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Cryogenic electron microscopy (cryo-EM) of single particles is a powerful technique for

the structural determination of biological macromolecules and significant advances in the

field have been made over the last two decades (Kühlbrandt, 2014; Nogales, 2016).

Improved electron detector technology (McMullan et al., 2016) and data analysis algo-

rithms (Scheres, 2012; Punjani et al., 2017; Grant et al., 2018; Tegunov & Cramer, 2019), as

well as specialized microscope software that streamlines data acquisition (Carragher et

al., 2000; Mastronarde, 2005) have increased the accessibility of cryo-EM as a method for

structure determination. Therefore, the number of protein and protein complex struc-

tures determined by single-particle cryo-EM is constantly increasing (see https://

www.rcsb.org/stats/growth/growth-em).

For cryo-EM, a protein solution is frozen as a thin layer of vitrified ice that is

embedded within a holey support film on an EM grid (Weissenberger et al., 2021).

Freezing of cryo-EM grids usually needs to be extensively optimized for ice layer

thickness, as well as protein particle concentration and integrity, by repeating cycles of

cryo-EM screening and altering sample preparation (Passmore & Russo, 2016; Noble et

al., 2018). Once the sample is optimized, a large number of randomly oriented particle

images are acquired, classified, aligned and eventually reconstructed to a volume

representing the coulomb potential density of the protein particle (Sigworth, 2016).

During cryo-EM grid screening and data acquisition, the microscope operator needs to

manually pick suitable regions (squares) based on a grid overview (atlas) and select

target holes with suitable ice thickness based on their appearance (Fig. 1). In many cases,

ice thickness has to be chosen carefully to avoid broken or preferentially oriented

particles (Noble et al., 2018; D’Imprima et al., 2019). Especially for the acquisition of large

datasets, manual square and hole selection can be very time-consuming and less

experienced operators may have difficulty targeting grid regions that yield high-quality

data (Li et al., 2022). Nowadays, data analysis is done ‘on-the-fly’ during acquisition

(Thompson et al., 2019), which gives valuable real-time information about data quality,

and the microscope operator can adjust target selection based on the outcome. However,

such trial-and-error strategies lead to the inefficient use of instruments that are in high

demand and are expensive to maintain. Automation of the targeting of squares and holes

during cryo-EM screening and data acquisition, therefore, has great potential to increase

the throughput as well as the success rate of cryo-EM experiments for researchers of all

experience levels.

In this issue of IUCrJ, Kim et al. (2023) present the software toolbox Ptolemy, which

uses machine learning to automate the task of selecting target regions in single-particle

cryo-EM screening and data collection. The algorithms within Ptolemy were pre-trained

using metadata from annotated human operator microscope sessions. Ptolemy first

addresses the automatic selection and ranking of suitable squares for data acquisition. To

do so, Ptolemy uses a convolutional neural network [CNN, reviewed in Dhillon & Verma

(2020)] classifier to predict the ‘collectability’ of squares on an atlas and can reproduce

human expert operator selections on samples unknown to the neural network. Ptolemy

then automatically finds holes on these squares using a neural network with U-Net

(Ronneberger et al., 2015) architecture and 2D lattice restraints for the hole positions.

The U-Net not only reproduces human operator selections with high precision, but the

probabilities the U-Net assigns for a hole also appear to be suitable measures for the

collectability of a hole. Altogether, Ptolemy provides an all-in-one solution for reliable

and accurate automatic targeting of squares and holes on single-particle cryo-EM grids.

This is a big step towards the full automation of cryo-EM screening and data collectionPublished under a CC BY 4.0 licence
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and is readily implemented in the microscope operation

software Leginon [for details of the implementation, see

Cheng et al. (2023), also published in this issue of IUCrJ].

While Ptolemy uses specifically tailored and tuned CNN

and U-Net machine-learning approaches to achieve high

accuracy for recognizing and ranking squares and holes, other

software have approached the problem of automatic data

acquisition in slightly different ways. A conceptually similar

approach was taken by SmartScope (Bouvette et al., 2022),

which utilized dedicated square and hole finders to select

targets for the operator. In comparison to Ptolemy, the

SmartScope square and hole recognition procedures are based

on an R-CNN with ResNet50 architecture and a YOLOv5

model with CSPNet backbone for square and hole recogni-

tion, respectively. It remains to be seen which deep-learning

implementation yields better performance in real-life cryo-

EM imaging sessions. Notably, SmartScope implemented

Ptolemy as an alternative to their own square and hole

recognition algorithms (Bouvette & Viverette, 2022), so direct

comparison will be possible.

A conceptually different approach is taken by cryoRL (Li et

al., 2022). Instead of attempting to generate a complete

selection of suitable squares and holes prior to cryo-EM

imaging, cryoRL treats the selection of imaging targets as a

path-planning problem where the algorithm is rewarded when

imaging good targets. Currently, a target is considered good

when it yields a cryo-EM image with high information content,

which inversely correlates with ice layer thickness. However,

the thinnest ice layer possible might not be a suitable target

for acquiring data of sensitive or very large protein complexes

(D’Imprima et al., 2019; Noble et al., 2018). Instead, other

results from ‘on-the-fly’ data analysis, like complex integrity,

particle number per image or the orientation distribution of

particle views in the 3D reconstructions, could represent

suitable quality targets.

It seems likely that combining the approaches taken by

Ptolemy, SmartScope and cryoRL will lead to very powerful

automatic cryo-EM data acquisition tools. Such tools would

first generate highly accurate initial collectability rankings of

squares and holes, whereas the process of data collection

would be guided by sample-specific ‘on-the-fly’ decision-

making that is based on data analysis results.
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Figure 1
Required target selection steps during single-particle cryo-EM data
acquisition. (a) Low magnification overview (Atlas) of a cryo-EM grid.
Human operator choices for squares that are suitable for imaging are
marked with green boxes. Yellow and red boxes represent operator
choices of squares with thick ice layers or broken support film,
respectively. (b) Square with examples of operator choices of holes that
are suitable for cryo-EM imaging marked with green circles. Yellow and
red circles mark operator choices of holes that have suboptimal ice
thickness or are covered by ice contamination, respectively. (c) High-
magnification image of a hole with a thin ice layer. Areas for cryo-EM
data acquisition are marked with blue boxes. (d) Cryo-EM image
acquired under optimal conditions and in thin ice showing single particles
of good density.
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