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Over the past decade, cryo-electron microscopy (cryoEM) has emerged as an

important method for determining near-native, near-atomic resolution 3D

structures of biological macromolecules. To meet the increasing demand for

cryoEM, automated methods that improve throughput and efficiency of

microscope operation are needed. Currently, the targeting algorithms provided

by most data-collection software require time-consuming manual tuning of

parameters for each grid, and, in some cases, operators must select targets

completely manually. However, the development of fully automated targeting

algorithms is non-trivial, because images often have low signal-to-noise ratios

and optimal targeting strategies depend on a range of experimental parameters

and macromolecule behaviors that vary between projects and collection

sessions. To address this, Ptolemy provides a pipeline to automate low- and

medium-magnification targeting using a suite of purpose-built computer vision

and machine-learning algorithms, including mixture models, convolutional

neural networks and U-Nets. Learned models in this pipeline are trained on a

large set of images from real-world cryoEM data-collection sessions, labeled

with locations selected by human operators. These models accurately detect and

classify regions of interest in low- and medium-magnification images, and

generalize to unseen sessions, as well as to images collected on different

microscopes at another facility. This open-source, modular pipeline can be

integrated with existing microscope control software to enable automation of

cryoEM data collection and can serve as a foundation for future cryoEM

automation software.

1. Introduction

Cryo-electron microscopy (cryoEM) is a rapidly growing

method for determining the structure of proteins in near-

native conformations at high resolution (Bai et al., 2015).

CryoEM structure determination typically starts with the

application of a solution containing purified protein to an EM

grid, a holey substrate supported by a thin metal mesh (Cheng

et al., 2015). The sample droplet is then reduced to a thin liquid

film and the grid is plunged into a cryogen, converting the thin

film to a layer of vitrified ice (Egelman, 2016). The grid is then

transferred to a transmission electron microscope (TEM) to

collect high-magnification (high-mag) micrographs of the

particles suspended in vitreous ice within the holes. Vitreous

ice containing particles is found in windows in the grid termed

‘squares’ [Fig. 1(a)]. Within these squares are circular ‘holes’

[Fig. 1(b)] and particle images are obtained by taking high-

resolution micrographs of the ice within these holes [Fig. 1(c)].

Each micrograph will typically provide numerous individual

2D projections of the protein particles, and these images can

be processed to produce a three-dimensional map of the

protein of interest (Wu & Lander, 2020). Solving a protein

structure to high resolution usually requires tens to manyPublished under a CC BY 4.0 licence
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hundreds of thousands of individual randomly oriented

particle projection images which often requires collecting

many thousands of high-quality high-resolution micrographs.

Because EM grid preparation is not a well controlled process,

the locations where highest-magnification data are to be

collected must be identified from a series of successively

increasing magnification images (Chua et al., 2022).

The process of collecting high-magnification data begins by

taking low-magnification images of the grid [Fig. 2(a)], typi-

cally acquired at a pixel size of �200–500 nm pixel�1. Squares

are selected from these images, and medium-magnification

images [Fig. 2(b)] with a pixel size of �10–100 nm pixel�1 are

taken within these squares. Holes and subsequent high-

magnification collection locations are identified from the

medium-magnification images. Not all squares or holes will be

suitable for collection; the goal is to identify squares and holes

in the grid with vitreous ice of suitable quality, ice that is the

right thickness (typically slightly thicker than the largest

diameter of the particle) and that contains a reasonable

number of particles, ideally oriented in a range of angles

(Noble et al., 2018). Ultimately, the success of a data collection

is determined by the quality of the resulting 3D reconstruc-

tion, which is a function of the number of particles found, the

range of orientation angles present among the 2D projections,

and the maximum resolution and signal-to-noise ratio (SNR)

of the micrographs.

Automated data-collection software such as Leginon

(Carragher et al., 2000; Suloway et al., 2005), SerialEM

(Mastronarde, 2005) or EPU (made by ThermoFisher Scien-

tific) provide several built-in tools for identifying potentially

promising squares and holes. These tools include template-,

correlation- or feature clustering-based image analysis algo-

rithms and automated selection capabilities. However, none of

these tools generalize out-of-the-box across the wide variety

of grids that are encountered in practice. They can struggle to

both detect holes and squares under contaminated or low-

SNR conditions and to reliably prioritize good collection

locations across different macromolecule specimens. This

means that microscope operators must often manually identify

squares in low-magnification images and tune parameters used

for automated targeting of holes in medium-magnification

images (https://em-learning.com). Additionally, existing hole

targeting algorithms fail on a non-trivial percentage of cases,

especially on noisy, contaminated or carbon grids with

minimal contrast variation between the holes and substrate.

Operators are then required to manually target holes in

medium-magnification images which is a labor-intensive task.

The human operator time required for targeting limits the

efficiency of collection on expensive and over-subscribed cryo-

transmission electron microscopes (cryo-TEMs). Additionally,

with increasing detector speeds, automated targeting would
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Figure 2
Example low- and medium-magnification images: carbon grid (left) and
gold grid (right). First, low-magnification images of the grid, where
squares are visible, are acquired at a pixel size of �200–500 nm pixel�1.
Subsequently, medium-magnification images are acquired at a pixel size
of �10–100 nm pixel�1 by imaging the regions inside the squares.

Figure 1
Example square, hole and highest-magnification exposure. Windows in the cryoEM grid containing ice are known as ‘squares’. Within squares are
circular ‘holes’. Highest-magnification exposures are taken within holes. Ideal highest-magnification exposures contain particles (as shown) and have
thin ice.



allow for better utilization of microscope time that is other-

wise wasted waiting for human input. Thus, fully automated

targeting methods are needed to not only reduce the burden

on human operators, but also to increase access and

throughput for the entire scientific research community.

However, human-free automation of cryoEM data collec-

tion is challenging. Many types of EM grids exist, each with

holes and squares of different shapes, sizes and spacings. The

grids themselves are made from different materials (e.g.

carbon or gold), which causes the resulting low- and medium-

magnification images to have very different properties (Fig. S1

of the supporting information). Carbon grids, for example,

have significantly less contrast between collection regions of

interest (ROIs) in holes and background substrate at medium

magnification compared with gold grids (Fig. S1). This is

further complicated by variable sample preparation conditions

leading to variable ice thickness and empty regions of the grid,

along with deformations, contamination and lesions, all of

which introduce visual artifacts (Fig. S1). In addition, cryoEM

images have low SNR, especially at high magnification, and

microscope parameters such as electron beam dose (often

between 40 and 80 e� Å�2) can significantly alter image

properties (Cheng et al., 2015). Furthermore, images at each

magnification level may contain many collection ROIs or none

at all (Lyumkis, 2019). Finally, even if good candidate collec-

tion ROIs are found, it is challenging to find ice containing

many particles with enough diversity of projection orienta-

tions to produce high-quality 3D reconstructions.

In recent years, machine-learning techniques have trans-

formed single-particle cryoEM data analysis. Tools such as

MicAssess (Li et al., 2020) and MicrographCleaner (Sanchez-

Garcia et al., 2020) allow for efficient post-processing of high-

resolution micrographs collected, whereas others such as

Topaz (Bepler et al., 2019), CASSPER (George et al., 2021),

Warp (Tegunov & Cramer, 2019) and crYOLO (Wagner et al.,

2019) use deep learning to automate particle picking and

image denoising. Machine-learning-based 3D reconstruction

algorithms have also emerged, including cryoSPARC (Punjani

et al., 2017) and CryoDRGN (Zhong et al., 2021). These

methods have significantly improved our ability to analyze

high-resolution cryoEM data quickly and thoroughly after

collection. However, comparatively little attention has been

given to accelerating or automating data collection itself.

Yokoyama et al. (2020) recently introduced a machine-

learning method for detection and classification of ROIs in

medium-magnification images, but it requires retraining a

model with an annotated medium-magnification image dataset

for each data-collection session.

To address these challenges in cryoEM data collection, we

present Ptolemy, a pipeline that uses computer vision algo-

rithms and pre-trained convolutional neural networks (CNNs)

to navigate cryoEM grids at low and medium magnification

and determine high-quality targeting locations without human

input. We train the Ptolemy models on large datasets of low-

and medium-magnification images with corresponding

collection locations selected by operators from 55 different

data-collection sessions. These sessions include carbon and

gold holey grids and feature a variety of proteins, grid

conditions, magnifications and electron beam dosages. Rather

than attempting to learn separate models for different grid

types or for different particles, we develop a single unified

pipeline to localize and classify ROIs to approximate user

selection locations in low- and medium-magnification cryoEM

images (Fig. 3).

We demonstrate that Ptolemy can effectively detect and

classify squares and holes in low- and medium-magnification

images. We evaluate these predictions with comparison

against operator-selected locations, while noting that opera-

tors target incompletely. We validate the models by holding-

out entire data-collection sessions to confirm that the models

generalize well to unseen sessions. Additionally, we compare

our medium-magnification localization algorithm to an

existing method (Yokoyama et al., 2020) that performs

medium-magnification localization (in that study, this is

referred to as low-magnification localization) and show that

our method yields superior generalization performance.

Finally, a separate companion paper has been published:

‘Fully automated multi-grid CryoEM screening using Smart

Leginon’, where the utility of Ptolemy in real-world collection

cases is demonstrated and analyzed (Cheng et al., 2022).

The Ptolemy source code is freely available for academic

use at (https://github.com/SMLC-NYSBC/ptolemy) under CC

BY-NC 4.0 license. Ptolemy is designed to be modular and to

integrate directly with existing microscope control software.

More information on Ptolemy can be found in Appendix A.

2. Methods

To automate microscope targeting for single-particle cryoEM

data collection, we divide the problem into four sub-problems:

(1) low-magnification square localization, (2) low-magnifica-
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Figure 3
Pipeline overview. High-magnification images are taken from holes in
medium-magnification images, which come from squares in low-
magnification images. (a) Ptolemy detects, crops and then classifies
squares in low-magnification images, which have a pixel size of
approximately 200–500 nm pixel�1. (b) Next, Ptolemy detects, crops
and then classifies holes in subsequent medium-magnification images,
which have a pixel size of approximately 10–100 nm pixel�1.



tion square classification, (3) medium-magnification hole

localization and (4) medium-magnification hole classification.

For low- and medium-magnification localization, the goal is

to identify all possible collection ROIs: squares in low

magnification and holes in medium magnification. The

cropped ROIs are then fed into separate classification models

at each level that determine whether these ROIs should be

collected. Low-magnification localization is solved by pixel-

wise image segmentation using a mixture model, whereas

medium-magnification localization is solved using a U-Net

with a novel lattice-fitting algorithm (Gupta & Sortrakul, 1998;

Ronneberger et al., 2015). Classification at low magnification is

achieved using a feedforward CNN whereas medium-magni-

fication classification uses the U-Net localization probabilities

because they outperformed a separate downstream classifier

in our experiments. Training and hyperparameter information

for all trained models can be found in Appendix B.

2.1. Datasets and splits

The data used to train and validate all models and algo-

rithms come from 55 cryoEM data-collection sessions

performed at the Simons Electron Microscopy Center

(SEMC), a center within the New York Structural Biology

Center (NYSBC), from 2018 to 2021. The sessions include gold

and carbon grids, featuring regularly spaced and lacey holes,

with tilted and untilted collection. Lacey-hole grids and tilted

collection images were only used for low-magnification

(square) localization and classification. Positive labels repre-

sent targeted selection locations used in these sessions. All

labeled squares are manual operator selections on the low-

magnification images. On the other hand, labeled holes on the

medium-magnification images are generally automated selec-

tions optimized by operators using template-correlation-based

hole localization and ice-thickness-based hole classification. A

minority of labeled holes were also manually selected by

operators. Data-collection sessions generally involve different

samples, preparation methods and microscope settings

(Weissenberger et al., 2021). This results in considerable

variation between sessions in the appearance of collection

locations especially at medium magnification, as well as in the

characteristics that make for good collection locations (Fig.

S1). Therefore, to ensure that our models can generalize to

unseen data-collection sessions with different experimental

parameters, we primarily use session splits, where a set of

sessions (termed ‘held-out sessions’) are withheld from the

dataset used to train the models (training set). All perfor-

mance metrics are reported from results on these held-out

sessions.

2.2. Square localization

The goal of square localization is to locate all squares

(windows in the grid that may contain imageable ice) in low-

magnification grid images. The input is a low-magnification

image, and the output is a set of rectangular boxes tightly

bounding the squares (Fig. 4). We find these boxes using a

mixture model-based image segmentation algorithm followed

by a geometric algorithm for identifying the aligned minimum

bounding rectangles surrounding each square. Pixels in the

image are first separated into two classes based on pixel

intensity using a Poisson mixture model [Fig. 4(b)] (Forbes,

2018). Mixture model separation works because the distribu-

tion of pixels in the image can be accurately decomposed into

low-intensity pixels coming from the thick grid bars in the

surrounding background and higher-intensity pixels coming

from the much thinner squares (Fig. S2). This approach avoids

the need for a user to set a specific intensity threshold for

identifying squares, which changes from session to session.

Next, we apply a flood filling algorithm to identify discrete

regions from the segmented square pixels and then find a

minimum bounding convex polygon to bound the pixels in

each square [Fig. 4(c)]. Finally, we take advantage of the fact

that the squares are axis-aligned to find the angle �, for each

low-magnification image where the minimum bounding

rectangles aligned with � bounding each minimum bounding

convex polygon have the smallest total area. Formally, we seek

argmin�
PN

i Ai; � for N polygons, where Ai, � is the area of the

minimum bounding rectangle around the ith polygon, aligned

at angle �. We find this angle � using bounded optimization

(Brent, 1973), and the resulting minimum bounding rectangles

are used to obtain aligned crops of the squares in the low-

magnification image [Fig. 4(d)]. This algorithm is applied to

1304 low-magnification images, resulting in 41 000 crops of

squares.
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Figure 4
Example of the square localization procedure. (a) Original input image. (b) Mask recovered after segmenting pixels. (c) Finding convex polygons around
the separate regions in the mask. (d) Aligned minimum bounding rectangles around the polygons, used for crops of the images.



2.3. Hole localization

The goal of hole localization is to detect all hole locations in

medium-magnification images. However, unlike in square

localization, a mixture model-based segmentation approach

does not work, because the difference in pixel intensities

between the holes and the surrounding background is negli-

gible, particularly for carbon grids. Some medium-magnifica-

tion images even have ‘inverted’ holes where the pixel

intensity within the hole is lower than the surrounding region

(Fig. 5).

Here, our choice of model is informed by the available data.

Although we do not have a dataset of bounding boxes around

holes, we do have a large dataset of 28k carbon and gold holey

grid medium-magnification images with locations at or near

the center of holes where operators collected high-magnifi-

cation micrographs. Therefore, we seek to learn the hole

centers in each pixel-normalized medium-magnification input

image by training a U-Net model to output a map with the

same dimensions as the input containing 1 at the locations

where the operator collected and 0 everywhere else (Figs. 5

and 6). We choose a U-Net architecture, because the neurons

in the bottleneck layer have large receptive fields, allowing

them to capture needed context, while the output layers use

the information propagated from the bottleneck, as well as

high-resolution features, to find the hole centers. The pixels in

the medium-magnification image are normalized to control for

variance in electron dose.

Additionally, holes are known to lie on a regular square

lattice, so we post-process the output of the U-Net to find the

best fitting lattice. Given the lattice points in the image, we

then crop around those points to extract hole images (Fig. 7).

This helps to extend the predicted map from the U-Net to

capture all holes in the image, not just the holes that the

operators picked, while simultaneously cleaning erroneously

detected regions. We find the lattice from the U-Net output

map by searching pairs of candidate anchor points and

selecting the pair for which the lattice produced by these

anchor points has the smallest pixelwise error against the

output map. We find

argmina; b

XN

i

�1 oi � lið Þ 1� lið Þ þ �2 li � oið Þ lið Þ; oi 2 O; li 2 La; b;

where O is the output of the U-Net, N is the number of pixels

in the image, La, b is the lattice generated by anchor points a

and b, and �1 and �2 allow us to independently weight the cost

for false positives and false negatives. Candidate anchor point

pairs are found by taking centroids of high-probability regions

in the U-Net output map, and for each centroid, pairing with
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Figure 5
Example medium-magnification images. Human operator-selected locations are marked in yellow. The input to the U-Net is the image without any
marking for the selection locations, and the output is a map with a 1 at each pixel where a selection was made and 0 elsewhere. In rare cases (right), holes
can be darker than the surrounding region.

Figure 6
Example hole-center detection without lattice fitting. For some cases, taking the centroids of the high-probability regions predicted by the U-Net is
sufficient. (a) Input image. (b) U-Net output. (c) Centroids from high-probability regions in U-Net output (red).



the K closest to other centroids. K trades performance for run

time. Here we use K = 6.

Imposition of a regular square lattice over the U-Net output

causes Ptolemy to be unable to handle tilted data collection

because the tilt causes the hole centers to lie on a parallelo-

gram-shaped (oblique) lattice rather than a regular square

lattice. Support for tilted data collection will be added to a

near-future update of Ptolemy.

To improve training, we apply Gaussian blur to the model

output before computing the loss (Shorten & Khoshgoftaar,

2019). This helps, because the exact location the operator

selects in a hole is noisy: the selection location that is near the

center of the hole but there is often deviation from the exact

center pixel, and the direction and magnitude of displacement

from the center varies between medium-magnification images.

Therefore, this smoothing allows the model to learn the

centers of these holes, rather than having to learn the displa-

cement from the center for every hole image. We also perform

gradient descent on the sigma parameter of the Gaussian blur

simultaneously with training the U-Net weights to allow the

model to learn the optimal level of smoothing over training

time (Fig. S3).

To improve generalization, we apply both random 90�

rotation augmentation to the images during training as well as

random inversion of the normalized pixels. Inversion of pixels

is helpful, because for some sessions, particularly with carbon

grids, the pixels in the holes are darker than the background

pixels. Although pixel inversion augmentation allows for

better carbon grid hole targeting, it does not affect gold grid

images which do not suffer from contrast inversions.

2.4. Square and hole classification models

In square and hole classification, we aim to obtain rankings

of squares and holes in images to prioritize the ordering with

which they are targeted. Although there are many possible

parameters that may be important for determining whether a

square or hole contains high-quality particles, experienced

operators are able to consistently find good locations,

suggesting that at least some features of good target locations

are identifiable in low- and medium-magnification images.

Therefore, for each magnification we train a separate CNN to

classify squares or holes as collected or not collected by

operators. The input to our model is a cropped image of a

square or hole, extracted using the square-localization method

or hole-localization method above, and the output is a scalar

probability.

2.4.1. Square classification. We train our square classifica-

tion model on a dataset containing 41k square crops, of which

11k were squares collected. Square images are normalized

based on the intensity of all pixels within the bounding boxes

for the squares in each low-magnification image to control for

electron dose. We also include random forest (RF) and logistic

regression (LR) models trained on summary statistics of the

pixels extracted from the square image crops. This is because

the operators typically use characteristics like the size/area

and brightness of the squares to make their selections.

Therefore, we include baselines which reflect this knowledge.

The summary statistics used as features are mean intensity,

maximum intensity, minimum intensity, variance in intensity,

kurtosis, skew and crop area.
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Figure 7
Example hole-center detection on a difficult image. On this low-contrast image, lattice fitting extends to missed holes while removing erroneous
detections. (a) Input image. (b) U-Net output. (c) Centroids from high-probability regions in U-Net output (red). Many locations outside holes are
detected incorrectly, and one hole (orange) is missed. (d) Running the optimal-lattice-finding algorithm results in finding lattice anchor points (cyan). (e)
The lattice generated by these anchor points (cyan) results in coverage of all holes and cleans the incorrect detections.



2.4.2. Hole classification. We compare the summed pixel-

wise probabilities output by our localization U-net within each

hole against two CNNs trained on a dataset containing 571k

hole crops, of which 410k were targeted by operators. The

dimensions of the holes and, therefore, the dimensions of the

resulting crops vary widely between data-collection sessions.

However, we do not want the model to use the size of the

input image to decide if a hole is good or bad. We hypothesize

that the location of image features within each hole (e.g.

crystalline ice) is not important for classification. Rather, the

presence, absence or proportion of these features is the main

concern. Therefore, we compare between a standard CNN

model that pads all input images to the same dimension and

one which averages over non-channel dimensions of the final

map before the fully connected layer, thereby treating the

image as a bag of regions. Both CNNs normalize images based

on pixels in the crop to control for difference in electron dose.

Aside from the difference in padding versus average pooling,

all other hyperparameters of the two models are identical.

3. Results and discussion

Ptolemy can accurately locate and rank collection locations

within low- and medium-magnification images, with each stage

producing good performance metrics, and results that appear

reasonable on visual inspection. Furthermore, Ptolemy

generalizes well to new sessions without user intervention or

retraining on a session-by-session basis.

3.1. Ptolemy localization of squares in low-magnification
images

The square localization algorithm successfully detects

almost all operator-selected locations, as well as squares that

were not collected, with few errors. Our algorithm successfully

detects 98.8% of operator-selected locations (Table 1). An

additional 30k unselected squares are detected, and visual

inspection confirms that these are real squares that were not

selected by the operator (Fig. 8).

3.2. Square classifier learns to rank squares effectively

For square classification, we explored three different

models: an LR and RF on summary statistics (details in

Appendix C) extracted from square images, and a CNN on the

images themselves. Both the RF and the CNN perform simi-

larly on this task.

3.2.1. Classifying squares for new sessions without prior
knowledge. Square ranking without any information about the

sample is a challenging task, but our models perform well and

are significantly better than random guessing (Table 2). The

task of ranking squares given the session split is particularly

difficult, because the characteristics that make up good

squares can vary from session to session. For optimum

performance in this setting, a model would need to extract

enough information from the square images to identify the

optimal sample conditions and then predict the quality of the

square accordingly. Although this is probably not possible for

a classifier such as ours, which makes predictions for each

square independently, we hypothesize that there are, at least,

characteristics of squares that are always bad and maybe

squares that are always good that can still provide useful
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Table 1
Statistics from running the square localization procedure on low-
magnification images.

No. of operator-selected locations 10993
No. of operator-selected locations detected 10857
Total no. of locations detected 41301

Figure 8
Example square localizations on low-magnification images. Ptolemy successfully segments bounding boxes around squares in the grid without human
intervention.

Table 2
Performance metrics of different ML models on the square classification
task measured on held-out sessions and held-out square images.

We compare the performance of LR, an RF and a CNN based on two metrics.
ROC AUC: area under receiver-operating characteristic curve.

Session split Random split

Model ROC AUC Average precision ROC AUC Average precision

LR 0.539 0.258 0.499 0.259
RF–5 feature 0.603 0.344 0.867 0.734
CNN 0.608 0.331 0.733 0.489



guidance. The difficulty of this task is evident in comparison

with the performance of the models on random splits of the

data, where without the difficulty of generalizing to unseen

sessions, the RF and CNN models perform significantly better

(Table 2). Nonetheless, Ptolemy ranks squares significantly

better than random guessing even in the session split setting.

On visual inspection of predictions on held-out sessions, we

find that the CNN makes reasonable predictions, with

unbroken and larger squares prioritized over smaller, broken

squares (Fig. 9). Additional example images with both model

scores and user selection locations can be found in Fig. S4.

3.2.2. Simple extracted features exhibit good performance
on square classification. The RF performing comparably to

the CNN on an image classification task is a surprising result

for which there are several possible explanations. First,

examining the feature importance of the extracted features for

the RF models, using feature permutation, shows that area and

mean pixel intensity are the most important features for

predicting whether a square was selected (Fig. 10). This result

aligns with our expectations, as operators usually use area and

brightness of squares as primary criteria for selection. We

hypothesize that the importance of area as a feature may

partly explain the good performance of the RF relative to the

CNN, as area may be a feature that is difficult for a CNN to

learn. Additionally, since our dataset is not exhaustively

labeled, a more complex CNN model may be learning

redundant, irrelevant features that do not generalize well from

training set to test set. Nevertheless, the CNN does not require

a burdensome computational cost (it runs very quickly on

commodity CPU hardware), and likely has a higher potential

performance if a larger and cleaner dataset is curated. We

therefore use it as the default model for Ptolemy.

3.3. Ptolemy retrieves more holes with fewer false positives

Next, we examine the performance of our methods for hole

localization on medium-magnification images (Table 3). Since

we do not have bounding box annotations for our dataset, we

define a true positive as a model selection location that maps

one-to-one with an operator-collected hole, a false negative as

an operator-collected hole that contains zero or more than one

(2+) model selection locations, and a false positive as a model

selection location that is not contained in any operator-

collected holes, or is only contained in operator-collected

holes that also contain other model selection locations. For

more information on how we defined ‘model selection loca-

tions’ for each model in Table 3, see Appendix D.

We find our U-Net, without lattice fitting, can learn

operator-selected locations exceptionally well, and can iden-

tify 98.4% of all operator-selected holes with 70.3% precision

(Table 3, row 2). We compare this method with the Yolov5-

based model trained by Yokoyama et al. (2020) on the same

dataset and find that the U-Net is superior in both recall and

precision (Redmon & Farhadi, 2018).
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Figure 10
Feature importance for square classification. Results obtained for feature
importance of square image summary statistics to predict whether a
square is selected using an RF model. Area and mean pixel intensity are
the most important features.

Figure 9
Example square classifications in low-magnification images. The model successfully prioritizes larger, brighter squares without cracks or contamination.
Model-predicted probabilities for squares are in red. Colors from high to low score: dark blue, light blue, white, yellow, orange, red.



3.3.1. Lattice fitting reduces false negative rate. With the

addition of lattice fitting (Table 3, row 3), we reduce the false

negative rate by a factor of 2, from 1.6% to 0.7%. Although

the precision is also reduced with lattice fitting, we are

primarily concerned with improving the false negative rate (1-

recall) as our aim is to recover all the holes at this stage. In the

manual inspection, we find that the U-Net with lattice fitting

correctly locates holes across diverse images (Fig. 11). Because

many holes are not selected by the operators, we expect that,

for the goal of detecting all holes (selected and not selected),

lattice fitting is helpful. Additionally, only keeping lattice tiles

based on a probability taken from the U-Net output (Table 3,

row 4) significantly improves precision at the cost of recall.

3.3.2. U-Net + Lattice Fitting generalizes hole localization
to an external dataset. To further test generalization, we

predict holes in the dataset by Yokoyama et al. (2020) using

our U-Net + Lattice Fitting model. Yokoyama et al. (2020)

reported 95–97% recall of their own Yolov5 based model on

these data. We find that the U-Net + Lattice Fitting model

generalizes well, achieving 0.685 precision, 0.950 recall and

0.796 F1 score. The images in this dataset were collected from

an external facility, using a different microscope (Ptolemy data

were collected primarily on a TFS Krios and a Glacios; this

dataset was collected on a JEM-Z300CF) and with different

magnification compared with the images in our training

dataset (Yokoyama et al., 2020), demonstrating that Ptolemy

generalizes effectively.

3.4. Ptolemy successfully classifies holes in medium-
magnification images after localization

Next, we examine the performance of our hole classification

models (Table 4). Both the padded model and the average-

pool model perform well on the hole classification task. In

example images, we see that the model can effectively sepa-

rate good, unblemished holes from those with blemishes and

artifacts on both gold and carbon grids (Fig. 12).

3.4.1. Average-pooling improves hole classification. The

average-pool model slightly outperforms the padded model,

which supports our hypothesis that the location in the image

where features occur is not as important in determining hole

quality, and that given the wide variance of hole sizes, a model

that uses average pooling is preferable to padding all crops to

the same size.

3.4.2. Classifying holes using the localization U-Net
output. We compare the dedicated CNN classifiers against

the sum of the hole localization U-Net probabilities within a

crop to determine the probability of picking a hole (Table 4,

row 3). Surprisingly, the U-Net score outperforms the dedi-

cated CNN classifiers in accuracy and ROC AUC. This is

probably because the U-Net uses the context around the hole

to help predict where the hole was collected from. The U-Net

is deep to allow large holes to fit entirely within the receptive

field of the bottleneck-layer neurons. This means that, for
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Table 3
Performance metrics of different methods on held-out sessions for hole
localization from medium-magnification images.

Reported metrics are aggregated by session and averaged. Definitions of true
positive, false positive and false negative used for computing precision, recall,
and F1 can be found in Section 3.3 and Appendix D.

Model Precision Recall F1

Yolov5 (from Yokoyama et al., 2020) 0.395 0.669 0.459
U-Net 0.703 0.984 0.815
U-Net + Lattice Fitting 0.549 0.993 0.702
U-Net + Lattice Fitting + Probability Threshold 0.802 0.891 0.837

Table 4
Performance of hole classification CNNs on hold-out sessions.

ROC AUC: area under receiver operating characteristic curve.

Model Accuracy ROC AUC Average precision

CNN (padding) 0.748 0.742 0.808
CNN (average pool) 0.758 0.796 0.878
U-Net + Probability Threshold 0.846 0.868 0.867

Figure 11
Examples of hole localization using the U-Net + Lattice Fitting. Ptolemy
successfully detects all holes across a wide range of hole sizes, brightness
and contrast conditions, from easily visible gold grids (bottom left) to
very low contrast carbon grids that are difficult to see even for humans
(top right).



grids with smaller holes, the U-Net will have information

about the location of the hole on the grid and the character-

istics of nearby holes that our classifiers, which use only hole

crops, lack.

3.5. Training and evaluating human operator selections

One of the major challenges in developing Ptolemy is the

lack of fully annotated data for training and assessment of

model performance. We rely on training data composed of

incomplete expert operator selections. These selections only

represent an expert guess at the best collection locations and

our models are trained to recapitulate these operator selection

decisions as a surrogate for selecting high-quality data. Ideally,

we would train and evaluate our models based on the true end

goal of cryoEM data collection, particle quantity and quality,

as determined by the resulting 3D structures, but these data

are currently unavailable.

Furthermore, the operators do not exhaustively select all

possible viable collection locations. Since our model evalua-

tion considers locations that the operator did not select as

ground-truth negatives, the reported precision values are

likely to underestimate the true precision of Ptolemy models.

This lack of exhaustive selection also creates biases in the

training data, especially on the hole and square classification

tasks, which may be learned by our models. For example, due

to the microscope setup at the SEMC/NYSBC, holes near the

edge of medium-magnification images are often not collected

even though they may be viable collection locations.

3.6. Future work

A large fraction (the bulk majority at NYSBC) of cryoEM

data-collection experiments involve gold or carbon holey grids

generated via blotting and collected without tilting. Devel-

opment, training and validation of Ptolemy were carried out

with the goal of providing a system for automated collection

on these grids. However, this leaves a long tail of less used but

significant grid types and preparation methods for which

future work is required. These include lacy grids, grids

generated via spray or spotting methods, and tilted collection.

Furthermore, Ptolemy currently lacks the ability to update its

predictions dynamically to adjust to a given collection session.

Ptolemy is designed to allow for modular improvement over

time, so future updates of Ptolemy can build on the current set

of algorithms to cover these cases as well. Tilted images can be

corrected with basic image processing, as the angle of the tilt

will be known in advance, and then the un-tilted images can be

processed as normal. Grids generated by spray or spotting

methods may need new purpose-built algorithms, but they

may also be effectively handled by an on-the-fly learning

algorithm. Lacy grids will likely require the most customiza-

tion, including separate segmentation and prioritization

algorithms at the medium-magnification level.

4. Conclusions

Increasing throughput and reducing cost through automation

is necessary to meet increasing demand for cryoEM. In this

work, we present Ptolemy, an open-source, modular package
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Figure 12
Example hole classifications in medium-magnification images using the average-pooling model. Ptolemy can successfully prioritize complete holes free of
contaminants. Model-predicted probabilities for holes are in red. Colors from high to low score: dark blue, light blue, white, yellow, orange, red.



for automatic targeting and classification of cryoEM low- and

medium-magnification images using purpose-designed

computer vision and deep-learning algorithms. Ptolemy

accurately localizes and ranks squares and holes in low- and

medium-magnification images across a wide range of image

and sample conditions. By training on large datasets of sparse

microscope operator selection locations, the Ptolemy locali-

zation algorithms generalize to diverse gold and carbon holey

grids and rank potential collection locations effectively

without session-specific parameters, as we have demonstrated

on held-out collection sessions within the SEMC/NYSBC

dataset and on an independent dataset from another facility.

Additionally, Ptolemy has been integrated with the micro-

scope control software Leginon to enable automated data

collection in real-life use cases (Cheng et al., 2022).

Ptolemy is similar to the recent works SmartScope (Bouv-

ette et al., 2022) and CryoRL (Li et al., 2022), which both offer

automated collection capabilities. SmartScope focuses on

automated screening and providing a helpful user interface to

view and control screening in real time, whereas CryoRL

focuses on optimizing the cryoEM data collection as a path-

planning problem and does not clearly address the square- and

hole-detection problem. Both primarily repurpose existing

deep-learning object detection and classification algorithms.

Ptolemy, on the other hand, uses novel algorithms that are

purpose-built for detection and classification of holes and

squares in cryoEM images.

Although Ptolemy identifies and generally ranks ROIs

remarkably well, it is unable to incorporate session-specific

information to reprioritize targets on-the-fly. In future work,

we plan to use the current Ptolemy classification models as

prior models, and dynamically update these prior models

during each collection session based on the quality of highest-

magnification exposures that are collected from explored

squares and holes in an active-learning framework.

Ptolemy is a significant advance in the automation of

cryoEM data collection, allowing for fully unattended data

collection, and increasing microscope and operator efficiency.

To accelerate cryoEM collection for the whole community,

Ptolemy is open source and freely available for academic use

at https://github.com/SMLC-NYSBC/ptolemy. We anticipate

that Ptolemy will become an integral part of the data-collec-

tion pipeline and will serve as the basis for future work in

cryoEM automation.

The supporting information file pw5021sup1.xlsx contains

the metadata for the various data-collection sessions used to

train and test the models in Ptolemy.

APPENDIX A
Ptolemy implementation details and default models

Ptolemy is an operating system and microscope control soft-

ware agnostic and requires only Python (3+) and a few

installed packages to run. Package dependencies can be found

in the github repository at https://github.com/SMLC-NYSBC/

ptolemy. By default, Ptolemy is configured to use the mixture

model for low-magnification square detection, the CNN for

low-magnification square classification, the U-Net with grid

fitting for medium-magnification hole detection and the

average-pooled CNN for medium-magnification hole classifi-

cation. It runs fully on CPU and requires a maximum of only

2.7 GB RAM to detect and classify squares in a low-magnifi-

cation image and 3.6 GB RAM to detect and classify holes in a

medium-magnification image.

After installation, running Ptolemy during data collection

involves the following steps.

(1) Microscope control software captures tiled low-magni-

fication mrc(s) of the grid and saves the file.

(2) Call python lowmag_cli.py (path to low-magnifi-

cation mrc). This returns a JSON containing a list of diction-

aries with the fields (i) vertices corresponding to vertex

coordinates of squares, (ii) center corresponding to the centers

of squares, (iii) area corresponding to areas of squares, (iv)

brightness corresponding to mean brightness of pixels in

squares, (v) score corresponding to CNN predicted score

(between 0 and 1) of squares.

(3) Use the output coordinates and scores to select the

collection location(s) to collect medium-magnification images.

(4) Microscope control software captures medium-magni-

fication mrc(s) within squares and saves to file.

(5) Call python medmag_cli.py (path to medium-

magnification mrc). This returns a JSON containing a list of

dictionaries with the fields (i) vertices corresponding to vertex

coordinates of hole crops, (ii) center corresponding to the

centers of holes, (iii) area corresponding to areas of hole crops,

(iv) score corresponding to CNN predicted score (between 0

and 1) of holes.

(6) Use the output coordinates and scores to select the

collection location(s) to collect the highest-magnification

exposures.

(7) Return to step (3) to explore new medium-magnification

collection locations from existing low-magnification images, or

step (1) to select new low-magnification collection locations.

For an example of integrating Ptolemy into cryoEM data-

collection software in practice, please refer to the companion

paper to Ptolemy, ‘Fully automated multi-grid CryoEM

screening using Smart Leginon’ (Cheng et al., 2022).

APPENDIX B
Training and hyperparameters

All deep-learning and machine-learning models were trained

using default hyperparameters in PyTorch (Paszke et al., 2019)

and scikit-learn (Pedregosa et al., 2011) except where stated

otherwise. All deep-learning model parameters were fitted

with the default Adam, except for the sigma parameter of the

Gaussian smoothing, which was initialized to e and trained

with an Adam optimizer with a learning rate of 0.1 (Kingma &

Ba, 2017). Binary-cross-entropy loss was used for all deep-

learning models, and for the U-Net a positive weight of 100

was applied.

The square classification CNN was trained for two epochs

and used two 5� 5 convolutional layers followed by three 3�

3 convolutional layers, with 64 channels per layer and with a
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batch size of 128, whereas the hole classification CNN was

trained for five epochs and used one 5� 5 convolutional layer,

followed by three 3� 3 convolutional layers with 128 channels

per layer, with a batch size of 32. Both models used batch

normalization, max-pooling and ReLU activations (LeCun et

al., 2015; Ioffe & Szegedy, 2015).

The U-Net for hole localization was trained for 6000 steps

and used nine down-blocks and nine up-blocks, with each

down-block and up-block using a 64 channel 3 � 3 kernel

convolutional layer. The model also used ReLU activations

for down- and up-blocks, max-pooling for downsampling in

down-blocks, and nearest interpolation for upsampling in up-

blocks. Batch norm was not used. Also, the bias of the final

convolutional layer which produces the final output of the

model was initialized at �10 to allow the model to initially

predict all or mostly zeros in the output, since the target image

contains zeros everywhere except for the few pixel locations

where the operator made a selection.

Random 90� rotation augmentation is applied while training

square and hole classification CNNs. Random 90� rotation

augmentation is combined with random pixel inversion when

training the U-Net for hole localization.

APPENDIX C
Random forest and logistic regression model details

The RF and LR models were trained on the following features

for the squares: mean pixel intensity, maximum pixel intensity,

minimum pixel intensity, variance of pixel intensities, skew of

pixel intensities, kurtosis of pixel intensities and area. Default

hyperparameters from scikit-learn were used for both models.

APPENDIX D
Definition of ‘predicted collected regions’ for each
model

For U-Net + Lattice Fitting, crops are generated by creating

squares centered at each lattice point with a side length equal

to dl � 60, where dl is the distance between lattice points. All

crops are considered predicted collected regions.

For U-Net alone, circles with a radius of 50 pixels around

each centroid of high-probability regions in the U-Net output

map are considered predicted collected regions.

For U-Net + Lattice Fitting + Probability Threshold, we

generated crops like in U-Net + Lattice Fitting, but then only

kept the crops where the sum of pixel probabilities outputted

by the U-Net within the crop was greater than 0.5.

For the Yolov5 model in Yoneo-Locr, which outputs many

bounding boxes at different confidence levels, we had to

decide how to set confidence thresholds which determine the

bounding boxes that are kept. We aimed to be generous to the

model by picking the confidence threshold that gave the

maximum F1 score for each image independently and keeping

all bounding boxes in that image that were predicted with

confidence greater than this threshold.
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