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Several decades of protein structure determination by X-ray crystallography have

produced methods for the calculation of electron density maps of proteins and nucleic

acids, and experience in their interpretation by atomic coordinate models. Electron

cryomicroscopy (cryo-EM) is now providing new views of biological macromolecules and

brings unique requirements for the calculation of maps and their interpretation.

Reconstruction by single-particle analysis has the advantage of recording images

containing both amplitude and phase information, so there is no phase problem as in

crystallography. In X-ray crystallography, initial maps and phases are improved by

iterative model building and refinement. In single-particle analysis, as currently practiced,

the calculation of an electron potential map is largely complete before interpretation by

atomic models and their refinement begins (Nicholls et al., 2018). Cryo-EM maps from

low to high resolution have been interpreted by models. Increasing map resolution is

associated with the appearance of recognizable protein features such as secondary

structure (�-helices, �-sheets) and amino acid side chains. In recent years high-resolution

maps that show detailed features to 3 Å resolution or better have produced considerable

excitement.

The signal in an electron potential map fades with resolution, and as a consequence

features at the resolution limit that may be important to accurate model building may be

weak and difficult to interpret. Selecting a map threshold for viewing, typically as an

isosurface, will determine the features that are observed. The contour may be chosen to

match the known molecular volume of its contents. To detect the highest resolution

features of interest, a common approach is to simultaneously view several isosurfaces,

calculated at multiples of the standard deviation from the mean value of the map, which

reflect the varying strength and reliability of features. A new, objective approach to

visualization of maps is presented in the paper by Beckers et al. in this issue of IUCrJ

(Beckers et al., 2019).

The loss of contrast in maps at high resolution that obscures features necessary for

interpretation may come from many sources including molecular motion and hetero-

geneity, imperfect imaging, and incoherent averaging of image data. Contrast loss may be

measured from map amplitudes as a function of resolution and modelled by a Gaussian

fall-off described by an overall temperature factor or B factor. In recent years

improvements in imaging and computation have reduced contrast loss. Map contrast may

be restored by applying an inverse (negative) temperature factor to enhance high-

relative to low-resolution features, a procedure called map sharpening. Sharpening can

also amplify noise, and may be applied with a weighting factor (figure-of-merit) to supress

noise (Rosenthal & Henderson, 2003). In current practice, this is part of a map ‘post-

processing’ step in single-particle analysis.

Outside the crystalline state, macromolecules are free to adopt different conforma-

tions. Key advances will be made in understanding how these states or motions are

related to function. However, even a single conformer may be more ordered at its interior

than at its periphery as a consequence of motions. Blurring of the map periphery may also

result from problems during single-particle averaging. Thus resolution is not uniform

across a map, features may differ for a given choice of map threshold, and different

degrees of sharpening may be required. A general approach to local map sharpening has

been proposed by Jakobi et al. and implemented in the program LocScale (Jakobi et al.,

2017). Following the construction of an atomic model, map amplitudes are scaled against

local amplitudes computed from a model. These have the effect of making maps globally

more uniform at a given contour threshold. An approach to automatic map sharpening

has also been implemented by Terwilliger et al. in which sharpening values are chosen
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according to map features and their connectivity as measured

by map contour surface area, which requires no prior coor-

dinate model (Terwilliger, Sobolev et al., 2018).

Nevertheless, contouring maps for building and reporting

the significance of map features has remained subjective.

Beckers et al. (2019) now describe confidence maps, calculated

from the electron potential map, combined with an objective

thresholding criterion, allowing the assessment of the signifi-

cance of map features compared to background. They

implement a statistical procedure called false discovery rate

control, originally devised by Benjamini & Hochberg (1995).

The procedure is broadly applicable in multiple hypothesis

testing, and has been applied previously to image and volume

thresholding in astronomical and medical imaging.

Confidence maps are thresholded according to the false

discovery rate (FDR), which is the single free parameter in the

procedure, and displayed as an isosurface. The authors show

that when the confidence maps are thresholded with the FDR

at 1%, the isosurfaces show structural features remarkably

similar to those in electron potential maps (Fig. 1), but are

better at detecting weak features closer to the noise level. An

important part of the procedure is the estimation of the

background noise level, usually determined by an area of the

map that is outside the envelope of the molecule. The

procedure is best applied as a post-processing step to an

already sharpened map, otherwise the map may lack features,

or following resolution filtering (Cardone et al., 2013) which

makes features more uniform across the map.

Applications to a wide range of molecules, including several

chosen from the Electron Microscopy Data Bank’s map and

model challenges (http://challenges.emdatabank.org), show

that weak features in potential maps including side chains and

loop density can be supported by the FDR maps to assist in

their tracing. These show more uniform display of weak

density map features at a single threshold that would other-

wise require interrogation by maps calculated at several sigma

levels. The confidence maps are fast to calculate, require no

prior information from atomic models, and will provide

complementary information for use in interpreting electron

potential maps. The procedure may also be useful for lower-

resolution maps calculated by subtomogram averaging. Ulti-

mately, the community of structural biologists will learn how

to best apply them.

There is still a need for tools to validate atomic models and

bring them into agreement with electron potential maps and

the underlying single-particle image data. Nevertheless, recent

advances suggest that many of the steps in building and

refinement may be completely automated (Terwilliger, Adams

et al., 2018). We can anticipate improvements in imaging

methods and computational image analysis to calculate maps

with stronger and more certain features. But then researchers

will use their microscopes to image smaller and more

heterogeneous specimens. Objective procedures for evalu-

ating map features, such as those proposed by Beckers et al.,

will concern us for some time to come.
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Figure 1
Electron potential map (green) for the TRPV1 channel (EMD-5778) at 3.4 Å (Liao et al., 2013) and a confidence map (red) calculated by the method
described in Beckers et al.
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