assumed to be isotropic and

equal for all atoms. For comparison with the measured XRD

patterns, the intensities calculated using equation (8) were

corrected for polarization. Other effects including instru-

mental broadening were neglected (Dopita et al., 2015).
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Table 5
List of the APB types and individual APBs for the APB systems
fh00g 1

4 h110i and fh00g 1
2 h100i.

Conservative and non-conservative APBs are denoted by c and nc,
respectively. Opposite directions are not shown.

APB system APB types on the
equivalent planes

Distinct APBs

fh00g 1
4h110i ðh00Þ 1

4h011ic ðh00Þ 1
4 ½011�c

ðh00Þ 1
4 ½011�c

ðh00Þ 1
4h110inc

ðh00Þ 1
4 ½110�nc

ðh00Þ 1
4 ½110�nc

ðh00Þ 1
4 ½101�nc

ðh00Þ 1
4 ½101�nc

ð0k0Þ 1
4h101ic ð0k0Þ 1

4 ½101�c

ð0k0Þ 1
4 ½101�c

ð0k0Þ 1
4h110inc

ð0k0Þ 1
4 ½110�nc

ð0k0Þ 1
4 ½110�nc

ð0k0Þ 1
4 ½011�nc

ð0k0Þ 1
4 ½011�nc

ð00lÞ 1
4h110ic ð00lÞ 1

4 ½110�c

ð00lÞ 1
4 ½110�c

ð00lÞ 1
4h101inc

ð00lÞ 1
4 ½101�nc

ð00lÞ 1
4 ½101�nc

ð00lÞ 1
4 ½011�nc

ð00lÞ 1
4 ½011�nc

fh00g 1
2h100i ðh00Þ 1

2h010ic ðh00Þ 1
2 ½010�c

ðh00Þ 1
2 ½001�c

ðh00Þ 1
2h100inc

ðh00Þ 1
2 ½100�nc

ð0k0Þ 1
2h100ic ð0k0Þ 1

2 ½100�c

ð0k0Þ 1
2 ½001�c

ð0k0Þ 1
2h010inc

ð0k0Þ 1
2 ½010�nc

ð00lÞ 1
2h100ic ð00lÞ 1

2 ½100�c

ð00lÞ 1
2 ½010�c

ð00lÞ 1
2h001inc

ð00lÞ 1
2 ½001�nc

Table 6
Possible conservative (c) and non-conservative (nc) APBs located on the
lattice planes fh00g, fhh0g and fhhhg and the corresponding shift vectors
1
4 h110i.

Opposite directions are not given, as they lead to the same APB types.

Plane/shift 1
4 ½110� 1

4 ½110� 1
4 ½101� 1

4 ½101� 1
4 ½011� 1

4 ½011�

ðh00Þ nc nc nc nc c c
ð0k0Þ nc nc c c nc nc
ð00lÞ c c nc nc nc nc

ðhh0Þ nc c nc nc nc nc
ðhh0Þ c nc nc nc nc nc
ðh0hÞ nc nc c nc nc nc
ðh0hÞ nc nc nc c nc nc
ð0kkÞ nc nc nc nc c nc
ð0kkÞ nc nc nc nc nc c

ðhhhÞ nc c c nc c nc
ðhhhÞ c nc nc c c nc
ðhhhÞ c nc c nc nc c
ðhhhÞ nc c nc c nc c

Figure 9
Simplified scheme (a 2D cut in the crystal structure) illustrating the
generation of conservative APBs fh00g 1

2h100i. The gray box corresponds
to the basal plane of the unit cell of �-Al2O3 shown in Fig. 3(a). Empty
octahedral positions in the initial unperturbed state (upper panel)
correspond to the Wyckoff sites 16c.



In order to account for a random distribution of the planar

defects in powder samples, in which several crystallites can

diffract concurrently, the planar defects in a crystallite were

generated ten times at random positions but with the same

type of defect and with the same defect density, and summed.

The resulting simulated intensities were averaged, before they

were compared with the experimental data.

The intensity calculation was speeded up by dividing the

atoms in equation (8) into subgroups with the same properties

(f ;O;B) and distances (rk):

IcohðqÞ ¼
X

m

X
n

CmnðqÞ
X

k

nk

sin q rk

q rk

; ð10Þ

nk means the frequency of the distance rk. Moreover, as the

oxygen sublattice remains unchanged in the faulted structure

of �-Al2O3, only the contribution of the aluminium sublattice

to the diffracted intensities has to be recalculated for each

kind and density of microstructure defect, when this proce-

dure is utilized.

Consequently, the most time-consuming step is the calcu-

lation of the distribution of the atomic distances. However,

when running on a CUDA capable graphic processing unit

(GTX 980 TI from NVIDIA), our C++/Cuda routine cuDebye

needs less than 5 min to simulate the X-ray powder diffraction

pattern from nanocrystallites containing approximately

1:2� 106 atoms. The experimental code of cuDebye that was

written in C++ using Visual Studio Community 2015 and the

CUDA Toolkit 8.0 is deposited at GitHub (https://github.com/

Martin-Rudolph/cuDebye).
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