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Within the domain of analyzing powder X-ray diffraction (XRD) scans, manual

examination of the recorded data is still the most popular method, but it requires

some expertise and is time consuming. The usual workflow for the phase-

identification task involves software for searching databases of known

compounds and matching lists of d spacings and related intensities to the

measured data. Most automated approaches apply some iterative procedure for

the search/match process but fail to be generally reliable yet without the manual

validation step of an expert. Recent advances in the field of machine and deep

learning have led to the development of algorithms for use with diffraction

patterns and are producing promising results in some applications. A limitation,

however, is that thousands of training samples are required for the model to

achieve a reliable performance and not enough measured samples are available.

Accordingly, a framework for the efficient generation of thousands of synthetic

XRD scans is presented which considers typical effects in realistic measure-

ments and thus simulates realistic patterns for the training of machine- or deep-

learning models. The generated data set can be applied to any machine- or deep-

learning structure as training data so that the models learn to analyze measured

XRD data based on synthetic diffraction patterns. Consequently, we train a

convolutional neural network with the simulated diffraction patterns for

application with iron ores or cements compounds and prove robustness against

varying unit-cell parameters, preferred orientation and crystallite size in

synthetic, as well as measured, XRD scans.

1. Introduction

Naturally occurring materials, such as ores, usually consist of

multiple phases with distinct mass fractions. The composition

defines the physical and chemical properties of the substance;

thus, an important task for the analysis of the respective

materials is the identification and quantification of the present

phases. One of the most commonly used analysis methods for

crystalline compounds is powder X-ray diffraction (XRD),

which utilizes Bragg’s law for measuring a characteristic

diffraction pattern and drawing conclusions about the under-

lying electron-density map and atomic model. For powder

samples, the resulting compound pattern is a weighted

superposition of all comprised phases, so the measured peaks

(interference maxima) can be assigned to the phases with their

respective share of the total mixture determined by the peak

intensity. The most prevalent technique for measuring

diffraction patterns is the Bragg–Brentano focusing geometry

which projects the underlying three-dimensional electron

density onto a one-dimensional signal, describing the

measured intensity as a function of the Bragg angle 2�
(Pecharsky & Zavalij, 2005).
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The typical workflow for the identification of phases in

unknown materials is shown in Fig. 1. First, a one-dimensional

signal is measured for a multiphase crystalline sample using

the Bragg–Brentano geometry (Fig. 1, left). Then, specialized

software, like DIFFRAC.EVA (Bruker AXS, 2019) or Match!

(Putz & Brandenburg, 2014), is applied, which mostly employs

proprietary algorithms for the determination of candidate

phases. This algorithm requires a database, such as the ICDD

PDF (Gates-Rector & Blanton, 2019) or the COD (Gražulis et

al., 2012), which stores measured and theoretical patterns or

the structural information of known phases. The software

analyzes the diffraction pattern for peak positions and inten-

sities and searches the database for phases with matching

properties, resulting in a list of proposed candidates from

which an expert picks the correct phases. Crystallographic

defects, as well as varying lattice parameters owing to solid

solution, influence the resulting diffraction pattern and cause a

deviation from the database reference. Therefore, an expert is

required for estimating whether the degree of discrepancy is

still plausible and to make the final pick of the correct phases

from the list of proposed candidates (Fig. 1, middle top and

right). Owing to the manual intervention, this process is quite

time consuming (Oviedo et al., 2019), and additionally the

results of different users may vary for complex materials as

different decisions are made based on varying expertise in

evaluating and selecting phases from the proposed candidates.

Alternatively, a machine- or deep-learning model like a

neural network can be applied for the data analysis (Fig. 1,

middle bottom). The advantage of machine and deep algo-

rithms is that the phase-identification rules are learned based

on training data. Therefore, it is not necessary to describe all

possible assessment criteria by algorithms, which would be an

extensive task owing to the required expertise for selection of

the correct phases. The output of the neural network after

inference of the measured scan is a binary prediction (present/

absent) of the comprised phases, identical to the conventional

analysis step. Here, however, the manual intervention of an

expert is not required, resulting in an objective prediction of

phases with the ability to predict hundreds of scans in a matter

of seconds.

In application, highly specialized machine-learning algo-

rithms, such as the non-negative matrix factorization (NMF)

(Long et al., 2009) approach, as well as neural-network

structures (Park et al., 2017) have already demonstrated good

performance for the automatic analysis of XRD data. While

the NMF approach learns to describe the diffraction pattern as

a linear combination of phases with different fractions, neural

networks interpret the diffraction scans as one-dimensional

images and detect phases based on intensities under certain 2�
angles (Oviedo et al., 2019; Wang et al., 2020). Previous works

show that machine- and deep-learning models can be applied

for space-group, extinction-group and crystal-system predic-

tion (Oviedo et al., 2019; Park et al., 2017), and the assignment

of diffraction patterns to their respective phases (Long et al.,

2009; Wang et al., 2020; Stanev et al., 2018). Recently, Lee et al.

(2020) developed the first neural-network model to identify up

to three phases that occur proportionally in a mixture (e.g. an

ore).

However, measured and labelled XRD scans are not

generally publicly available, hence diffraction patterns are

simulated to train the automatic models. In order to generate

the synthetic XRD scans, the previous works either used

specialized frameworks that systematically simulated the

diffraction patterns for a specific use case [e.g. the ternary
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Figure 1
Distinction between the conventional approach and an automatic deep-learning-based analysis for powder XRD scans. Based on pulverized samples of
crystalline materials, one-dimensional diffraction patterns are measured using the Bragg–Brentano focusing geometry (left). Typically, the scan is
analyzed manually by matching the measured intensity peaks with crystallite properties of reference phases from a database (middle top). Alternatively,
a neural-network model is applied to identify the comprised phases in the measured material (middle bottom). Both approaches come to a binary
prediction of the comprised phases, while the conventional approach requires the manual intervention of an expert user (right).



system Al–Li–Fe (Bras et al., 2014)] or exported replicated

scans directly from one of the databases which contain infor-

mation about the crystalline properties of the materials

(Oviedo et al., 2019; Park et al., 2017; Lee et al., 2020), such as

the Inorganic Crystal Structure Database (ICSD) (Zagorac et

al., 2019). Thus, to apply the models trained with simulated

data to real measurements, it is important that all typical

effects that occur in XRD scans are also reflected in the

artificial training data.

Table 1 classifies the most typical properties, parameters

and effects that influence the diffraction peaks in terms of

their position, intensity and shape, with respect to their cause:

crystal structure, specimen property and instrument para-

meters. Stanev et al. (2018) discovered that the NMF reacts

sensitively to altered unit-cell parameters compared with

training data and consequently modified the specialized NMF

algorithm to be more robust against such variations. Under

certain circumstances, the developed models may no longer

recognize the corresponding phase owing to a small shift in the

nanometre range, since the position of the reflection peak

changes (according to Bragg’s law). Since neural-network

structures cannot simply be designed to be more robust

against such diffraction-pattern deviations, it is therefore

essential to represent the possible changes in the training data.

However, most works represent their phases by a single set of

unit-cell parameters and only include variations of back-

ground and signal noise, effects which are caused by the

measurement itself and not the properties of the phases. Only

Lee et al. (2020) represent each of their phases with a multi-

tude of diffraction patterns and also change the peak shape by

varying parameters, but are limited in their approach to

exported simulated diffraction patterns of the ICSD, which

only allows one to modify the anode material (radiation

wavelength) and the parameters for the empirical peak-shape

function.

As a result, the models developed so far work well for the

applications defined in the respective work but are not

necessarily transferable to real XRD measurements of all

kinds. While several approaches rely on the empirical pseudo-

Voigt profile for simulating the peak shape (Park et al., 2017;

Oviedo et al., 2019; Lee et al., 2020), some programs [e.g.

DIFFRAC.TOPAS (Coelho, 2018)] offer a more realistic

simulation via the fundamental-parameters approach (Cheary

& Coelho, 1992). Furthermore, so far mainly the offset of peak

positions is reflected in the simulated training data, while the

influence of diverging peak shape and intensities is still

unclear. In addition, phase identification in multiphase

compounds has only been tested for relatively simple mate-

rials with up to three phases and weight percentages (wps)

greater than 10%, restrictions which do not necessarily apply

for materials of all kind (Muwanguzi et al., 2012).

Accordingly, we propose for the first time a framework for

the simulation of large XRD scan data sets that enables the

variation of peak position, shapes and intensities, and thus

generates more realistic diffraction patterns for the purpose of

training phase-identification models. Using our framework, we

generate single-phase XRD scans with variations for the unit

cells, crystallite sizes (CSs) and preferred orientations (POs),

and subsequently mix them into multiphase compound

samples containing noise and background. With the acquired

data we are able to investigate to what extent the previous

restrictions in terms of minimum wp and number of phases per

mixture affect the performance of the models and how to

choose the simulation parameters to obtain ideal results for

the phase-identification task. Furthermore, we systematically

evaluate the minimum number of training samples required

for the models to learn satisfying generalizations, hence

reducing the computational efforts and optimizing training

times. Finally, we examine the influence of peak-position,

shape and intensity variations in order to assess which of the

effects is most important to represent in the synthetic data,

and thus formulate a recommendation for the optimal simu-

lation of XRD scans for training sets.

2. Methods

2.1. Overview

For utilizing synthetic XRD scans as training data, the

classifier needs to know which phases are comprised in each

mixture sample (training target). Since mixture scans can be

decomposed into a weighted superposition of the diffraction

patterns of the comprised phases, we base our framework on

single-phase patterns that we subsequently combine into

mixtures and add additional effects like background and noise

afterwards. Thus, we know exactly which phases are present in

the simulated mixtures and their respective fractions. The

additional effects are required so that the automatic approach

is able to learn a general representation that is robust against
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Table 1
Classification of properties, effects and parameters that influence powder
XRD scans.

Both the position and intensity of the peaks, as well as the peak shape, can be
manipulated. These influences can be attributed proportionally to the crystal
structure, specimen properties and instrument parameters. Adapted from the
work of Pecharsky & Zavalij (2005).

Crystal structure Specimen
property

Instrument
parameters

Peak position Unit-cell parameters
(a, b, c, �, �, �)†

Absorption‡ Radiation –
wavelength§

Porosity‡ Instrument/sample
alignment‡

Axial divergence of
the beam§

Peak intensity Atomic parameters
(x, y, z, B, etc.)§

PO† Geometry and
configuration§

Absorption‡ Radiation –
Lorentz
polarization‡

Porosity‡
Peak shape Crystallinity‡ Grain size† Radiation –

spectral purity§
Disorder‡ Strain‡ Geometry§
Defects‡ Stress‡ Beam conditioning§

† Parameters that vary between scans. ‡ Parameters that we do not consider. § -
Parameters that are static for all scans.



all occurring influences. Consequently, we split our XRD scan

simulation framework into three steps, as demonstrated in Fig.

2, and give full details about each level in the respective

subsections: Section 2.2, generation of single-phase diffraction

patterns; Section 2.3, mix of multiphase diffraction patterns;

and Section 2.4, addition of further effects (background and

noise).

2.2. Generation of single-phase diffraction patterns

Before we start with the generation of synthetic XRD scans,

we first limit the number of phases in the library of minerals

(in comparison with Fig. 2). Instead of training one classifi-

cation model on the identification task of thousands of phases,

we identify an application package that contains a subset of

related phases that are typically comprised in the same kind of

material and train one classifier per application package to

improve the performance of the automatic phase identifica-

tion. We also do not differentiate between minor variations of

minerals caused by solid solution and other effects but rather

aggregate them into one representative with possible varia-

tions of intensities and lattices per mineral.

After putting together a library of minerals, we define which

variations are represented in the scans, according to Table 1.

Since we aim to train a classifier for the phase-identification

task, it is sufficient for the model to learn in which range the

variations are plausible. Accordingly, we choose the most

significant entry of each peak-manipulation group (position,

intensity and shape) to be varied in our training data.

Therefore, we vary (i) the unit-cell parameters to create small

differences in the peak positions, (ii) the PO for diverging

peak intensities and (iii) the CS to broaden or narrow the peak

shape, during the generation of synthetic diffraction scans. In

addition, we consider other important parameters, such as the

radiation properties, beam conditioning, axial divergence of

the beam and the instrument geometry/configuration, by

including them in our simulations with static values, but do not

vary them between simulated diffraction patterns (We do not

consider the absorption, porosity, sample alignment, polar-

ization, crystallinity, disorders, defects, strain and stress

because of limitations in our simulation tool.).

Accordingly, we present values for our static parameters, as

well as value ranges for all variable parameters, that are used

for the generation of synthetic XRD scans in Table 2. We

choose a Cu K� emission profile that is restricted to the �1

component, which accounts for a monochromator in the

experimental setup, and use primary and secondary Soller slits

with a 4� angle to suppress the axial beam divergence. For the

peak-shape function, we apply an instrumental-based convo-

lution with parameters from the Bruker D2 Phaser. (Details

about the D2 Phaser parameters can be found in the example

script in the Supporting information.) Furthermore, we

simulate all diffraction patterns between 5 and 70� with �2�
steps of 0.01�, resulting in 6500 data points per scan. The
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Figure 2
Our synthetic XRD scan generation framework. Based on a library of minerals, a database of base scans with variations of unit-cell parameters, PO and
CS is generated. Then, we mix the single-phase diffraction patterns into a multiphase mixture using randomly picked phases and base scans that we scale
according to their also randomly assigned weight percentages, wpi. Finally, we add a polynomial background function, air scattering and noise to
complete the fully simulated compound XRD scan.



atomic parameters are strictly defined by the database entries

for each phase and are not altered during the generation

procedures.

For the second part of Table 2, which describes the variable

parameters for our single-phase diffraction patterns, we base

the phase-specific parameters on database entries from the

TOPAS structure database. This structure database includes

so-called structure files (str) for crystalline phases that contain

typical information like unit-cell and atomic parameters. In

contrast to other databases, this structure database features

one file per mineral and specifies a plausible value range for

the parameters and properties, instead of multiple entries per

phase. Therefore, only one file per phase has to be processed

rather than parsing and combining multiple entries to build

the value range. Furthermore, this structure database is to our

knowledge the only database that contains information about

the hkl plane for the March–Dollase correction (PO).

Therefore, we use the specified value ranges provided by

the str files to vary the unit-cell parameters, the PO and the

CS. Consequently, we simulate the diffraction patterns by

drawing from the defined intervals while keeping the

constraints of different unit-cell types (e.g. a cubic cell requires

a, b and c to have the same length, with angles fixed at 90�).

Unfortunately, our information source does not contain

further information about the plate/needle shaping of the

phases (March–Dollase parameter of <1 or >1), so we

generally vary all phases between 0.5 and 1.5. (We are aware

that this does not exactly reflect reality but need to include a

variation for peak intensities.) Eventually, the CS is chosen

randomly between 50 and 500 nm for each diffraction pattern

and phase.

The calculation of a diffraction pattern is performed by

DIFFRAC.TOPAS (Coelho, 2018), which is typically used for

the refinement analysis of measured scans, where a simulated

pattern is refined to the actual measurement to determine the

previously defined scan parameters from Table 1. Here, we use

TOPAS ‘in reverse’ and simulate realistic XRD scans by

specifying and varying the refinement parameters. Addition-

ally, it features a scriptable interface to automate the

generation of large numbers of scans. Alternatively, there are

other tools for the simulation of XRD scans available, such as

PowderCell (Kraus & Nolze, 1998), Mercury (Macrae et al.,

2020) and more, but we employ TOPAS as it allows us to

specify all the parameters introduced in Table 2 and we can

generate a large number of scans via scripts. An example

TOPAS script can be found in the Supporting information.

Ultimately, we generate a variation of diffraction patterns

for each phase based on the library of minerals using TOPAS.

The simulated XRD scans, with varying unit-cell parameters,

POs and CSs, and other parameters from Table 2, are hence-

forth referred to as the ‘base scans’ and form the base-scan

database, as demonstrated in Fig. 2. Each base scan is repre-

sented by an ASCII formatted xy file with 2�–intensity pairs

and the phases are arranged by folders containing the

respective xy files. Thus, the intensity under angle 2� for the

base scan b of phase i is described by Ib,i(2�).

2.3. Mix of multiphase diffraction patterns

In theory, TOPAS can be used directly for the simulation of

mixture scans, including background and noise. However, it is

a resource-heavy program and thus has to be implemented

efficiently for the generation of large data sets. Hence, we only

use it to simulate the single-phase scans (base scans), and we

model the internal algorithms of TOPAS for mixing phases

and generating noise and background externally. Therefore,

we form mixtures by linearly combining generated base scans,

based on the TOPAS mixing algorithm. (We use it in modified

form; the full simplification can be found in the Supporting

information.) Typically, the proportion of the phase i in the

mixture is described by its weight percentage wpi, with the

mass fractions of all comprised phases adding up to 1.

Consequently, the scaling factor si for each diffraction pattern

in the linear combination is directly related to the wpi of the

corresponding phase.

In detail, we calculate the scaling factor si of phase i using

si ¼
m1

mi

wpi

wp1

s1 ð1Þ

with

mi ¼ CMiCVi; ð2Þ

which uses the first phase to put all others in proportion. We

choose the first phase randomly when we pick the phases for

the mixture, set s1 to be 1 and calculate the scaling factors of

the other phases accordingly (the order of the randomly

picked phases does not matter). The parameter mi expresses

the relation of unit-cell mass CMi and volume CVi, since the

peaks are scaled according to the volume of the occurring

phase, but in the analysis the proportional mass of the total

mixture is usually more important. The values for unit-cell

mass and volume depend on the contained atoms and lattice

lengths and can be obtained as an output of TOPAS when

simulating the base scans. Simply put, equation (1) relates the

unit cells and wps to calculate the scaling factor in relation to a

reference phase.

Thus, the intensities of the mixture m can be calculated by

addition of the scaled base scans, using
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Table 2
Values and variations for the defined static and varied parameters in
synthetic XRD scans.

We use a convolution-based profile shape with parameters from a Bruker D2
Phaser, with Cu K�1 emission profile and Soller slits to reduce axial
divergence for all diffraction-pattern simulations.

Parameter name Value/variation

Static parameters
Radiation – wavelength (Å) Cu K� profile (1.541)
Radiation – spectral purity Cu K�1 only
Axial divergence of beams Soller slits with 4� angle
Geometry and configuration Bruker D2 Phaser setup
2� range and �2� (�) 5 to 70 with �0.01
Varied parameters
Unit-cell parameters Str-file entries
PO March–Dollase parameter, 0.5–1.5
CS (nm) 50–500



Imð2�Þ ¼
X

i

siIb;ið2�Þ: ð3Þ

2.4. Addition of further effects

As a final step, background and noise are added. Previous

works extracted these components from measured signals

(Wang et al., 2020) but we model the background using a high-

order polynomial function (Chebyshev) and uncertainties of

the measurement are represented by Gaussian noise, the same

as in the work of Lee et al. (2020). The inclusion of Gaussian

noise in the simulated scans is necessary so that the network is

able to distinguish between diffraction peaks and noise when

applied to measured data. Here, we also include effects like air

scattering, which occurs at low 2� angles if the measurement is

not performed in a vacuum, that we describe by

Iað2�Þ ¼
a

2�
: ð4Þ

We choose variable a such that the measured effect of air

scattering is between 0 and 10% of the maximum peak. For the

Chebyshev function, we choose a third- to fifth-order poly-

nomial with random coefficients that are constrained to

prevent negative intensities from being induced by the back-

ground function. With the high-order Chebyshev polynomial,

we are able to simulate backgrounds of different kinds,

including functions that imitate amorphous content. Finally,

we add up the intensities and obtain the complete XRD scan

of the compound c,

Icð2�Þ ¼ Imð2�Þ þ Ipð2�Þ þ IGð2�Þ þ Iað2�Þ; ð5Þ

with Ip(2�) for the polynomial function (Chebyshev), IG(2�)

for the Gaussian noise and Ia(2�) for possible air-scattering

effects.

Finally, we obtain a synthetic XRD scan that can be used for

training of a machine-learning model since we know exactly

which phases are present with their respective wps and scaling

factors. In addition, our framework enables the use of addi-

tional effects like background and noise as augmentation

methods during the training process. Fig. 3 visualizes a simu-

lated mixture in direct comparison with its measured coun-

terpart. We reconstruct the actual XRD scan by applying the

same wps, but notice small deviations that are caused by

varying unit-cell parameters, POs and CSs of the used base

scans.

2.5. Deep-learning architecture and training procedure

For training and evaluation of the data sets generated by

our framework, we use a simple convolutional-neural-network

architecture developed by Lee et al. (2020), which features

three convolutional layers in exchange with max-pooling

layers and three concluding fully connected layers that apply

dropout during training. We adapt the output layer to contain

the same number of neurons as we have phases in our appli-

cation package. Full information and details can be found in

the Supporting information. The neural networks are imple-

mented and trained using the TensorFlow (Abadi et al., 2015)

and Keras (Chollet, 2015) packages and a NVIDIA Tesla K80

graphics card.

2.5.1. Scaling of the input. Most importantly, we normalize

the simulated XRD scan before we feed it into the network to

improve the convergence. Neural networks fine-tune their

weights by a backpropagation algorithm and large intensities

cause high derivatives, so we scale our input data using a min–

max scaling that sets the highest intensity to 1 and the lowest

to 0, while the intermediate values are linearly interpolated.

As a side effect, this also accounts for differences of absolute

intensities owing to diverging measuring times, as we applied

and visualized in Fig. 3. Prior to the normalization, we perform

a logarithmic transformation of the scans (often used while

manually evaluating scans). This compensates for the differ-

ences between high and small peaks and improves the visibi-

lity of minor peaks.

2.5.2. Optimizer and loss function. Since we are trying to

solve a phase-identification task, our automatic approach has

to predict a binary output (either present or absent) for every

candidate phase. Also, multiple phases can be present at the

same time, which corresponds to a multi-label classification

task, so we employ a binary cross-entropy loss function. In our

experiments we found that often the convergence strongly

depends on the initial configuration of weights and in some

cases the networks did not converge at all, despite using the

identical training data and optimizer configuration as in

previous runs. Thus, we eventually decided to use the

advanced-optimizer and learning-rate-schedule AdamW
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Figure 3
The original measured XRD scan (in blue) in comparison with a simulated scan (in orange), using our framework. Using conventional analysis methods,
we identified hematite, magnetite and wuestite with 7, 33 and 60% wpi, respectively. The differences account for unit-cell, PO and CS variations of the
used diffraction patterns. We use a normalized y axis (count) to compensate for differences of the absolute intensities owing to different measuring times.
Thus, small effects like air scattering are almost not noticeable but present.



(Loshchilov & Hutter, 2019) with cosine learning-rate

annealing and warm restarts (Loshchilov & Hutter, 2017).

Consequently, we start with a relatively high learning rate that

is reduced by cosine annealing and restarts at the high learning

rate after some epochs, with the interval between restarts

increasing during the training process. Accordingly, the opti-

mizer does not get stuck in local minima and should find a

better generalization without the possibility of not converging

at all.

2.5.3. Metrics and evaluation. During the training process,

loss gives a general idea about the performance of the

network. It is based on the continuous output values of the

network (between 0 and 1 owing to the sigmoid activation

function of the output layer) in relation to the binary target

labels. In discrete terms, a phase is typically counted as

predicted present if the output value of its respective neuron is

greater than (or equal to) 0.5 and interpreted as absent for

smaller than 0.5. Therefore, the prediction of every phase in

every sample can be evaluated as true positive (TP), true

negative (TN), false positive (FP) and false negative (FN), and

consequently the accuracy is calculated as the relation of

correctly predicted phases (TP + FN) to the total number of

components in the mixtures. However, the accuracy does not

tell the whole story about the performance in our use case,

since it should be used in applications with an equal number of

positives and negatives. In our mixtures, the number of absent

phases (negatives) is usually disproportionately greater than

the number of present components, so a classifier that predicts

every phase as absent (negative) can have a good accuracy

metric, despite not working as intended. Consequently, we

also calculate the recall,

recall ¼
TP

TPþ FN
; ð6Þ

the precision,

precision ¼
TP

TPþ FP
ð7Þ

and the F1 score,

F1 score ¼ 2
recall� precision

recallþ precision
; ð8Þ

which is the harmonic mean of the two metrics. In comparison

with the accuracy, these metrics do not include TNs in their

calculations and are therefore better suited for our use case.

2.6. Design of experiments

Subsequently, we need to specify the generation of synthetic

data that is particularly suitable for training robust models for

the phase-identification task. First, we set some restrictions to

reduce the number of parameters for generating training data.

Thus, we represent every phase by 50 base scans, assuming

that this number is sufficient for a good representation of

divergence in single-phase diffraction patterns. Although the

variations for some phases are more extensive than for others,

for the sake of simplicity we generate the same number of base

scans for every phase (50). Furthermore, we set a static 2�
range from 5 to 70� with a �2� step of 0.01� for all diffraction

patterns, resulting in 6500 data points per synthetic XRD scan,

and scale every XRD scan by a logarithmic transformation

and min–max scaling before we feed it into the network. This

last constraint is also a restriction of the neural-network

structure, since we implement a network with a static number

of neurons in the input layer, so each neuron must correspond

to the intensity of the same 2� angle for every training sample.

Table 3 describes the resulting training and test data sets for

our experiment: Series A–Series D. Each training set is used

for training of the described neural-network structure, so the

difference between model variants is the applied data during

the training process. For clarification, each model variant has a

specifier related to the experiment series and the training set,
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Table 3
Details about the experimental setups for our four testing series concerning number of samples, phases per mixture, and the minimum wps for our
training, validation and testing sets.

The parameters of the validation sets correspond to the series and model variants but feature only 50 000 samples.

Training set (and validation set) Test set

Experiment series Model variant Number of samples Phases per mixture Minimum wp Number of samples Phases per mixture Minimum wp

Series A 1–8 100 000 5 2 50 000 5 2
For all possible combinations With all three variations present

Series B 1 100 000 3 10 50 000 3 1
2 100 000 3 5
3 100 000 3 2

Series C 1 100 000 3 2 50 000 3–8 2
2 100 000 5 2
3 100 000 7 2

Series D 1 5000 7 2 50 000 3–8 2
2 10 000 7 2
3 25 000 7 2
4 50 000 7 2
5 100 000 7 2
6 250 000 7 2
7 500 000 7 2



like B1 for the first training set of Series B. Additionally, every

training set has an associated validation set with 50 000

samples and identical parameters.

We start our experiments with the investigation of the

influence of peak position, shape and intensity manipulating

parameters in Series A. Real scans contain most or all of the

properties and parameters described in Table 1, therefore we

generate a test set with 50 000 samples and variations of all

three peak-manipulation groups. As training data we generate

eight sets with 100 000 samples each that contain the possible

combinations of the three groups (0 to 3 variations present)

and examine how well the trained models perform against the

test set. From this evaluation we conclude the influence of the

peak-manipulation groups on the robustness of the classifier

for use with real measurements. Here, the training and test set

consist of multiphase samples with five comprised phases per

sample and a minimum wp of 2%.

Afterwards, we test in Series B and Series C how robust the

classifier is in case the parameters of the training data do not

correspond exactly to those of the test data. Previously, Lee et

al. (2020) generated 800 000 synthetic scans with three phases

per mixture and a minimum wp of 10% per phase for training

and testing purpose. Similarly, we generate training data and a

test set with identical parameters in series A, but studies on

real iron ore samples found that those naturally occurring

materials contain any number between 1 and 10 (some even

more) phases per sample (Muwanguzi et al., 2012). Thus, we

investigate how to choose the optimal value for the minimum

wp in Series B by generating samples with three phases per

mixture and wps between 10 and 2% that we test against

samples with a mass fraction per phase of at least 1%.

Subsequently, we set the minimum wp to 2% and generate

mixtures with 3 to 7 phases in Series C to determine the

required number of phases per sample, so the trained classifier

works well for mixtures of all kinds.

Finally, we evaluate in Series D the importance of data-set-

scope size, which is heavily limited by the hardware compo-

nents. A training set with 500 000 generated samples for the

previously set 2� range with 6500 points results in 25 GB

required memory space (with float64 datatype). By dividing

the training samples into batches, the training process uses less

concurrent space but the generation and loading process of

the entire training set demands optimized routines. In the

previous experiment series, we generated all training sets with

100 000 samples, which suggests that performance could be

improved with more training data. Therefore, we train our

networks with up to 500 000 training samples to determine the

required amount of synthetic XRD scans.

In order to verify the validity of the results, we run all four

experiment series with two different applications. As intro-

duced in Section 2.2, we limit the TOPAS structure database

to a set of phases typically present in iron ore samples with 28

possible minerals and, secondly, we select a more complex

application package with 76 cement phases. While the iron

ores set features phases that mostly differ significantly from

each other, the cements phases include candidates that are

hard to distinguish, like Dolomite ordered versus disordered

and Brownmillerite variants CaFeAlO versus CaFeMgSiO.

Here, we look at structures that are very similar, like elements

of a substitutional solid-solution series, or just the replacement

of ions in a certain structure type that fit by size and charge.

They exhibit the same crystal structure with only small

variations of the lattice parameters and, consequently, very

similar d spacings. As the substitution also does not affect the

scattering power much, the related intensity variation is not

conclusive. This makes it difficult, if not impossible, even for

an expert, to distinguish such species solely based on the

diffraction signal. Consequently, the combination of XRD

with a chemical analysis becomes mandatory to differentiate

between some candidates. As a result, we expect the neural

networks to perform worse for the cements set owing to the

higher complexity.

3. Results

3.1. Overview

Using our framework, we determine a parameter set for the

training of robust phase-identification algorithms. Accord-

ingly, we divide the results section into four subsections,

according to the experiment series of Table 3. In most of our

evaluations we train one classifier three times with each of the

different training sets to reduce the variations of the optimi-

zation algorithm. Thus, we visualize our results using bar

charts for the mean F1 scores of the models plus error bars for

the minimum and maximum scores. For the data-set-scope

evaluation we utilize a line chart to demonstrate performance

progression for increasing numbers of training samples.

Additionally, as well as analyzing the metrics for the test data

sets as a whole, we also break them further down and report

on suitable subsets of the test data to give more detailed

information about the performance of the classifiers trained

with different training data sets.

3.2. Base-scan variation effects

First, we investigate which variations in the training data set

cause the classifiers to learn a robust generalization against the

possible influences. For this purpose, we test classifiers trained

with the possible combinations of changes in unit-cell para-

meters, PO and CS against a data set containing all possible

variations. Additionally, we test the performance of a model

that does not contain any variation in the training data set (No

Variation), representing each phase with only one base scan.

Fig. 4 shows the F1 score for the possible variations in the

training data set. Here, we achieve the lowest scores overall

for classifiers trained with no variation at all, signifying that it

is definitely relevant for the phase-identification task to

represent the possible influences in synthetic training data. In

general, the variation of unit-cell parameters leads to the

largest improvement with a plus of over 40%, while diverging

CSs and PO causes only small enhancements in the perfor-

mance, even in combination. Additionally, the inclusion of

unit-cell variations leads to small divergences between the
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three runs for each model variant, as shown by the small error

bars.

Interestingly, in the case of cements, the mere variation of

the PO leads to the classifiers performing worse than the

baseline models, which were trained without varying any

parameters. This is owing to the solid-solution variants

contained in the package, which can only be distinguished

from each other by small differences in intensity ratios of

peaks. By varying the intensities alone, the mixed crystals are

more difficult to differentiate as a result, while the classifica-

tion of the remaining phases does not improve significantly.

When comparing the impact of CS and PO, the former appears

to be slightly more important for training a robust model, as

indicated by the better performance of the respective models

(baseline to PO/CS, unit-cell variation + PO/CS). For the best

possible performance, however, it is important to include

variations in the peak intensities, since the models trained with

all possible variations perform best.

For a better understanding of the trained neural networks,

we visualize the class activation maps (CAMs), which highlight

the regions of the input scan that are most relevant for the

prediction of the model. Fig. 5 shows the CAMs of different

model variants for base scans of iron alpha with a heatmap

ranging from white (no importance) to black (highly impor-

tant). In the left column, Fig. 5 displays a base scan with

�50 nm CS and the CAMs for a model (a) trained with no

variation and a model (b) trained with data that reflects the

possible variation in CSs. Here we observe that model (a)

trained without peak-shape variation does not recognize the

first diffraction peak (no grey bars around the peak at �45�),

while model (b) correctly identifies both peaks and conse-

quently outputs the correct phase.

In the right column of Fig. 5, we illustrate the CAMs of iron-

alpha base scans for a model (c) without variations in a

training set versus a model (d) trained with unit-cell varying

base scans. Since the above model (c) never learns that lattice

parameters, and thus diffraction 2� angles, are variable, the

model predicts iron alpha based on a narrow range of angles.

In comparison, the fully connected classification layers of

model (d) learn to accept diffraction peaks from a broader
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Figure 5
CAMs for a base scan of iron alpha of different classifier variants. The heatmap from white (not important) to black (highly important) visualizes the
regions of the input scan that are most relevant for the predictions of the classifiers. For (a) and (c), the model was trained without variation in the
training data, while (b) includes CS variation in the training data and (d) includes unit-cell variations. In the left column, the base scan of iron alpha is
simulated using a small CS (50 nm), and in the right column the base scan features a varied unit cell.

Figure 4
F1 scores of the Series A test sets for classifiers trained with no variation in the training set, only PO, CS or unit-cell parameters varied, and the other
possible combinations of these. We report the scores for the iron ore package (dark red) and the cements (light blue).



range of angles to predict the phase. Overall, the variation of

parameters is necessary for fine-tuning the fully connected

layers of the neural networks, while the CS is also relevant for

learning adequate convolution filters.

3.3. Evaluation of minimum weight percentage

For the determination of an optimal minimum wp value, we

train classifiers with the three training sets of Series B,

consisting of mixtures with a wp equal to or greater than 10, 5

or 2%, resulting in three classifier variants (B1, B2 and B3,

respectively). Afterwards we apply the trained variants to the

designated test set with down to 1% wp. Additionally, we

determine the prediction scores for subsets of the testing set

that only consist of mixtures with 10, 5 and 2% minimum wp.

Fig. 6 shows the F1 scores of the three classifier variants B1–

B3 for the subsets and the full test set (�1%) for our two

application packages (iron ores with 28 phases and cements

with 76).

In our first subset that only consists of mixtures with three

phases and mass fractions greater than 10%, we report F1

scores of nearly 100% for all three model variants applied to

the iron ore case. Additionally, the scores are only slightly

worse for the cements package where we also report F1 scores

of at least 99% for the first subset. With decreasing minimum

wps, the F1 scores across all classifier variants deteriorate.

While the scores decline slowly for the classifier B3, the

performance of the B1 classifiers decreases more quickly.

However, it should be noted that all classifiers are able to

identify phases with smaller wps than those in their training

sets (to a certain degree). Thus, it is possible to apply a neural-

network model trained with mixtures of phases with a wp

greater than or equal to 5% (B2) for the phase-identification

task of all wps (down to 1%) and still achieve a F1 score of

�99% (97% in the cements case). Overall, the models trained

with a minimum wp of 2% (B3) perform best on our test sets

with three phases present in extremely small ratios.

3.4. Phases per mixture

Using model variants C1, C2 and C3, we investigate how

many phases are ideally mixed into training-data compounds

so that the classifier is subsequently able to analyze mixtures

with any number of components. Accordingly, we present the

F1 scores for the test set of the three classifier variants trained

with mixtures of 3, 5 and 7 phases, respectively, in Fig. 7.

Additionally, we report the performances for subsets of the

whole test set with mixtures consisting of only 3, 3 to 5 and 3 to

7 phases, in addition to the overall test set with 3 to 8 phases

per mixture. [The first classifier (C1) is also identical to B3,

both are trained with three phases per mixture and a minimum

wp of 2%.]

The results show similar behaviour like the previous

evaluation, with an overall decrease in performance for

increasing numbers of phases per mixture and the classifiers

performing best for the subset of parameters that are identical

to their training sets (in most cases). Here, however, the

decline of the performance is more significant for the C1

classifier when applied to more sophisticated mixtures, with a

relative difference of �20% for both application packages.

Also, the C3 variants perform significantly worse on

compounds consisting of just three phases in comparison with

the other two classifiers. Interestingly, the network trained

with five phases per training sample (C2) achieves a higher F1

score for the iron ores and 3–7 phases subset than the

matching variant (C3). While the wp analysis showed that

variant B3 is the most stable variant with the highest overall

scores, here, the network trained with five phases per mixture

(C2) achieves the most consistent results across all test subsets.

3.5. Data-set scope

Lastly, we review how many training-data samples the

models require in order to achieve the best possible general-

ization for XRD data. Thus, we train models with training data

sets containing between 5000 and 500 000 synthetic samples
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Figure 6
The evaluation of three classifier variants, trained with mixtures, which consist of three phases with minimum wps of 10 (B1), 5 (B2) and 2% (B3). We
report the F1 scores for a test set with a minimum wp of 1% for the three comprised phases plus subsets of greater minimum wps. Each bar visualizes the
mean of three training runs with error bars indicating the minimum and maximum values.



and test them against 50 000 other simulated mixture patterns

in the data-set-scope test. Fig. 8 shows the F1 score in relation

to the number of samples in the training set for our application

packages containing 28 or 76 phases. While the classifiers for

the iron ores achieve a score of almost 90% for as little as 5000

training samples, the performance of the cement mixture

classifiers starts at 70% for a training with 5000 samples. This is

partly owing to the fact that there are more phases present in

the cements application package and therefore the probability

of each phase being one of the seven random phases per

mixture is lower. Consequently, more training samples are

required to represent the possible variation of each phase.

Additionally, we analyze how well the networks trained for

the cements package are able to differentiate between similar

phases, such as the Brownmillerite variants. For a network that

is able to perfectly distinguish between all classes, there is no

relation between outputs of different classes, while a classifier

that struggles to separate two classes is likely to show a

correlation between predicted probabilities for both classes.

Table 4 shows the correlation coefficients between the

network output for Brownmillerite variants CaFeAlO and

CaFeMgSiO and increasing number of samples in the training

sets. A higher correlation coefficient indicates that the

network is less likely to differentiate between the two similar

phases. While the overall F1 score improves from �70% to

�82% between 5000 and 25 000 training-set samples, the

correlation coefficient does not change too much. Thus we

conclude that the networks first focus on the phases that are

easier to identify. Once most phases are classified correctly, the

networks learn the subtle differences between similar phases

using 100 000 training samples and further improve their

classification scores. However, given certain unit-cell, CS and

PO parameters, it is not possible to distinguish the similar

Brownmillerite variants without a chemical analysis, so the

networks can never achieve perfect classification scores for all

possible variations of these candidates.

In general, Fig. 8 and Table 4 show that there is only a

marginal performance gain for training sets with more than
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Figure 7
F1 scores for the test set of the phases per mixture test series plus error bars for the three runs. Each classifier is trained with a data set that contains
either 3 (C1), 5 (C2) or 7 (C3) phases per mixture and tested against compounds of 3–8 phases.

Figure 8
The progression of F1 scores for classifiers of iron ores (dark red) and cements (light blue) depending on the scope of the training data set (Series D). We
range the training data sets between 5000 and 500 000 samples.

Table 4
Correlation coefficients between network outputs for Brownmillerite
variants CaFeAlO and CaFeMgSiO and increasing training-set scopes.

Training-set scope Correlation coefficient

5000 0.307
25 000 0.291
100 000 0.132
250 000 0.131



100 000 samples, which confirms the choice of the training-data

scope for Series A–C. For the iron ore package, the F1 score

increases by �0.1% between 250 000 and 500 000 training

samples, while the cements improve by 0.7% for the same

numbers. Both cases suggest that there is a performance

saturation, which occurs earlier in the case of iron ore

mixtures. Generally, it is questionable whether the phase-

identification task can be solved perfectly (1.0 score) using an

automatic analysis model for application packages of all kinds.

While the cement set is composed in such a manner that a

perfect prediction based on XRD scans alone is impossible,

the networks do not achieve a perfect classification score for

the iron ores either. However, owing to the size of the training

data set (50 000 synthetic mixtures), it was not possible to

determine human performance as a benchmark.

In both cases it is evident that an increase in training data

also leads to an improvement in performance. What is not

shown in the two graphs, however, is that as the number of

training-data values increases so do the training times. For all

our models (regardless of application package) the training

stopped after approximately the same number of epochs

(�90) but the time per epoch increased linearly. Accordingly,

our system trained a model with 100 000 training samples in

�4 h, while the same model required 20 h to train with 500 000

samples. Thus, it is necessary to consider to what extent a small

improvement in accuracy can be justified with an increase in

training time.

4. Conclusions

In summary, we present a framework that enables the simu-

lation of XRD scans in large quantities and is therefore

suitable for the generation of training data for machine-

learning models. Our framework complements existing alter-

natives for the simulation of diffraction patterns, which

represent variation in natural measurements by different unit-

cell parameters and peak shapes, with the variance of peak

intensities by randomly chosen preferred orientations. Using

the presented framework, we investigated how to arrange the

most optimal synthetic data set for training a neural network

to perform an automatic phase-identification task.

Most importantly, variances of the unit cell, which alter

peak positions, influence the neural network most significantly

and therefore have to be represented in synthetic training

data. Moreover, we discovered that peak-shape and intensity

variations by randomly chosen March–Dollase parameters

and crystallite sizes lead to an improvement in phase identi-

fication, as may result in the real world when samples are not

optimally prepared. Hence, variations of all three peak-

manipulation groups (position, intensity and shape) are

required for training a robust classification network.

Furthermore, we evaluated how to determine training-set

parameters like the number of phases per mixture or the

minimum wp per phase to achieve the best phase-identifica-

tion performance across samples of all kinds. In most cases, the

model variant with the parameters of the training set matching

those of the test sample performed best. However, the exact

parameters of the unknown sample are rarely known in

advance (e.g. how many phases are present), so it is not always

possible to apply the model trained with matching parameters.

In our experimental setup, the classifiers trained with five

phases per mixture and a minimum wp of 2% provided a

balanced prediction across mixtures of different complexities.

Additionally, we found that �100 000 synthetic mixtures are

required for sufficiently training a neural network for the

phase-identification task of 28 candidate iron ore phases, while

the set of 76 phases that may be found in cement samples

requires �250 000 training samples. For larger training sets we

observed a saturation of performance with linearly increasing

training times that do not justify the added value.

The next step for our framework is to use the simulated

diffraction patterns to compare more machine- and deep-

learning algorithms with each other and also include perfor-

mance scores of an expert to better assess the determined

metrics. For the training of neural-network models it is

important to reduce the learning rate after each optimizer step

(instead of epoch) to utilize greater data-set scopes for a faster

and better convergence of the classifiers. One restriction of

our framework, however, is that information about the

preferred orientation of different minerals is only available for

a small number of phases. Thus, an alternative may be to

substitute the March–Dollase model with a random scaling of

peaks that is not phase dependent.
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