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Design and development of new materials are crucial to progress and innovation,

especially in areas concerned with generation, transmission and use of energy. In recent

years, new materials have become even more important, considering the global shift

towards renewable energies and sustainability in all areas of the energy sector and the

insatiable hunger for energy consumption (Ma et al., 2021; Kordas, 2017).

Commonly, new materials are proposed based on intuition, past experience and

studying empirical results. However, pushing the boundaries to explore as yet under-

studied areas of potential materials is not routinely done. This is due to a combination of

factors. On one hand, there is the difficulty of breaking out of established design stra-

tegies to identify novel materials, and on the other hand, there is the challenge of

accelerating existing imaging techniques and the software required to analyze the

acquired experimental data for these new materials. Taking a lead from the developments

in machine learning and artificial intelligence, the first issue has been addressed by using a

number of different algorithms to design novel materials as is reviewed in Liu et al.

(2021). To investigate newly designed materials and to verify that the produced sample is

consistent with theoretical assumptions, high-energy X-ray characterization methods

such as high-energy diffraction microscopy (HEDM) (Park et al., 2017) have become

routinely available over recent years. HEDM is based on three-dimensional X-ray

diffraction which provides a non-destructive way to analyze the internal grain structure of

materials (Poulsen et al., 2001; Poulsen, 2012). Use of diffraction and tomographic

imaging elucidates the inner granular structure of materials down to the micrometre

level. Nevertheless, the analysis of such data remains computationally expensive. Liu et

al. (2022) use deep learning to address the second shortcoming of new materials devel-

opment, the lack of fast data analysis.

While rotation imaging of a sample can be completed within minutes, for example at a

synchrotron facility, the analysis of the data is substantially slower. In particular, finding

Bragg peaks and determining their precise peak location, as well as reconstructing the

material grain structure based on this information, are very time consuming. A Voigt

profile in 2D or 3D needs to be fitted to determine the peak location, which is compu-

tationally expensive, hence, a pseudo-Voigt is usually used for approximation. After

identifying the center-of-mass of the Bragg peaks, the individual grains in the material are

reconstructed (Sharma et al., 2012a,b). Even so, depending on the nature of the material

under investigation and computational resources available, it can take up to several

weeks to determine the precise peak positions and reconstruct the grain structure. As

such, the slow processing and analysis of HEDM data in material sciences hampers a

routine trial-and-error assessment of newly designed materials and dramatically reduces

the speed of new discoveries.

In the current issue of IUCrJ, Liu et al. (2022) have developed a deep neural network

based system, BraggNN, to precisely locate Bragg peaks in HEDM images. In their

machine learning-based model (Fig. 1), Liu et al. (2022) build on the established and well

documented work around convolutional neural networks (Fukushima, 1980) in image

recognition. The aim for this system is to provide a near real-time data analysis and

feedback application – greatly reducing the time needed for data analysis compared with

standard methods (Abeykoon et al., 2019). Its sole purpose is to rapidly identify the

center-of-mass of a Bragg peak to sub-pixel precision. Fig. 2 compares three methods,

near-field HEDM, pseudo-Voigt far-field HEDM and BraggNN, and how well each
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performed in identifying the precise location of the Bragg

peaks, allowing for the reconstruction of the grains in the

sample material. As can be seen, applying the deep learning

algorithm BraggNN enables the correct reconstruction of all

but a few grains, usually at the edge of the sample, while at the

same time greatly reducing the analysis time. Compared with

optimized pseudo-Voigt fitting (Sharma et al., 2012a) a 57�

reduction in computation time was achieved on a CPU system

and a 350� reduction when GPUs were accessed. Even a good

graphics card GPU allowed for a 250� reduction in compu-

tational time for center-of-mass detection for the Bragg peaks

compared with standard pseudo-Voigt fitting. So, even groups

with limited computational resources can benefit greatly from

this new algorithm.

BraggNN is one step towards on-the-fly data analysis for the

field of material sciences. If the application described here
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Figure 2
Grain identification by three different algorithms. Comparison between near-field HEDM, pseudo-Voigt far-field HEDM and BraggNN for the test
material used by Liu et al. (2022). (a) Gives the grain position in the material for near-field HEDM (black squares), pseudo-Voigt far-field HEDM (red
circles) and BraggNN (blue triangles). (b)–(c) Represent the differences in the grain positions between near-field HEDM (b), pseudo-Voigt far-field
HEDM (c) and BraggNN as determined Liu et al. (2022).

Figure 1
Neural network architecture as published by Liu et al. (2022). The image shows the details for the convolutional part of the network used for feature
extraction and the fully connected part used for inference.



proves as efficient and robust as it was for the sample used for

development, then this new approach to HEDM data analysis

offers a significant step forward to assess new materials more

quickly and increase the turn-over rate from theoretical

conception to practical application.
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