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Structural biology has evolved greatly due to the advances introduced in fields

like electron microscopy. This image-capturing technique, combined with

improved algorithms and current data processing software, allows the recovery

of different conformational states of a macromolecule, opening new possibilities

for the study of its flexibility and dynamic events. However, the ensemble

analysis of these different conformations, and in particular their placement into

a common variable space in which the differences and similarities can be easily

recognized, is not an easy matter. To simplify the analysis of continuous

heterogeneity data, this work proposes a new automatic algorithm that relies on

a mathematical basis defined over the sphere to estimate the deformation fields

describing conformational transitions among different structures. Thanks to the

approximation of these deformation fields, it is possible to describe the forces

acting on the molecules due to the presence of different motions. It is also

possible to represent and compare several structures in a low-dimensional

mapping, which summarizes the structural characteristics of different states. All

these analyses are integrated into a common framework, providing the user with

the ability to combine them seamlessly. In addition, this new approach is a

significant step forward compared with principal component analysis and

normal mode analysis of cryo-electron microscopy maps, avoiding the need to

select components or modes and producing localized analysis.

1. Introduction

The application in electron microscopy of techniques such as

cryo-electron microscopy (cryo-EM), single-particle analysis

(SPA) (Carroni & Saibil, 2016) or electron cryo-tomography

(Schur, 2019) has proven to be a versatile tool to trace high-

resolution structures. In particular, cryo-EM SPA has proven

to be especially good at providing not only one structure, but a

series of them, with most methods aiming to resolve stable

states that are referred to as classes. In this way, we get a first

approximation to the conformational landscape of the

macromolecule, albeit restricted to these stable states.

However, the limited number of classes that can be

extracted from a 3D classification is usually not enough to

unveil fully the dynamics of a given macromolecule. The

complete characterization of a conformational landscape can

only be achieved through the analysis of multiple transient

and stable states needed to describe the molecular flexibility in

a more accurate manner. The knowledge of these transient

and stable states leads to a better description of how structural
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changes might affect molecular function or interaction affinity,

among other properties of interest.

The formulation we introduce here is oriented towards

modelling continuous flexibility (Sorzano et al., 2019), which

can be used to characterize the motions undergone by a

molecule when exploring different states. We have already

addressed this problem in our previous work on continuous

heterogeneity using normal mode analysis (NMA) (Sanchez

Sorzano et al., 2016). However, this process relied on manual

selection of the modes describing the structural changes

reflected by two cryo-EM maps, thus making the analysis of

molecular flexibility more complex for the user. The new

algorithm that we propose in this work tries to address this

problem by simplifying the analysis for the user.

In our new methodology, there is no longer a normal modes

space where some choices have to be made. Instead, a totally

new approach is presented here, based on an expansion on a

3D basis that does not require user intervention at all. We

have also improved the analysis of pairwise comparisons by

introducing a multidimensional scaling algorithm that auto-

matically combines the outputs from two different metrics.

Finally, the new algorithm also allows the analysis of local

strains and rotations, as done by us earlier (Sorzano et al.,

2016), with the advantage of having all the analyses integrated

into a single mathematical framework. We provide a more in-

depth comparison with alternative methods in Section 2.1.

The paper makes the following major contributions.

(i) The development of an automatic algorithm to analyse

continuous heterogeneity of macromolecules through cryo-

EM maps.

(ii) Representation of the strain and rotation components

defining a transition between two different conformational

states.

(iii) Representation of a series of conformations in a

structure mapping and consensus of different mappings

defined by different comparison metrics.

(iv) A methodology to compare cryo-EM maps with simu-

lated data.

(v) The application of deformation fields to atomic struc-

tures to predict different conformations given by a series of

cryo-EM maps.

2. Methods

2.1. Determining structural deformations

In order to detect the movements defining a conformational

transition between two states of the same macromolecule, we

need to determine the displacements that each region of the

molecule will undergo between the two states. The key

development in this work is the successful expression of the

maps in terms of a mathematical basis on which the

displacements are calculated. Although full details are

provided in Appendices A and B, here it suffices to say that we

use a generalized form of Zernike polynomials to expand

functions on a ball (as the macromolecule we are interested in

is defined inside a spherical volume). This is not the only

possible choice of basis functions [for example, it would have

been possible to use the Laguerre polynomials described by

Provencher & Voguel (2010) or the prolate spheroidal func-

tions (Greengard & Serkh, 2018)], and we do not expect

superiority of any of these possible bases as long as all of them

are bases of functions defined within a sphere. Additionally,

we find that Zernike polynomials have some appealing

mathematical properties especially well suited to our problem.

Indeed, these Zernike polynomials allow for the expansion of

functions on a sphere which do not vanish at the boundaries

(so that the more external parts of the macromolecule can

move). Moreover, the basis is closed under rotations. In

Appendix B we further explore its properties and its rela-

tionship to spherical harmonics.

Considering a pair of electron-density maps representing

two conformational states of a macromolecule, it is possible to

pose the displacement-finding problem as

min
gL

Z
V1ðrÞ � V2½rþ gLðrÞ�
�� �� dr; ð1Þ

where V1 and V2 represent two conformations of a given

molecule. Here it is important to note that we are measuring

the distance between the target and the distorted volumes in

terms of the L1 norm. Although it would also have been

possible to use the L2 norm, we have chosen this definition as

it is more robust to outliers (i.e. it is more robust to those cases

where the maps do not match completely or have missing

regions). The displacement to be applied to the coordinates of

V1 is defined by the deformation field g(r) parameterized

through the expansion in Zernike polynomials Zl, n, m(r) (see

Appendix A),

gLðrÞ ¼
XL

l¼0

XN

n¼0

Xl

m¼�l

�x
l;n;m

�y
l;n;m

�z
l;n;m

0
@

1
AZl;n;mðrÞ; ð2Þ

where N and L represent the maximum allowed degrees for

the Zernike polynomials and the corresponding spherical

harmonics, respectively.

The amount of displacement at every point is controlled by

the deformation coefficients al, n, m. Our objective is to find the

deformation coefficients that minimize the goal function in

equation (1). This is achieved through a Powell’s conjugate

direction method starting from an initial guess of al, n, m = 0 for

all indices l, n, m and directions x, y, z (that is, no deformation).

This initialization of the minimization method assumes that

the identity/equilibrium solution (al, n, m = 0) is close enough to

the real solution defining the structural transition represented

by the cryo-EM maps. Since in most of the cases this

assumption is fulfilled, this initial guess allows the minimiza-

tion method to find the set of coefficients that appropriately

describes the motion between the two maps. However, it is

important to note that there are many local minima where the

minimization process could be trapped. In this respect, and

although in our experience the initialization conditions

proposed in this work provide results close enough to the ideal

solution, there could be cases in which other ways to initialize

the algorithm could be more beneficial in terms of minima

search.
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The deformation field estimated above can be submitted to

the local strain and rotation analysis described by Sorzano et

al. (2016). This analysis reveals the nature (stretching,

compression or rotation) of the local forces acting on V1 to

transform it into V2 as well as their local intensity.

In our deformation model, it is possible to divide the

movements that a molecule may undergo into ‘low’- and

‘high’-frequency movements, depending on how localized

these movements are, e.g. a transition from an open to a closed

state can be considered a low-frequency movement, while the

rotation of a specific �-helix might be a high-frequency

movement. Parameters L and N specify the maximum degree

of the polynomials used in the description of molecular flex-

ibility. In this way, we may control the maximum frequency of

the movements that could be analysed by the basis. Obviously,

analysing larger L and N will result in a longer computational

time, because more al, n, m coefficients will need to be deter-

mined and there is a higher risk of overfitting. However, the

larger the values given to the parameters L and N, the higher

the frequencies the algorithm will be able to analyse (although

in general, global motions dominate the conformational

change; Bahar et al., 2010).

Although in many cases analysing global motions is enough

to describe in a precise manner the structural changes a

macromolecule may undergo, it can be the case that the

motions of interest are focused on a very localized area of the

molecule. In that case, being able to go to higher degrees on

the basis will allow the algorithm to study those motions

specifically, without modifying the areas that should remain

still. Another possibility is direct restriction of the structural

analysis to any specific region in the macromolecule by

centring a sphere on that area and selecting an appropriate

radius. In this way, it will not be necessary to reach very high

degrees in the basis (thus reducing the computational

complexity). However, by imposing these kinds of restrictions

the algorithm might include artefacts in the surface of the

sphere as the molecular regions outside of it will remain

untouched. Depending on the molecule and motions to be

analysed, the researcher can decide which analysis will be

more appropriate for a specific case.

It is important to mention that only in a very few cases did

we need to increase the degree of the basis to analyse a

localized motion that we were interested in, or have to play

with the regularization parameter to get a better approxima-

tion of the deformation fields, since the default values were

good enough for most of the experiments we have performed

so far.

To reduce the possibility of overfitting as much as possible,

we regularize the cost function by adding two penalty terms,

min
al;n;m

Z
V1ðrÞ � V2½rþ gLðrÞ�
�� �� dr

þ �1

Z
gLðrÞ
�� ��2

drþ �2

R
V1ðrÞ � V1½rþ gLðrÞ�
� �

dr
�� ��R

V1ðrÞ dr
:

ð3Þ

The first term of the regularization penalizes excessive

deformation and the second penalizes changes in the mass of

V1 due to the deformation. Regularization terms �1 and �2 are

usually given low values to prevent large deviations from the

ideal solution. Nevertheless, both can be set by the user to any

value they consider appropriate for their specific analysis. The

guideline for their selection should be that the three terms in

the goal function should have values of the same order of

magnitude. In our implementation, we report the three

contributions helping the user to choose these multipliers.

2.2. Relationship to other continuous deformation models

Probably the two most widely continuous deformation

models used by the structural biology community in mapping

the conformational space of biomolecules (or in analysing

cryo-EM images) are principal component analysis (PCA)

(Tagare et al., 2015) and normal mode analysis (NMA) (Cui &

Bahar, 2006). The three models (PCA, NMA and 3D Zernike)

claim to be bases for continuous movements. However, as will

be clarified below, they define bases of different mathematical

entities.

PCA considers a volume of size N 3 voxels as a vector in

R
N 3

. Due to the continuous heterogeneity and the uncertainty

in the 3D reconstruction process, the reconstructed map can

be considered as the mean of a set of other vectors (maps)

whose projections are acquired by the microscope. If we

consider the covariance matrix associated with that set of

maps (a matrix of size N 3
� N 3), then the principal compo-

nents form a basis (if the covariance matrix is not degenerate)

in which the set of maps can be linearly expressed. The PCA

approach approximates the deformed volume by a linear

combination of volumes (the principal directions),

V2ðrÞ ’ V1ðrÞ þ
X

n

�nVnðrÞ; ð4Þ

where Vn are the eigenvolumes of the PCA decomposition.

The undeformed model is then obtained by subtracting the

appropriate amount of each of the eigenvolumes,

V1ðrÞ ’ V2!1ðrÞ ¼ V2ðrÞ �
X

n

�nVnðrÞ: ð5Þ

Due to the low-frequency nature of the PCA principal direc-

tions (Sorzano & Carazo, 2021), the undeformed volume is

necessarily of low resolution.

In our model, we assume that any deformed volume V2 can

be undeformed by applying gL ,

V1ðrÞ ’ V2!1ðrÞ ¼ V2½rþ gLðrÞ�: ð6Þ

Zernike polynomials provide a basis for gL(r), not the

volumes. Our model revolves around the location of the voxel

(which implies a nonlinear relationship between V1 and V2),

providing an intrinsically better handling of the local char-

acteristics of the map, while in PCA there is a linear model at

the level of the volumes themselves (not their internal co-

ordinates).

Our approach has another potential advantage over the

PCA model: it can easily be applied to atomic structures fitted
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into V1. For any given atom in the atomic structure at a

position r1 , that is defined in the same coordinate system as

V1 , we simply have to move it to the location r1 + gL(r1).

In NMA, volumes are approximated by a set of P pseudo-

atoms with weights cp and basis function b(r) located at the

locations rp (Jonić & Sorzano, 2016),

V2ðrÞ ¼
X

p

cp bðr� rpÞ: ð7Þ

NMA is based on a second-order Taylor approximation of the

energy landscape of the macromolecule, starting with a

description of the interactions between the pseudoatoms. This

is typically treated using an elastic network model where

pseudoatoms within a distance criterion are connected by

harmonic springs (Bahar et al., 2010). The associated Hessian

is of size 3P � 3P and the normal modes are its eigenvectors

(sorted by increasing eigenvalue) and a basis of the R3P space.

Let us call uk 2 R
3P the k th normal mode, and uk; p 2 R

3 the

part of the normal mode corresponding to the p th pseudo-

atom. To deform V2 to make it similar to V1 we consider the

first K normal modes with different weights �k,

V2!1ðrÞ ¼
XP

p¼1

cp b r� rp þ
X

k

�kuk; p

 !" #
: ð8Þ

Similar to our method, NMA acts by displacing the location of

the pseudoatoms (our model acts by displacing the location at

which we must interpolate V2). However, an advantage of our

new method with respect to NMA is that the NMA defor-

mation is only known at the location of the pseudoatoms,

while our new method is fully defined within the sphere

containing the macromolecule. In this way, the NMA would be

a discretized version of the underlying continuous deforma-

tion field, while 3D Zernike polynomials would be an estimate

of that continuous field.

Summarizing, each of the methods described so far (PCA,

NMA and 3D Zernike polynomials) has a basis in different

mathematical entities (vectors in RN 3

, R3P or the set of square

integrable functions defined within the sphere of a given

radius). 3D Zernike polynomials have the advantage that they

are defined for every point in the macromolecule (as opposed

to NMA) and the undeformed volumes do not lose resolution

(as opposed to PCA).

Elastic deformations have also become popular for the

alignment of frames within a movie (Abrishami et al., 2015;

Tegunov & Cramer, 2019; Zheng et al., 2017). Although they

have not been explicitly used to deform volumes, one could

envision that they could be easily extended to three dimen-

sions. This would certainly be a possible approach and we

earlier used cubic splines for this purpose (Sorzano et al.,

2016). However, the basis used in this paper, which is defined

exclusively within a sphere, is more appropriate for the task at

hand (describing a function whose support is fully contained

within that sphere) than for a more generic set of functions

that constitute a basis of functions defined within a cube. This

‘greater appropriateness’ translates into requiring fewer

coefficients to express the same deformation field to the same

level of accuracy.

2.3. Distances between a set of maps

In most practical cases, the number of states that can be

reconstructed by cryo-EM SPA is larger than two, which

naturally implies the generalization of the case presented

above to a number of pairwise operations capturing the

different structural relationships among the set of maps under

consideration. This information is summarized in a graph

known as a structure map (Sanchez Sorzano et al., 2016) or

conformational landscape (Zhang et al., 2021b), which repre-

sents each conformation as a point in conformational space.

The closer two points are in the structure map, the more

similar they are.

By estimating the Zernike polynomial deformation for all

possible pair combinations in a set of N cryo-EM maps, a

distance matrix can be computed in which we measure how far

two cryo-EM maps are from each other. The deformation field

between the two cryo-EM maps gL(r) provides a mechanism

for calculating such a distance. For instance, we may define the

distance between two cryo-EM maps V1 and V2 as the sum of

the lengths of the deformations at each point,

d1ðV1;V2Þ ¼

Z
gLðrÞ
�� ��2

dr: ð9Þ

Besides equation (9), there are additional sensible ways of

defining the distance between two cryo-EM maps. One of

them consists of measuring the correlation between V1 and V2

once V2 is undeformed to resemble V1,

d2ðV1;V2Þ ¼ 1� � V2 rþ gLðrÞ
� �

;V1ðrÞ
� �

; ð10Þ

where � is Pearson’s correlation coefficient.

By comparing all cryo-EM maps, we would construct a

matrix of the distances of all versus all maps.

It is worth mentioning here that, in order to get accurate

comparison measurements, it is desirable to have a set of cryo-

EM maps with similar characteristics. In particular, it is

important to filter the maps in the set so that all their reso-

lutions match the lowest value present in the data set. In this

way, the structure mappings and distance matrices will not be

affected by resolution changes, leading to a more meaningful

projection of the different maps in the low-dimensional space

resulting from the application of this method.

2.4. Embedding of conformations using multiple multi-
dimensional scaling

Once we have the above-mentioned distance matrix, we

may use multidimensional scaling (MDS) (Härdle & Simar,

2012) to find points in a low-dimensional space of dimension p

(typically p = 2 or p = 3 for ease of representation) such that

the distances between points in the low-dimensional space

represent in some form the distances between the cryo-EM

maps in the full dimensionality space [e.g. equation (9)]. For a

detailed description of MDS, see Härdle & Simar (2012). If we

have N cryo-EM maps to compare, let us refer to the matrix
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collecting all the points in the low-dimensional space as X1

[X1 2MðN; pÞ, that is, the set of cryo-EM maps of size N � p].

The subscript 1 indicates that we used d1 to perform the low-

dimensional mapping.

If instead of equation (9) we use equation (10), then this

would give us another MDS representation X2 . While the

distance d1 concentrates on the amount of deformation

required to transform V1 into V2 , d2 describes the distance

between V1 and V2 after applying the inverse deformation to

V2 .

We could similarly conceive other strategies to measure the

distance between any pair of cryo-EM maps V1 and V2 . None

of them should necessarily be better than the others, since

each one addresses the problem from a different perspective.

In this regard, it is impossible to favour any one of the

different metrics without a specific task to accomplish.

However, it is still sensible to combine the different mappings

induced by each one of the distances as a way of producing a

single summary of all their information. For the task of

producing such a summary, we propose to construct a

combination of the embeddings that minimizes the entropy of

the result, understanding that the entropy is reduced when

more order is found.

At this point and following the aforementioned idea, we

may want to combine all those low-dimensional mappings into

a single set of points to summarize the relative distances

derived from each distance definition. For doing so we have

found useful the following procedure that we call multiple

multidimensional scaling:

(i) We take one of the mappings as reference, for instance,

X1.

(ii) We look for the affine transformation Ti that minimizes

the Frobenius norm [for an arbitrary matrix A, its Frobenius

norm is defined as kAkF ¼ ð
P

i; j jai jj
2
Þ

1=2] between each Xi

transformed mapping and the reference mapping (since the

MDS mappings of different distances, performed in an inde-

pendent way, normally result in mappings of different scales,

central locations, rotations and mirrors),

argmin
Ti

X1 � TiðXiÞ
�� ��

F
: ð11Þ

For convenience of notation, let us define T1(X1) = X1.

(iii) The consensus mapping is constructed as the convex

combination of all transformed mappings (the determination

of the specific �i coefficients for the combination will be

addressed in the following step),

Xa ¼
X

i

�iTiðXiÞ; ð12Þ

with the constraints �i � 0 and
P

i �i ¼ 1 (with these

constraints Xa is said to be a convex combination of the input

matrices). Note that the j th row of the matrix Xa (referred to

as xj, a) indicates the position of the j th cryo-EM map in the

low-dimensional space (whose dimension is p). For each one

of the consensus candidates we associate the probability

density function

paðxÞ ¼
X

j

1

N
G�ðx� xj;aÞ; ð13Þ

where G� is a p-multivariate spherical Gaussian whose

covariance matrix is �2I {in our experiments, we chose

� ¼ max½rangeðX1Þ; . . . ; rangeðXiÞ�=20, where range(Xi) is

the difference between the maximum and minimum values of

any of the components of the mapped vectors}.

(iv) Since the best combination of coefficients �i is not

known beforehand, each possible convex combination has to

be analysed. The criterion followed was to look for the convex

combination that minimized the Shannon entropy of the

probability density function defined above,

argmin
a

�

Z
paðxÞ log½paðxÞ� dx

� 	
: ð14Þ

The rationale is that we are looking for the convex combina-

tion that brings maximum order to the low-dimensional

mapping.

We observe that the procedure described above normally

finds a good balance between the properties of the different

low-dimensional mappings, resulting in well structured

summaries.

3. Results

This algorithm has been implemented in Xmipp (de la Rosa-

Trevı́n et al., 2013) and it is available through Scipion (de la

Rosa-Trevı́n et al., 2016) under the protocols named volume

deform - Zernike3D and struct map - Zernike3D.

We performed some tests with a pair of maps to compare

these two implementations to analyse the performance

improvement. The maps used for the tests had dimensions of

250 in X, Y and Z, leading to averaged execution times of 1 h

and 20 min (CPU) and 39.5 s (GPU). The tests were

performed with an Intel i7-9750H and a Nvidia 2060 with

Cuda 10.1, respectively.

3.1. Experiment 1: cryo-EM maps of the human mitochon-
drial ribosome

We first tested our approach using a small data set covering

a range of conformational states of a human mitochondrial

ribosome (Amunts et al., 2015), as previously described by

Sanchez Sorzano et al. (2016). To check whether the structure

map suggested two independent (pre-translocation and post-

translocation) states following different conformational tran-

sitions as found in our previous study (Sanchez Sorzano et al.,

2016), we applied the methodology described above with N =

3 and L = 2 (the maximum allowed degrees for the Zernike

polynomials and the spherical harmonics, respectively). As

expected, the structure map indeed suggests two independent

arrangements following their own conformational transitions,

grouped as red and blue dots in Fig. 1 (the black line segments

joining the dots are just provided to enhance visualization).

We thus conclude that the new approach is capable of

reproducing the results of previous supervised methods that

perform similar analyses and accurately groups the seven
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cryo-EM structures [indicated by their EMDB (Electron

Microscopy Data Bank, https://www.ebi.ac.uk/emdb/) identi-

fication numbers] into two groups of conformers, each repre-

sentative of a different functional state.

Additionally, the new approach also allows for the local

decomposition of the deformation field into local strains and

local rotations, as was done by Sorzano et al. (2016). The

representation of these two components is shown in Fig. 2 for

one of the pairs of ribosomes (EMDB entries 1720 and 1723).

In addition, Video 1 in the supporting information shows the

conformational changes described by these two maps. For this

video, we coloured the ribosomes using the rotation compo-

nent represented in Fig. 2 to simplify their comparison.

According to this analysis, the rotations appear to be distrib-

uted through the whole structure of the ribosome, although

the larger rotations (shown in red) are mostly found in the

small subunit. Similarly, the strains are mainly localized in the

small subunit and appear to be less distributed. This reveals

that the basis is capable of deforming in a localized fashion,

leading to a better description and identification of the

different movements that define the transition between the

two conformations. It is also possible to see that we are

obtaining results comparable with those found by Sorzano et

al. (2016), with the advantage of having all these analyses

unified in the same framework, which implies an overall

simplification leading to more complete studies.

3.2. Experiment 2: trajectory recovery of the CCT complex

Our next experiment is aimed at characterizing the ability

of the method to recover the sequence of events present in a

set of conformations defining a certain trajectory in confor-

mational space. Such conformations can be created compu-

tationally by taking advantage of biophysical methods such as

molecular dynamics simulations (MD) (Adcock &

McCammon, 2006) and normal mode analysis (NMA) (Bahar

et al., 2010), simulating the movements defining a transition

between two conformations. In this case, we used a trajectory

from a recent study (Zhang et al., 2021b), which was generated

using a purely NMA-based approach called the adaptive

anisotropic network model (adaptive ANM; Yang et al., 2010)

implemented in ProDy (Zhang et al., 2021a). This gave us 30

different models along an open–closed transition of the

mammalian chaperonin CCT complex between two atomic

models derived from a previous cryo-EM study (Cong et al.,

2012), taken from the Protein Data Bank (PDB) (wwPDB

Consortium, 2019), as described by Zhang et al. (2021b). The

starting structure with one ring open and one ring closed

(PDB entry 4a0w) (Cong et al., 2012) corresponded to an

ATP-bound state and the target structure with both rings in an

intermediate conformation (PDB entry 4a13) (Cong et al.,

2012) corresponded to the ADP-bound state, allowing us to

explore the conformational changes triggered by ATP

hydrolysis. In the adaptive ANM method, all steps are based

on coarse-grained normal modes calculated using the aniso-

tropic network model (ANM) (Atilgan et al., 2001; Doruker et

al., 2000; Eyal et al., 2006), providing coordinate changes for

C� atoms only. At each step, normal modes were selected that

had the highest directional overlap (correlation cosine) with

the deformation vector between the current conformation and

the target structure up until the sum of the squared overlaps

exceeded a threshold of 0.4. The contribution of each mode to

the deformation was chosen so as to take 20% of the

maximum provided by the unnormalized dot products (a

scaling factor of 0.2) so as to avoid unphysical deformations

while maintaining efficiency. The normal modes were re-

calculated until the root-mean-square deviation (r.m.s.d.) from

the target structure fell below 1 Å, resulting in a total of 30

steps. Each step recruited a larger number of modes and had a

smaller total size as the required deformation became less
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Figure 1
Structure mapping recovered a set of seven maps of the human
mitochondrial ribosomes (Amunts et al., 2015) from the data set retrieved
from the EMDB after running the Zernike3D algorithm. Two trajectories
are suggested that might correspond to two independent states (pre-
translocation and post-translocation) present in the data set, consistent
with results from a previous normal-mode-based structure mapping
algorithm (Sanchez Sorzano et al., 2016). The labels refer to the EMDB
entries.

Figure 2
Mitochondrial ribosome subunits 28S and 39S (from EMDB entry 1720)
coloured using the strain (left) and rotation (right) components extracted
from the deformation coefficients obtained when analysing the motion
described by EMDB 1720 and EMDB 1723. The conformational change
described by these two maps is represented in Video 1.



cooperative and more local (see Video 2). We focus our

discussion on the ring that goes from open to intermediate–

closed for simplicity.

We then transformed these atomic structures into Coulomb

potential maps using the electron atomic scattering factors

(EASFs) as described in previous work (Sorzano et al., 2015).

Fig. 3 shows the structure maps recovered after applying our

methodology. We can see that the sequential order of the 30

intermediate conformers along the trajectory was successfully

recovered by our approach. The direction, however, is arbi-

trary and in this case the start of the trajectory was numbered

as conformer 30 and the end as conformer 1.

With this example, we additionally illustrate the distinct

MDS mappings obtained when the distances d1 [amount of

deformation, Fig. 3 (top)] and d2 [similarity after deformation,

Fig. 3 (middle)] are used. Although the trajectory was

successfully recovered by both distances, the correlation

distance d2 was slightly more accurate in this case. The reason

is that most of the changes between the structures at the end of

the transition (labelled 1 to 13 by the algorithm) are high-

frequency movements (i.e. movements of loops or small

�-helices and �-sheets) that cannot be fully captured by the

Zernike 3D basis with N = 3 and L = 2 (although larger N and

L would allow one to express these small-detail movements,

they would also increase the computational cost). Fortunately,

the consensus mapping [Fig. 3 (bottom)] is able to identify the

existence of high-frequency movements and gives more weight

to the d2 mapping (correlation distance) automatically,

resulting in an almost exact recovery of the volume sequence

along the trajectory.

At least in this case we can conclude that d1 is very good for

describing the low-frequency movements (e.g. C23–C30),

while d2 is very good for characterizing the high-frequency

differences (ca C1–C13), and both perform well in the inter-

mediate-frequency regime. Depending on whether our set of

input maps are related by large or small movements, one

distance or the other will be better suited to capturing the

overall set of relationships. The consensus mapping will thus

analyse both mappings and automatically determine the

optimal weight that results in a low-dimensional mapping that

can be readily interpreted.

3.3. Experiment 3: comparison of atomic models and cryo-
EM maps from the rabbit ryanodine receptor RyR1

In the following example, we explored the possibility of

matching (pseudo/simulated) cryo-EM maps derived from

atomic models with experimental electron microscopy maps in

the same low-dimensional space. For this purpose we selected

five experimental cryo-EM maps deposited for the ryanodine

receptor 1 (RyR1) from rabbit (EMDB entries 8379, 8385,

8390, 8395 and 8373) and their respective atomic models in the

PDB (PDB entries 5tam, 5tau, 5taz, 5tb4 and 5t9n).

First, we converted the atomic models into density maps

using EASFs, as described in the previous section. Then, to

make the cryo-EM maps and atomic models comparable, we

also filtered all volumes in the analysis to a common resolution
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Figure 3
Structure maps of a set of 30 models obtained by an NMA-based
approach called adaptive ANM over an open–closed transition of the
chaperonin CCT from our previous study (Zhang et al., 2021b) using (top)
the deformation distance d1 , (middle) the correlation distance d2 and
(bottom) the minimum entropy consensus followed by an MDS analysis
of the corresponding distance matrices. The open conformation is
labelled as C30 and the closed one is C1. The intermediates predicted
along low-frequency modes starting from the open state are labelled C29,
C28 etc., whereas the vicinity of C1 populates conformers reached by
high-frequency modes. The latter is relatively more sensitive to the metric
used in the Zernike3D-based evaluation (compare d1 in the top panel and
d2 in the middle panel). The consensus path (bottom) provides an optimal
solution based on the convex combination of the structure mappings
shown in the top and middle plots in such a way that the entropy of the
final mapping is minimized.



(specifically, to the lowest of the reported resolutions of the

cryo-EM maps). Note that without applying this low-pass filter

the minimization process of equation (1) might not reach a

meaningful minimum. Finally, we applied the method

presented in this work to this combined data set.

Our results, shown in Fig. 4, report the main difficulties

that appear when mixing simulated and experimental cryo-

EM maps. While the structure map based on d1 (the distance

based on the amount of deformation) illustrates that many

pairs are correctly placed together, the structure map based on

d2 (the distance based on the similarity after undeforming)

discriminated between maps derived from atomic models and

maps coming from cryo-EM experiments. However, the point

of this example was to intermix maps from different origins, so

discrimination by origin was to be minimized, requiring a

further adjustment to our approach. To tackle this problem,

we extended our methodology by analysing separately the

sub-blocks of the distance matrix including only atomic or

only cryo-EM maps [see Fig. 5 (top)]. We thus performed the

MDS of each one of the sub-blocks independently, obtaining

the low-dimensional mappings XAA and XCC (the subscript

indicates whether it corresponds to atomic/computational or

cryo-EM/experimental maps). These two low-dimensional

mappings were the input into the consensus procedure

described in Section 2.4. Focusing on the consensus, we can

see that the information provided by the two mappings XAA

and XCC is combined into two different trajectories corre-

sponding to each dimension in the distance matrices (simu-

lated and experimental cryo-EM maps) that show a similar

distance relationship among their points, illustrating that both

trajectories correspond to the same states of RyR1. Therefore,

the counterpart of each other, and their relative distances/

positions, are retained [Fig. 5 (bottom)].

3.4. Experiment 4: application of the deformation field to
atomic models of the CCT complex

We described our deformation field gL as a function that

deforms V1 to let it become similar to V2 , that is, as we have

done in previous cases, acting only on two cryo-EM maps.

However, since the deformation field is defined in the co-

ordinate system of V1 , it can also be applied to atomic models

defined in the same coordinate system and not only to maps.

In this way, we can also deform an atomic model defined for V1

and use it as starting point for a model of V2 . Obviously, since

the new atomic model defined in the coordinate system of V2

has been constructed purely based on geometrical consid-

erations, all the stereochemical constraints have to be further

imposed.

An example of an atomic model deformed following the

previous procedure is presented in Fig. 6. The example was

taken from the same data set as used in Experiment 2, which

shows an open–closed transition of the CCT complex. The

figure illustrates how the deformation applied to the atomic

model of the open conformation results in an approximation

to the closed conformation. Naturally, we can now compare

this deformed model representing the closed conformation

with the one obtained directly from the experimental map of

the closed conformation. The r.m.s.d. (computed with

ChimeraX) between these two models was 5.29 Å, certainly

high, but substantially reduced compared with that between

the open–closed models without applying any deformation,

which was 7.90 Å. This r.m.s.d. reduction suggests that the

deformation applied is appropriately reproducing a confor-

mational change in the right direction, from open towards the

closed state.

However, the overall scores obtained for the two deformed

structures still show a high value, as many stereochemical
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Figure 4
Results obtained after applying the Zernike3D algorithm to a set of cryo-EM maps from the ryanodine receptor 1 (RyR1). The data set was constructed
in such a way that there are always two maps corresponding to the same conformational state: an experimental cryo-EM map and a cryo-EM map
simulated from the atomic structure associated with the previous experimental map. (a) A structure map obtained when comparing experimental cryo-
EM maps (red dots) and atomic models (blue dots) for RyR1 through the deformation distance d1. The results show that the method succeeded in
recovering most of the pairs defined by the experimental cryo-EM maps and atomic structures. (b) A structure map obtained when comparing
experimental cryo-EM maps (red dots) and atomic models (blue dots) through the correlation distance. In this case, the correlation metric fails to
recover the pairs but it identifies correctly the two different map types used for this analysis. (c) A consensus structure map resulting from the
combination of (a) and (b). The consensus provides an optimal solution that helps to identify the map pairs and the map types by keeping a similar
structural relationship in the blue and red branches. In these cases, none of these approaches are sufficient for creating a meaningful structure map based
on conformation alone, leading us to apply the improvement in Fig. 5.



features are not taken into account when computing the

deformations. In order to improve the geometry of the

deformed structures, we applied a real-space refinement

[executing Phenix software (Liebschnerm et al., 2019) with the

default parameters] to the predicted structures using their

respective electron-density maps. After this refinement, the

r.m.s.d. value measured before decreased further to 4.52 Å. As

a conclusion, the combination of deformation and refinement

of atomic structures enables us to achieve predictions of

different structure conformations on the path between two

end points, suitable for performing further studies, though

there is clearly room for improvement. For example, refining

in between smaller deformations could be of benefit, e.g. in

hybrid simulations methods where local refinement/simulation

complements global deformations (Krieger et al., 2020).

4. Conclusions

The development of automatic algorithms to study continuous

flexibility presented in this work results in simplified yet

precise procedures, avoiding the need for user interference

with the software and increasing the reproducibility of the

results. It is also a significant step forward with respect to

approaches like PCA and NMA of cryo-EM maps, avoiding

the need to select components or modes and producing

localized analysis.

The way this new approach works is by defining a new 3D

basis where all deformation occurs. It is conceptually similar to

the Fourier transform. The movements defining a transition

between two different conformational states are decomposed

into different components (that can be regarded as low-,

medium- and high-frequency movements). Those components

will depend on the degree of the basis used in the calculations.

The displacements needed along each different component to

minimize the distances between two electron-density maps are

stored in a series of deformation coefficients al, n, m , which can

be further analysed to obtain the local strains and rotations

undergone by the macromolecules during conformational

transitions. The new approach thus unifies two of our previous

developments (NMA and strain/rotation component extrac-

tion) for the analysis of continuous heterogeneity.

Apart from the information extracted from the deformation

coefficients, our method allows for the definition of a distance

measure based on the deformed electron-density maps, which
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Figure 5
Results obtained after applying the Zernike3D algorithm to a set of cryo-
EM maps from the ryanodine receptor 1 (RyR1) followed by a
decomposition of the distance matrix computed by the algorithm into
different blocks to recover more meaningful structure mappings. (Top) A
partition of the distance matrix into 2 � 2 blocks. Each block stores the
distances obtained when comparing the different map types used in this
test (pairs of experimental cryo-EM maps and maps derived from atomic
structures representing the same conformational state): AA (atomic
versus atomic), AC (atomic versus cryo-EM), CA (cryo-EM versus
atomic) and CC (cryo-EM versus cryo-EM). (Bottom) A consensus
structure map for pairs of RyR1 conformations (from atomic model-
derived simulated maps and from cryo-EM maps) resulting from the
analysis of the blocks. The red circles are used to enhance the
visualization of the different pairs. When compared with Fig. 4(a), it is
possible to see that this decomposition of the distance matrix leads to a
proper recovering of all the pairs found in the data set.

Figure 6
Deformation applied to one of the 30 CCT models obtained by the NMA-
based approach called adaptive ANM described in Experiment 2. The
deformation was computed using the cryo-EM maps simulated from the
30 models. The original atomic structure in the open state is shown in pink
and the deformed version in the closed state in cyan. The results show
that the deformation coefficients �l, n, m computed with maps can be
effectively applied to the atomic space of the model to approximate
geometrically the conformation represented by the cryo-EM map at the
level of atoms.



is useful for building distance matrices. These distance

matrices can be used afterwards to recover structure mappings

that show the structural relationships existing among the

diverse conformational states. Different definitions of the

distance measures may focus on different aspects of the

comparison. For this reason, we have devised a new procedure

to combine several low-dimensional mappings into a single

consensus mapping based on a minimum entropy criterion

that tends to produce well ordered low-dimensional mappings

and outperforms the results obtained by individual distance

metrics.

The possibility of converting atomic models back to elec-

tron densities opens the possibility of a combined analysis on

maps and models in the same conformational space. An

illustrative example has been provided in Experiment 4, where

cryo-EM maps, together with their respective structural

models between two end points, have been represented in the

same space as a set of experimental cryo-EM maps.

In the future, it may be interesting to explore alternative

bases for the deformation field and the distance between

volumes (like the Wasserstein distance).

APPENDIX A
3D real-valued generalized Zernike polynomials

In this section we discuss the functions that we use as basis

functions of the deformations in the unit ball B. We use the

generalized Zernike polynomials defined on the 3D ball; in

Appendix B1, we briefly review the relation of this basis to the

better-known 2D form of Zernike polynomials.

In general, the expansion of any real valued function g(r) 2

L2(B) in this basis is defined by the formula

gðrÞ ¼
X1
l¼0

X1
n¼0

Xl

m¼�l

�l;n;mZl;n;mðrÞ; ð15Þ

where �l, n, m are real-valued coefficients, and Zl, n, m(r) are the

3D real-valued (normalized) generalized Zernike polynomials

defined by the formula

Zl;n;mðrÞ ¼ R
1

l;nðrÞ y
m
l ð�; �Þ; ð16Þ

where r is the radial component of the 3D coordinate r, � and

� are its polar and azimuthal angles, respectively, in spherical

coordinates, n and l are non-negative integers, and m is an

integer such that �l � m � l. We refer to l as the spherical

frequency. ym
l is the real-valued spherical harmonic defined by

the formula

ym
l ð�; �Þ ¼ ð�1Þm

2l þ 1

4	

ðl � jmjÞ!

ðl þ jmjÞ!


 �1=2

Pjmjl

� ðcos �Þ

1 if m ¼ 0

21=2 cosðm�Þ if m> 0

21=2 sinðjmj�Þ if m< 0

8<
: ;

ð17Þ

where P m
l are the associated Legendre polynomials defined by

the formula

P m
l ðxÞ ¼

ð�1Þm

2l l!
ð1� x2

Þ
m=2 d lþm

dxlþm
ðx2
� 1Þl: ð18Þ

The real and imaginary parts of the complex-valued sphe-

rical harmonics are available in standard textbooks such as

that by Abramowitz & Stegun (1966). For completeness,

Table 1 shows these spherical harmonics in Cartesian coordi-

nates. Before defining the normalized generalized radial

Zernike polynomials denoted by R
p

l;n above, we define the

(unnormalized) generalized radial Zernike polynomials R1
l;n as

follows:
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Table 1
List of real-valued spherical harmonics ym

l ðr=jrjÞ.

Order (m)

Degree (l) �3 �2 �1 0 1 2 3
0

1

2

1

	

� 
1=2

1 3

4	

� 
1=2
y

r

3

4	

� 
1=2
z

r

3

4	

� 
1=2
x

r

2 1

2

15

	

� 
1=2
xy

r2

1

2

15

	

� 
1=2
yz

r2

1

4

5

	

� 
1=2

�
�x2 � y2 þ 2z2

r2

1

2

15

	

� 
1=2
xz

r2

1

4

15

	

� 
1=2
x2 � y2

r2

3

1

4

35

2	

� 
1=2

�
ð3x2 � y2Þy

r3

1

2

105

	

� 
1=2
xyz

r3

1

4

21

2	

� 
1=2

�
yð4z2 � x2 � y2Þ

r3

1

4

7

	

� 
1=2

�
zð2z2 � 3x2 � 3y2Þ

r3

1

4

21

2	

� 
1=2

�
xð4z2 � x2 � y2Þ

r3

1

2

105

	

� 
1=2

�
ðx2 � y2Þz

r3

1

4

35

2	

� 
1=2

�
ðx2 � 3y2Þx

r3



R
p
l;nðxÞ ¼ ð�1ÞnxlP ½lþðp=2Þ; 0�

n 1� 2x2
� �

; ð19Þ

where P ð�;�Þn are the Jacobi polynomials,

P ð�;�Þn ðxÞ ¼
ð�1Þn

2n n!
ð1� xÞ��ð1þ xÞ��

�
d n

dxn
ð1� xÞ

�
ð1þ xÞ

�
ð1� x2

Þ
n

� �
: ð20Þ

The definitions and properties of the standard associated

Legendre polynomials and Jacobi polynomials are available,

inter alia, in the book by Abramowitz & Stegun (1966).

Finally, while the radial polynomials are orthogonal (with

the appropriate norm), they are not orthonormal. This is easily

corrected by replacing the radial polynomials with the

normalized generalized radial Zernike polynomials, denoted

by R
p

l;n,

R
p

l;nðxÞ ¼ 21=2 2nþ l þ
p

2
þ 1

h i1=2

R
p
l;nðxÞ: ð21Þ

The parameter p is associated with the choice of inner product

and the dimensionality of the balls; in the case of a 3D ball, the

natural choice of p is p = 1, which yields the basis in (16) which

is orthonormal in the natural inner product on L2(B). We give

in Table 2 the explicit list of radial functions R
1

l;n that we use.

We recognize that our choice of basis functions for the

expansion is certainly not the only possible choice. We used

the Zernike polynomials (in the generalized form presented

here) to obtain an expansion of functions in a ball which do

not vanish at the boundaries. Our use of Zernike polynomials

also yields a basis that is closed under rotations. The graphical

representation of some components of the basis is shown in

Fig. 7.
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Table 2
Generalized and normalized radial Zernike polynomials.

R
1

0;0ðrÞ ¼ 31=2 R
1

0;1ðrÞ ¼ 71=2

�
5r2

2
�

3

2


 R
1

0;2ðrÞ ¼

ð11Þ1=2

�
63r4

8
�

35r2

4
þ

15

8



R

1

0;3ðrÞ ¼

ð15Þ1=2

�
429r6

16
�

693r4

16

þ
315r2

16
�

35

16



R

1

0;4ðrÞ ¼

ð19Þ1=2

�
12155r8

128
�

6435r6

32

þ
9009r4

64
�

1155r2

32
þ

315

128




R
1

1;0ðrÞ ¼ ð5
1=2
Þr R

1

1;1ðrÞ ¼
21r3

2
�

15r

2

R
1

1;2ðrÞ ¼

ð13Þ1=2

�
99r5

8
�

63r3

4
þ

35r

8



R

1

1;3ðrÞ ¼

ð17Þ1=2

�
715r7

16
�

1287r5

16

þ
693r3

16
�

105r

16



R

1

1;4ðrÞ ¼

ð21Þ1=2

�
20995r9

128
�

12155r7

32

þ
19305r5

64
�

3003r3

32
þ

1155r

128




R
1

2;0ðrÞ ¼ ð7
1=2
Þr2 R

1

2;1ðrÞ ¼ ð11Þ1=2

�
9r4

2
�

7r2

2


 R
1

2;2ðrÞ ¼

ð15Þ1=2

�
143r6

8
�

99r4

4
þ

63r2

8



R

1

2;3ðrÞ ¼

ð19Þ1=2

�
1105r8

16
�

2145r6

16

þ
1287r4

16
�

231r2

16



R

1

2;4ðrÞ ¼

ð23Þ1=2

�
33915r10

128
�

20995r8

32

þ
36465r6

64
�

6435r4

32
þ

3003r2

128




R
1

3;0ðrÞ ¼ 3r3 R
1

3;1ðrÞ ¼ ð13Þ1=2

�
11r5

2
�

9r3

2


 R
1

3;2ðrÞ ¼

ð17Þ1=2

�
195r7

8
�

143r5

4
þ

99r3

8



R

1

3;3ðrÞ ¼

ð21Þ1=2

�
1615r9

16
�

3315r7

16

þ
2145r5

16
�

429r3

16



R

1

3;4ðrÞ ¼

260015r11

128
�

169575r9

32

þ
314925r7

64
�

60775r5

32
þ

32175r3

128

R
1

4;0ðrÞ ¼ ð11Þ1=2r4 R
1

4;1ðrÞ ¼ ð15Þ1=2

�
13r6

2
�

11r4

2


 R
1

4;2ðrÞ ¼

ð19Þ1=2

�
255r8

8
�

195r6

4
þ

143r4

8



R

1

4;3ðrÞ ¼

ð23Þ1=2

�
2261r10

16
�

4845r8

16

þ
3315r6

16
�

715r4

16



R

1

4;4ðrÞ ¼

3ð31=2
Þ

�
76475r12

128
�

52003r10

32

þ
101745r8

64
�

20995r6

32
þ

12155r4

128




R
1

5;0ðrÞ ¼ ð13Þ1=2r5 R
1

5;1ðrÞ ¼ ð17Þ1=2

�
15r7

2
�

13r5

2


 R
1

5;2ðrÞ ¼

ð21Þ1=2

�
323r9

8
�

255r7

4
þ

195r5

8



R

1

5;3ðrÞ ¼

ð25Þ1=2

�
3059r11

16
�

6783r9

16

þ
4845r7

16
�

1105r5

16




R
1

5;4ðrÞ ¼

ð29Þ1=2

�
108675r13

128
�

76475r11

32

þ
156009r9

64
�

33915r7

32
þ

20995r5

128






APPENDIX B
Properties and relationships of this basis

B1. Properties of the polynomials involved – Zernike
polynomials

We note that slightly different definitions and normalization

are used in different sources; the most commonly used form of

Zernike polynomials is associated with 2D functions on the

unit disc, whereas we are interested in 3D functions on the unit

ball. The better-known traditional radial Zernike polynomials,

denoted here by ~RR
l

mðxÞ, are a special case of the generalized

radial Zernike polynomials R
p
n;lðxÞ,

~RR
m

l ðxÞ ¼ R0
m; ðl�mÞ=2ðxÞ; ð22Þ

with ~RR
m

l ðxÞ ¼ 0 if l � m is odd or if m > l. The definition of the

3D real-valued Zernike polynomial [equation (16)] is analo-

gous to the definition of the traditional 2D Zernike poly-

nomials Zm
l on the unit disc,

Z m
l ðr; �Þ ¼ ~RR

jmj

l ðrÞ
cosðm�Þ if m � 0,

sinðjmj�Þ if m< 0.

�
ð23Þ

Unfortunately, the common notation for the 2D and 3D cases

can be misleading: the parameter m here plays the role of the

parameter l in the analogous 3D case; the parameter m in the

3D case is related to the existence of both sine and cosine for

each m here, but does not otherwise have an immediate

counterpart here.

Some properties of these generalized Zernike polynomials,

including the higher-dimensional cases, are discussed in

further detail by Slepian (1964), Serkh (2015), Greengard &

Serkh (2018) and Lederman (2017).

The radial Zernike polynomials in equation (19) are

orthogonal with respect to the inner product,

f ðxÞ; gðxÞ
� �

¼

Z1

0

xpþ1f ðxÞ gðxÞ dx; ð24Þ

so that hR
p
l;n1
ðxÞ;R

p
l;n2
ðxÞi ¼ 0 if n1 6¼ n2. Note that they are not

necessarily orthogonal for different l, that is, hR
p
l1;n
ðxÞ;R

p
l2;n
ðxÞi

is not 0, in general. It follows that the Zernike polynomials

Zl, n, m (16) are orthogonal (across all different combinations

of n, l and m) on the natural inner product on the unit ball.

B2. A remark on numerical evaluation

As is the case with many orthogonal polynomials, the direct

computation using the explicit sum of monomials is generally

unstable and not recommended in numerical computation.

However, in this work, since we truncate the polynomials at

low n, the explicit form has been found experimentally to be

sufficiently stable. For additional details on computation see

Lederman (2017).

B3. Closure under rotations

We recall that we use basis functions defined in equation

(15), which are composed of a radial component and an

angular component. Furthermore, we truncate the expansion

in equation (2) such that if Zl, n, m(r) is in the expansion, then

Zl;n;m0 ðrÞ is also in the expansion for any �l � m, m0 � m. As is

well known, the rotation of the frame of reference of spherical

harmonics of a given spatial frequency l is a unitary operation

and closed rotations. If follows that the linear combination ofPN
n¼0

PL
l¼0

Pl
m¼�l �

x
l;n;mZl;n;mðrÞ is closed under rotations. In

other words, regardless of the frame of axis we choose for our

spherical harmonics, we can represent the same functions

using our choice of basis.

We recall that the deformation field gL(r) is a 3D vector

defined in equation (2) at any point r. If we rotate the axes x, y

and z we must rotate the vector gL(r) to obtain a vector in the

new coordinate system. As is well known,

AgLðA
�1rÞ ¼

XN

n¼0

XL

l¼0

Xl

m¼�l

A

�x
l;n;m

�y
l;n;m

�z
l;n;m

0
@

1
A ~ZZl;n;mðA

�1rÞ; ð25Þ

where A is the appropriate unitary rotation matrix.

It follows that the basis we have chosen is closed under

rotations; regardless of the orientation of the frame of refer-

ence we choose (but depending on the position of the centre),

we can represent the same fields. Furthermore, the transfor-

mation between frames of reference is unitary. We note that,

since the volume is defined on the grid, the problem definition

is not entirely closed under rotations, although the definition

of the field is closed under rotations.
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Figure 7
Representation of some components of the basis Zl, n, m regarding their
former angular and radial components Ym

l and R1
l;n. Since the spherical

harmonics Ym
l are only defined on the surface of the sphere, the

representation of the basis components Zl, n, m includes several spheres
whose radius is contained in the interval [0, 1] to have a better graphical
representation of the whole component. The real component would be
obtained by stacking all the spheres (whose radii belong to the interval
[0, 1]) concentrically. Each point in the three representations corresponds
to the value obtained when evaluating the corresponding functions on a
grid.



APPENDIX C
Complex-valued Zernike 3D basis

We may extend our basis function to a complex-valued

Zernike 3D basis. This second basis uses spherical harmonics,

which are well known basis functions for functions defined

over the surface of a unit sphere. For doing so, we should

define Z 0l;n;m [see equation (16)],

Z
0

l;n;mðrÞ ¼ R
1

l;nðrÞY
m
l ð�; �Þ; ð26Þ

where Ym
l ð�; �Þ are the standard spherical harmonics,

Ym
l ð�; �Þ ¼

2l þ 1

4	

ðl �mÞ!

ðl þmÞ!


 �1=2

Pm
l ðcos �Þ exp ðim�Þ: ð27Þ

It is well known that the spherical harmonics are a complete

orthonormal basis on the surface of the unit sphere such thatZ
�

Y
m1
l1
ðrÞ Y

m2
l2
ðrÞ

h i�
dr ¼

1 if l1 ¼ l2;m1 ¼ m2,

0 otherwise,

�
ð28Þ

where � is the surface of the unit sphere.

In this new basis the expansion would be expressed as

gðrÞ ¼
X1
n¼0

X1
l¼0

Xl

m¼�l

�l;n;m Z
0

l;n;mðrÞ: ð29Þ

The relationship between the expansion that uses the real-

valued basis functions and the expansion that uses the

complex-valued basis functions is

�l;n;m ¼

ð�1Þmþ1 i
21=2 �l;n;m � �l;n;�m

� �
if m< 0,

�l;n;0 if m ¼ 0,

ð�1Þm 1
2 �l;n;m þ �l;n;�m

� �
if m> 0,

8<
: ð30Þ

and for the basis functions

Zl;n;mðrÞ ¼

i
21=2 Z

0

l;n;mðrÞ � ð�1ÞmZ
0

l;n;�mðrÞ
� �

if m< 0,

Z
0

l;n;0ðrÞ if m ¼ 0,
1

21=2 Z
0

l;n;�mðrÞ þ ð�1ÞmZ
0

l;n;�mðrÞ
� �

if m> 0.

8><
>:

ð31Þ

Using the fact that the radial Zernike polynomials are a

complete radial orthonormal basis, and the fact that spherical

harmonics are a complete orthonomal basis on the the surface

of a sphere, one can show that the generalized Zernike poly-

nomials are a complete orthonormal basis of function on the

unit ball with respect to the natural L2 norm on the unit ball.

Suppose that r is a 3D coordinate of a point in real space

and R is a 3D frequency. Then the Fourier transform of the

complex-valued basis function would be

FZl;n;m

� �
ðRÞ ¼

Z
r2B

exp ð�ihR; riÞZl;n;mðrÞ dr

¼Ym
l

R

R

� 

1

ilð2	Þlþ1=2

ð�1ÞnJ2nþlþð1=2Þþ1ðRÞ

R
;

ð32Þ

where hr, Ri is the usual inner product in R3, R is the modulus

of R and J�(x) is the Bessel function of the first kind and order

�.
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