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The reconstruction of a single-particle image from the modulus of its Fourier

transform, by phase-retrieval methods, has been extensively applied in X-ray

structural science. Particularly for strong-phase objects, such as the phase

domains found inside crystals by Bragg coherent diffraction imaging (BCDI),

conventional iteration methods are time consuming and sensitive to their initial

guess because of their iterative nature. Here, a deep-neural-network model is

presented which gives a fast and accurate estimate of the complex single-particle

image in the form of a universal approximator learned from synthetic data. A

way to combine the deep-neural-network model with conventional iterative

methods is then presented to refine the accuracy of the reconstructed results

from the proposed deep-neural-network model. Improved convergence is also

demonstrated with experimental BCDI data.

1. Introduction

Single-particle imaging by using coherent X-ray diffraction

was proposed more than a decade ago by the work of Fienup

(1978), Miao et al. (1999), Robinson et al. (2001), Chao et al.

(2005) and Sakdinawat & Attwood (2010). As a method of

determining the inside complex structure of an individual

particle, it records the diffracted coherent X-ray intensity by

the particle in reciprocal space, where the phase information

of the corresponding intensity is lost during the measurement

(Williams et al., 2003; Chapman et al., 2006; Pfeifer et al., 2006).

To provide this missing phase, one crucial step in an X-ray

single-particle-imaging experiment, either by forward-scat-

tering X-ray coherent diffraction imaging (Xu et al., 2014) or

Bragg coherent diffraction imaging (BCDI) (Newton et al.,

2010; Yang et al., 2013), is the reconstruction of the real-space

complex information of the particle from its measured X-ray

diffraction-pattern intensity. Because of the loss of the phase

information of the recorded X-ray intensity, iterative phase-

retrieval algorithms are widely applied to reconstruct the

complex structure information of the measured particle. As

shown originally by Bates (1982), this process, known as phase

retrieval, depends on the diffraction data being oversampled

by at least a factor of two with respect to the Shannon–Nyquist

frequency. Except for pathologically constructed special cases,

a unique reconstruction result is expected in two or three

dimensions, subject to the known symmetries of the Fourier

transform.

In last few decades, many phase-retrieval algorithms have

been developed, such as error reduction by Gerchberg &

Saxton (1972), hybrid input–output by Fienup (1982), differ-
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ence map by Elser (2003) and the relaxed averaged alternating

reflection by Luke (2005). These are commonly utilized and

have found successful application in the coherent X-ray

diffraction community. These phase-retrieval methods usually

require hundreds or thousands of iterations to converge to a

solution with high confidence, which is exceptionally time

consuming and sensitive to the initiating guess of the phase of

the X-ray intensity, the assumed ‘support’ boundary of the

measured particle, as well as the choice of algorithms.

Marchesini et al. (2003), Huang et al. (2010) and Wang et al.

(2020) have found that it is crucial to find a correct support for

the convergence of these methods because the particle shape

is generally hard to determine directly from the measured

coherent X-ray diffraction data. Marchesini et al. (2003)

proposed a ‘shrink wrap’ support method and Wang et al.

(2020) described an averaged support method to dynamically

modify the support by adapting it to the shape of the particle,

but these still require a certain number of iterations to

converge. Besides, there is strong scientific interest in studying

structured nanoparticles containing phase-shifted structural

domains which are relevant to their function as super-

conductors, catalysts or piezoelectric actuators, for example.

For these ‘strong phase’ particles, which have multicentered

diffraction patterns, the iterative method struggles to obtain a

correct solution with high confidence (Ihli et al., 2016;

Robinson et al., 2020). Consequently, the difficulty of coherent

diffraction imaging to deliver trustworthy unique solutions to

the phase problem currently limits the range of applications of

the iterative phase-retrieval method in single-particle-imaging

experiments. With the advent of ultrafast X-ray free-electron

lasers (XFELs), time-resolved single-particle-imaging experi-

ments are more and more addressing ultrafast phenomena in

physical or chemical processes within nanoparticles, such as

melting, driven fluctuations, etc. (Clark et al., 2013; Gomez et

al., 2014; Rupp et al., 2017; Rose et al., 2018; Ihm et al., 2019;

Wen et al., 2019; Sobolev et al., 2020; Mudrich et al., 2020).

These experiments would benefit enormously from the

development of a fast and reliable phase-retrieval method to

reconstruct live images of particles in real time during the

execution of these time-resolved experiments.

Deep-neural-network-based machine-learning methods

have been considered as a revolution for the reconstruction

algorithm. The convolutional neural network (CNN) has seen

remarkable progress for image synthesis with several recent

successful applications by Ronneberger et al., (2015), Nguyen

et al., (2018), Cherukara et al. (2018) and Guan & Tsai (2019).

The CNN is a non-iterative end-to-end method. Once a

trained model has been obtained, the phase information of the

measured particle can be recovered from the coherent X-ray

diffraction patterns in milliseconds, which is therefore suitable

for ultrafast coherent X-ray diffraction experiments. Cher-

ukara et al. (2018) presented the idea that two parallel trained

models can separately reconstruct the phase and amplitude of

a complex object from its coherent X-ray diffraction intensity.

However, since CNN methods are described as universal

approximators learned from data, they cannot be quantita-

tively accurate for all samples and they are prone to shifts

based on the distribution of the training data. Especially when

working with data from a new experiment, this shift is inevi-

table since the measured data are unknown to the model.

Therefore, the accuracy of the reconstructed complex infor-

mation from deep-neural-network methods still needs to be

refined.

In this work, we developed a CNN model to reconstruct a

complex image, containing both amplitude and phase infor-

mation, of a particle in real space from the modulus of its

Fourier transform in reciprocal space. By using a compre-

hensive model, we are able to recover the amplitude and

phase information of the particle at the same time. Our

developed CNN model can provide a very high accuracy

reconstruction at a speed which is much faster than the

conventional iterative phase-retrieval methods. The devel-

oped method will be very suitable for a real-time single-

particle-imaging experiment, especially for ultrafast X-ray

single-particle experiments, where the current iterative phase-

retrieval methods are hard to apply. Furthermore, we also

present a way to combine our CNN model with the conven-

tional iteration method to refine the accuracy. We show that

the machine-learning CNN approach gets much closer to the

correct solution than a nearest-neighbour search (NNS) of the

same set of reference diffraction patterns used for training.

The outcomes from the CNN model, the amplitude, phase and

support (obtained after the binarization of the predicted

amplitude), are then fed as an initiation guess into the

conventional iteration methods, which shows better conver-

gence and a more accurate result.

2. Results

2.1. CNN model training and testing

Our developed machine-learning model is based on a CNN

framework that adopts the general ‘encoder–decoder’ archi-

tecture, as presented in Fig. 1. It consists of two connected

convolutional blocks to separately output the amplitude and

phase information of a particle from its coherent X-ray

diffraction data. The model mainly has three parts. The first

part is a convolutional autoencoder, which represents the

underlying manifold of the input coherent X-ray diffraction

data in feature space (Ronneberger et al., 2015; Cherukara et

al., 2018). Then, the encoded result is equally divided into two

independent deconvolutional decoder parts to generate the

amplitude and phase information of the measured particle. For

the proposed model, we used the leaky rectified linear unit

(LRLU) for all activations, except for the final convolutional

layer where the rectified linear unit (RLU) was used. The

modules shown in Fig. 1 to connect the input to the output are

one type of convolution block (3 � 3 convolution + LRLU +

BN, where BN refers to batch normalization), followed by

another type of convolution block (3 � 1 convolution + 1 � 3

convolution + LRLU + BN). Additionally, it should also be

mentioned that the size of the output amplitude or phase is

one quarter of the size of the input diffraction pattern in our

model (i.e. the size of the output amplitude or phase at each
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dimension is half of the size of the input

diffraction, as shown in Fig. 1), in the spirit of

keeping the problem overdetermined.

Since the goal of any single-particle

coherent X-ray diffraction imaging experi-

ment is to numerically compute the complex-

valued information inside a particle from the

obtained coherent X-ray diffraction pattern,

different variants of coherent X-ray diffrac-

tion experiments interpret this complex

information in different ways. For coherent-

diffraction-imaging experiments, Chapman et

al. (2006) represented the reconstructed

information as the local complex refractive

index of a particle. In BCDI experiments,

Robinson et al. (2001) and Williams et al. (2003) identified the

phase of the reconstructed information as the local crystal

lattice strain inside a particle via the Bragg diffraction

geometry, plus a small contribution from refraction in the

crystal discovered by Harder et al. (2007). In all cases, the

coherent X-ray diffraction intensity I(Q) measured in these

variants of single-particle experiments is given by the modulus

squared of the Fourier transform of this corresponding

complex field:

I Qð Þ ¼

Z
s rð Þ exp ½i� rð Þ� exp ðiQ � rÞdr

����
����

2

; ð1Þ

where Q = q� h, q = kf� ki is the momentum transfer defined

by the incident X-ray wavevector ki and the diffracted X-ray

wavevector kf, and h is a reciprocal lattice vector of the crystal.

Here, sðrÞ exp½i�ðrÞ� represents the complex-valued informa-

tion inside the particle, where s(r) and �(r) are the amplitude

and phase distribution of the particle, respectively. Usually,

s(r) is the shape function of the particle with s(r) = 0 outside

and s(r) = 1 inside the particle. It can be seen that both the

coherent X-ray diffraction intensity I(Q) and the particle

density are in 3D space. Fig. 2(a) shows a schematic illustra-

tion of the diffraction geometry of a typical single-particle-

imaging experiment. The 3D diffraction intensity in reciprocal

space is usually recorded by a 2D detector. The recorded

intensity is a slice of the 3D diffraction intensity, where the

slice plane is determined by the experimental geometry, as

shown in Fig. 2(a). Especially for an ultrafast X-ray experi-

ment, only the 2D coherent X-ray intensity slice through the

centre of the peak is recorded. Thus, to investigate the

performance of our proposed CNN model, complex-valued

real-space particles are needed to obtain the 2D coherent

X-ray diffraction patterns. Generally, for a particle with an

anisotropic shape s(r), its shape can be introduced into the

formalism by applying an analytic or numerical computation.

For demonstration purposes, we consider a shape known as a

superellipsoid (Gridgeman, 1970; Wriedt, 2002), whose

implicit form is written as

x

a

��� ���2=e þ y

b

��� ���2=e� �e=n

þ
z

c

��� ���2=n ¼ 1; ð2Þ
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Figure 2
Construction of the single-particle coherent X-ray diffraction training data. (a) A schematic
illustration of a typical coherent X-ray diffraction experimental setup. (b) Representative
particle shapes produced by the superellipsoid function described in the text.

Figure 1
A schematic visualization of the deep neural network for single-particle-imaging inversion. The neural network is implemented using an architecture
composed entirely of convolutional, maximum pooling and upsampling layers. In the network, Conv. refers to convolution, LRLU refers to the leaky
rectified linear unit and BN refers to batch normalization. There are two channels in the final output layer, for the reconstruction of the amplitude and
the phase of the particle. All activations are related to the LRLU, except for the final convolutional layer which uses RLU activations.



where a, b, and c define the bounds along the x, y and z

directions, respectively. Exponents n and e are the round-

edness parameters. As illustrated in Fig. 2(b), these para-

meters, a, b, c, e, and n, allow one to continuously and widely

vary the particle shape. Specifically, a = b = c, e = 1 and n = 1

yields a sphere, while a = b = c, e = 2 and n = 2 describes an

octahedral shape. Generally, since the phase information of

real-world particles is diverse, it is hard to use one general

function to describe all of them. We used a 3D Gaussian-

correlated profile (Garcia & Stoll, 1984) to simulate the phase

information �(r) of the particles, which is given as

� rð Þ ¼
L1=2

x L1=2
y L1=2

z

�3=4

�

ZZZ
exp

"
�

x� x0ð Þ
2

2L2
x

�
y� y0ð Þ

2

2L2
y

�
z� z0ð Þ

2

2L2
z

#

� zu x; y; zð Þdx0dy0dz0; ð3Þ

where zu(x, y, z) obeys an uncorrelated Gaussian random

distribution. Lx, Ly and Lz are the transverse correlation

lengths along the x, y and z directions, respectively. Once

described by equations (2) and (3), the complex field

sðrÞ exp½i�ðrÞ� is randomly orientated into different directions

by a 3D rotation matrix to obtain the 3D complex field of a

particle. The phase inside the particle is allowed to span from

�� to � to represent the ‘strong phase’ limit described above.

Finally, the 2D diffraction intensity of the particle is obtained

by taking the central slice of the 3D diffraction

intensity, the phase is deleted and only the

intensity information is retained. Additionally,

a Gaussian filter is also applied to smooth the

edges of the particle before the Fourier trans-

formation.

By applying this method to a wide range of

random parameters, we simulated 2D diffrac-

tion patterns to be used as the training data to

train the proposed CNN model. In the results

reported here, we generated 150 000 simulated

diffraction patterns, and the CNN model was

trained in a supervised fashion, with the output

amplitude and phase of the particle being

considered as known a priori. The phase of the

particle was shifted and scaled to (0, 1), and the

phase outside the particle is set to zero. During

the training, the training data were split into

two disjoint sets, where 95% of them were used

as training data and 5% of them were kept for

subsequent testing.

Fig. 3(a) shows the training and validation

loss as a function of the training epochs. Each

epoch refers to one complete pass of the

training data. Since our proposed model can

output the amplitude and phase of the particle

at the same time, the loss (or error metric) for

both training and validation is computed using

a self-defined loss function (see Appendix A

for details), which is used to constrain their relation in real

space as well as in reciprocal space at the same time. From Fig.

3(a), it can be seen that the training and validation loss are

decreasing as the epoch is increasing. Even after training for

more epochs, the validation loss is still decreasing. Since no

divergence occurs, this indicates the stability of our CNN.

Since the validation loss of our CNN model is computed by a

self-defined loss function, we use the �2 error (see Appendix B

for details) to estimate the quality of the reconstructed images

in comparison with the ground truth of the testing data, which

is commonly used in iterative phase-retrieval methods. Figs.

3(b)–3(d) present the histograms of the �2 error for the

modulus of the coherent X-ray intensity in reciprocal space,

together with the amplitude and phase of the imaged particle

in real space. The computed �2 errors in the testing data lie in

narrow ranges, which indicates that our CNN model shows

excellent performance in reconstructing the complex image of

a particle from its modulus in reciprocal space. Furthermore,

by fitting the corresponding error with a Gamma distribution

function, the average �2 error for the modulus is 0.019, for the

amplitude is 0.005 and for the phase is 0.029. Since the phase

distribution of the particles is generally more complicated

than their amplitude, it is expected that the error of the

reconstructed phase is greater than that of the amplitude, as

seen. The �2 error of the modulus lies in the middle of the two.

By varying the range of models used for training the proposed

CNN model, we also noticed that the proposed model had

better performance (smaller errors) when the phase range of
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Figure 3
The performance of the CNN model and �2 error in testing. (a) Training and validation loss
as a function of the training epochs for the CNN model. (b) Histogram of �2 error for the
modulus of the coherent X-ray diffraction intensity and its corresponding fitting.
Furthermore, histograms of �2 error for the corresponding amplitude (c) and phase (d)
of the particle in real space and their corresponding fitting results.



the particles was made narrower. Fig. 4 shows six repre-

sentative results of reconstructions from testing data not used

for training. It can be seen that the current CNN model shows

a remarkable performance on the reconstruction of the

amplitude and phase information of a particle from its

previously unseen coherent X-ray diffraction intensity

pattern.

2.2. Comparison of CNN model with NNS and iteration
methods

The proposed CNN model is a machine-learning method of

phase retrieval, which, once trained, provides a very fast

(�0.5 ms computation in our case) inversion of a diffraction

pattern, unlike from an iterative phase-retrieval method. As

we showed in Figs. 3 and 4, it can give an excellent recon-

struction of testing data with very high accuracy. However, as a

deep neural network, it works essentially as a deep approx-

imator that learns from data chosen within a range of expected

images. It is not expected that the proposed model would be

quantitatively accurate for all coherent X-ray diffraction data,

though it is very capable for a range of comprehensive

complex-valued particles. When working with new data, it is

prone to shifts based on the type of training dataset distri-

butions. Also, an obvious question is whether the machine-

learning approach provides any advantage over a NNS over

calculated structures. We tested this by ‘look up’ of the best

agreement of a new diffraction pattern with the 150 000

reference structures used for training. The average �2 error

over 300 ‘unseen’ test diffraction patterns was �0.08 for NNS

compared with �0.02 for CNN for these same 300 diffraction

patterns, The look-up procedure also took �30 s per pattern

on our hardware, without any attempt at optimization,

compared with �0.5 ms.

As we mentioned before, the other approach, iterative

phase retrieval, is sensitive to the initial guess of the phase and

the support. As reported in a number of articles, a good

support is especially crucial for the iteration methods. On the

other hand, the iterative methods are good at refining the

output steadily if they are started under proper conditions. In

this section, we demonstrate that using our proposed CNN

model can provide a good initial guess for iterative algorithms

to reconstruct the finer structural features of a particle.

We compare the outcomes of four different initializations of

the iterative phase-retrieval method: (i) random phase and a

rectangle support; (ii) random phase and the support from the

CNN model; (iii) the phase and support from the CNN model;

and (iv) the phase and support obtained from the NNS

method. Fig. 5(a) shows one of the coherent X-ray diffraction

patterns from the testing dataset with a strong phase inside the

particle. The strong phase is evident in the broken centro-

symmetry of the diffraction pattern. The trained CNN model

yields the reconstructed amplitude and phase of the particle

shown in Figs. 5(b) and 5(c). The corresponding estimated �2
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Figure 4
The representative results for the CNN model in testing. (a) Input testing coherent X-ray diffraction patterns. (b) The ground truth and (c) the
corresponding predicted amplitude of the particles. (d) The ground-truth phase structure and (e) the corresponding predicted phase of the particles.



error for the modulus of the coherent X-ray diffraction

pattern intensity is 0.015, and it can be seen that the CNN

model gives an excellent-looking reconstructed result. The

obtained CNN result was then used to define a support, shown

in Fig. 5(d), by binarization of the predicted amplitude.

Iterative phase-retrieval methods following the algorithm

switch schedule indicated in Fig. 5(e) (see Appendix B for

details) were then applied using the different initial guesses,

Fig. 5( f) shows the corresponding results in the conventional

format of �2 error versus iteration number. Owing to the initial

phase being randomly generated for the methods of (i)

random phase and a rectangle support and (ii) random phase

and the support from the CNN model, the corresponding

reconstructions for both methods were repeated 300 times

independently. As presented in Fig. 5( f), the blue and green

lines show the corresponding averaged �2 error separately and

the shaded areas indicate the error bars corresponding to their

standard deviation. Furthermore, we also use the results (i.e.

the amplitude and phase of the searched particle) from the

NNS method as an initial guess for the iterative phase-

retrieval method. The optimized amplitude and phase of the

searched particle from the NNS method are presented in Fig.

S1 of the Supporting information and the dependence on the

size of the searched database is shown in Fig. S2. The corre-

sponding �2 error versus iteration number is also shown in Fig.

5( f), as marked by the red line. As seen in Fig. 5( f), with the

CNN model initialization, the starting �2 error was signifi-

cantly lower than that of the random initialization or the

initialization based on the NNS method. The final recon-

struction was significantly better than what the CNN model

and iterative method can achieve alone. This shows that

machine learning with iterative refinement is an excellent

combination for dramatic enhancement in reconstruction

quality. The learned-phase initialization converged slightly

faster than random phase, but the final result was not very

different, while the use of the learned support made a large

difference. Fig. 6 presents the evolution of these reconstructed

images versus the iteration number with the different initial

methods. It can be seen in Fig. 6 that the combination of the

machine-learning model and iterative phase-retrieval

converges much faster than the random initial guess or initi-

alization from the NNS method.

Since the inside complex structure of a new particle is

usually unknown, this combination approach becomes vital

once the CNN model fails to give a decent result. This will

often be expected for experimental data, when little knowl-

edge of the structure is available for building a training

dataset. To demonstrate this, Fig. 7(a) shows one representa-

tive experimental coherent X-ray diffraction pattern of an

�200 nm diameter BaTiO3 (BTO) nanoparticle, measured at

beamline 34-ID-C of the Advanced Photon Source using

methods reported by Harder & Robinson (2013). By using the

CNN model, the corresponding prediction is shown in Figs.

7(b)–7(d). The estimated �2 error is 0.7 for the modulus of the

coherent X-ray diffraction pattern intensity which shows that

the current model has a poor performance for the given

experimental data. This is attributed to the range of models

used in the training data being far from the (unknown)

structure of the particle. However, with the proposed combi-

nation of the CNN model results and the iteration method,

Figs. 7(e) and 7( f) show a significantly better reconstruction

result with a corresponding �2 error reduced to 0.002. The

iterative calculation used the CNN-generated support in Fig.

7(d) and utilized the ‘shrink wrap’ refinement shown in the

work of Marchesini et al. (2003), which allowed it to both

increase and decrease in size.

Based on these results, it can be concluded that our CNN

method has great potential for studies to be performed in

regimes of asymmetric data previously untested owing to the

need to solve for a complex density function. Moreover, the
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Figure 5
Comparison of the new CNN model with the classical iteration method. (a) A representative simulated 2D diffraction pattern from the testing data. (b),
(c) Predicted amplitude and phase of the particle. (d) Support obtained by the binarization of the predicted amplitude. (e) The algorithm switch schedule
for the iteration method. ( f ) The performance of the iterative phase-retrieval method with different initial guesses.



research papers

18 Wu et al. � Complex imaging of phase domains IUCrJ (2021). 8, 12–21

Figure 7
The performance of the CNN model with measured experimental data. (a) The central slice of a BTO single-particle diffraction pattern. Furthermore,
reconstructed (b) amplitude and (c) phase of the BTO particle using the CNN model. (d) Support for the iterative phase-retrieval method, obtained by
binarization of the output amplitude from the CNN model. Moreover, reconstructed (e) amplitude and ( f ) phase of the BTO particle using the
combination of the iterative phase-retrieval method and the CNN model. Here, the scale bar is 50 mm�1 for (a). For (b)–(f), all scale bars are 100 nm.

Figure 6
Representative reconstructed images versus iteration number at the different stages of iterative phase retrieval by using different initial starting methods.
(a) Random initialization. (b) Using the NNS results as initialization. (c) Using the support from the machine-learning model and random phase as
initialization. (d) Using the support and phase from the machine-learning model as initialization. The first three images in each row are the amplitudes of
the particle and the rest are the corresponding phases. The corresponding iteration numbers of each of the images are given at the top of each column.
When plotting the phase images of the particle, a 2D phase-unwrapping algorithm (see Appendix C for details) is applied to make the obtained phase
continually change.



combination of the CNN model with the classical iterative

method can further improve the accuracy of the obtained

results.

3. Conclusions

In this article, we have put forward a comprehensive machine-

learning model for the single-particle-imaging problem, where

single shots of coherent X-ray diffraction patterns from a

strong-phase object are recorded at an XFEL. Our CNN

method shows high accuracy and speed for reconstructing the

amplitude and phase information from the diffraction

modulus in reciprocal space. We tested a superellipsoid

particle with five degrees of freedom in its shape, three in its

orientation and three in its phase structure. Crudely esti-

mating ten possible settings for each degree of freedom yields

1011 possible structures. Our results show that the machine-

learning approach gets much closer to phasing a novel struc-

ture than a simple search of the 150 000 structures used for

training the CNN. The proposed machine-learning model can

be used for real-time imaging at the high data-streaming rate

of current XFEL sources. Furthermore, we also showed that

using machine-learning results as a starting point can provide

significant improvement of the accuracy of traditional iterative

phase-retrieval methods. Since the machine-learning model

learns directly from simulated diffraction data, this is impor-

tant when meeting new experimental data. Currently, we are

restricted to low-resolution 2D data, which takes more than a

day of computer time to perform the training. Especially when

extended to 3D, we believe our results have a very broad

application in this and related research fields.

APPENDIX A
A1. Data and CNN-model training

The 2D diffraction patterns were generated by taking the

central slice of the 3D diffraction data, which is the Fourier

transform of the generated complex-valued 3D array created

from the particle’s amplitudes and phases. Only the amplitude

of the computed diffraction patterns was retained for both

training and testing of the CNN model. The generated training

dataset contains a wide variety of amplitude and phase states,

including some complex states with poor definition. For the

loss l, here we propose a loss function that can constrain the

real and reciprocal space at the same time:

l ¼
1

�1 þ �2 þ �3

�1L1 Að Þ þ �2L2 �ð Þ þ �3L3

ffiffi
I
p� �h i

; ð4Þ

where

L1ðxÞ ¼

P
n xp � xg

� 	2
h i1=2

P
n xg

2
� 	1=2

and

L3ðxÞ ¼ 1�

(X
n

xp � �xxp

� 	
xg � �xxg

� 	
, X

n

xp � �xxp

� 	2
X

n

xg � �xxg

� 	2

" #1=2)
:

L1(A) is the loss for the amplitude of the particle in real space

and L2(�) is the loss for the phase in real space, where L2(x) =

L1(x). L3ð
ffiffi
I
p
Þ is the loss for the X-ray diffraction intensity in

reciprocal space, which is used to constrain the relation of the

predicted amplitude and phase from the machine-learning

model in reciprocal space. In the above equations, the

subscript p denotes the predicted results from the machine-

learning model and the subscript g denotes the corresponding

ground truth. Additionally, in function L3(x), the second part

is the Pearson correlation coefficient. Here, �1 = 1, �2 = 1 and

�3 = 4. The proposed CNN model was implemented based on

the Pytorch platform (Paszke et al., 2019) using Python. We

adopted the stochastic gradient-descent optimizer with a

learning rate of 0.01 to optimize the weights and biases, and to

achieve a better convergence. After every ten epochs, the

learning rate was reduced by a factor of 0.95. In our study, the

size of the input coherent X-ray diffraction pattern was 64 �

64 pixels. The training took �12 h on a computer with 24 GB

of RAM and an NVIDIA Quadro P100 GPU for 200 epochs.

The Python codes used in this work will be made available to

readers upon request to the authors.

APPENDIX B
B1. Phase-retrieval method

To perform phase retrieval, the simulated 2D diffraction

was used as input to an iterative phase-retrieval scheme

similar to that described by Robinson & Harder (2009), where

the algorithm was switched between error reduction and

hybrid input–output. 600 iterations were performed by using

this phase retrieval. After 100 iterations, the shrink-wrap

method of Marchesini et al. (2003) was used in real space to

dynamically update the support every ten iterations. When

using the shrink-wrap method to update the support, the size

of the support is allowed to increase or decrease. In fact, there

are two supports used during the shrink-wrap method in our

code. Support 1 is dynamically adjusted to find the profile of

the particle. Support 2 is just a fixed square support, which is

an upper size limit used to confine Support 1. During the

iterations, the �2 error is used to estimate the quality of the

reconstruction results, given by

�2
¼

P
n

ffiffi
I
p

p �
ffiffi
I
p

g

� 	2P
n Ig

; ð5Þ

where Ip is the reconstructed X-ray diffraction intensity and Ig

is the true or experimental diffraction intensity.
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APPENDIX C
C1. 2D phase-unwrapping method

The 2D phase-unwrapping algorithm is based on the

method proposed by Herráez et al. (2002), which utilizes an

‘unwrapping path’ to solve the discontinuity of the phase

obtained from a complex-valued object. First, the edge

between each pair of neighbouring pixels is calculated based

on their amplitude and phase. Then, based on these edge

results, the pixels are divided into different groups. Finally,

each of the different groups is offset by a multiple of 2� to

make the phase of the input image change continually.
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