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The relationship between the contrast to noise ratio and intensity based cross-

correlation coefficients for both protein crystallography and X-ray imaging are

compared. It is concluded that, for protein crystallography at near atomic

resolution, the intensity based cross-correlation coefficients give a reasonable

indication of the quality of the corresponding electron density. For X-ray

imaging of biological materials such as cells and soft tissue, the wide range of

contrast of the features means that intensity based correlation coefficients can

give a poor indication of the interpretability of an image. Rather than the term

resolution, it is the contrast to noise ratio for a feature of interest at the relevant

spatial frequency that is more relevant. Additional metrics are required to

describe the quality of an image, and these are discussed.

1. Introduction

It has become common in both protein crystallography and

single-particle electron microscopy of proteins to quote a

resolution for the data and use a cross-correlation coefficient

(CCC) between half datasets to determine this resolution. A

threshold beyond which the data merges into the noise can

then be determined and the resolution can thus be used to

judge the usefulness of the data for a particular purpose.

Following this, resolution estimates based on the correlation

coefficient have also been adopted for X-ray imaging of cells

and biological tissue. However, the range of contrast for such

specimens varies much more than for protein structure

determination. In these circumstances, the usefulness of a

single threshold for estimating the resolution of the data is

much more limited.

The present paper does not address the ongoing issue of

what the threshold should be for the purpose of a claimed

resolution or data cut-off and it does not address the issue of

whether any threshold should be a fixed value or information

content based. A description of the application of the Fourier

shell correlation (FSC) and CC1/2 values to obtain resolution

estimates in single-particle electron microscopy and protein

crystallography, respectively, is given by Dubach & Guskov

(2020).

Many papers acknowledge that any single number is

insufficient to describe the interpretability of an image

obtained from an instrument. Similarly, it is widely recognized

that the term resolution should be regarded as a property of

the instrument, defined by parameters such as the aperture of

a lens, the size of a focal spot, or the size and distance of a

detector for X-ray diffraction/scattering. For an image, the aim

is to obtain the desired contrast to noise ratio (CNR) at the

relevant spatial frequency for a feature of interest. This is a

better although more complex criterion than resolution and

emphasizes the visibility of a feature of known dimensions.Published under a CC BY 4.0 licence
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The relationship between this and the intensity based CCC

will depend on the distribution of density for the overall

specimen.

The questions being addressed are:

(1) What CNR at a necessary spatial frequency does one

need to identify a particular feature in an electron density map

with a desired confidence level?

(2) What is the required metric in the intensity data,

corresponding to this spatial frequency, to support the inter-

pretation at the desired confidence level?

(3) What additional concise information would be useful to

give an estimate of the interpretability of an image?

The above depends on knowledge of the distribution of

electron densities as a function of spatial frequency. For the

case analysed by Karplus & Diederichs (2015), a Wilson

distribution of intensities was assumed. This is an approx-

imation for the case of protein crystallography and further

approximations such as hI/�i being close to hIi/h�i were made.

This allowed the derivation of approximate expressions

relating the average signal to noise ratio for the intensities,

hI/�imerged, to the correlation coefficient CC1/2 between half

datasets (Karplus & Diederichs, 2015). Despite the approx-

imations, the comparison between CC1/2and hI/�imerged is

useful for indicating the relationship between the two most

common metrics for defining a resolution.

For the case of X-ray imaging of cells and tissues, a wide

range of electron density distributions are possible. If a prior

estimate for the electron density distribution can be obtained

from similar samples then, in principle, it is possible to go from

a desired CNR for a particular feature to a target correlation

coefficient at the relevant spatial frequency (FSC and CC1/2

are normally plotted as a function of spatial frequency). The

procedure for a simple case is described in Section 5. In the

other direction, if FSC or CC1/2 values are obtained at a

particular spatial frequency, it should be possible to estimate

the CNR for features of interest. This would cover the case

where strong sharp features dominate the distribution,

perhaps leaving the features of interest with very poor

statistics. An example could be imaging cells at higher energies

where high-density features such a polyphosphate bodies and

starch granules can dominate over the membrane features

which might be of primary interest. Comparison of an image of

a biological cell obtained in the water window with one at

higher energy shows that the observable features are drama-

tically different even though the claimed resolution, obtained

via correlation coefficient thresholds, might be the same.

2. Relationship between intensity correlation
coefficients and desired contrast

Ideally one would like to go from a desired CNR for a specific

feature at the relevant spatial frequency to a correlation

coefficient for intensities at the same spatial frequency.

Assumptions and approximations are required for this as

listed below.

(i) A prior estimate of the electron density probability

distribution at the relevant spatial frequency. This would be

affected by the proportion of heavy to light atoms when

operating at near atomic resolution or the proportions of

condensed chromatin (heterochromatin) to uncondensed

chromatin within a biological cell.

(ii) Prior knowledge of any characteristic distances between

features. Examples include the repeat distances of helices

within proteins/nucleic acids or the bilayer spacing within

membranes.

(iii) The distribution of intensities at a relevant spatial

frequency. For a repeating sample, as in crystallography, this is

obtained from the measured intensity distribution. For an

image it is obtained from the Fourier transform of the image.

In both cases there will be a measurement error, leading to a

correlation coefficient less than 1 between half datasets.

(iv) A model for the measurement errors. This could assume

that all errors are derived from Poisson statistics or that the

value of sigma is nearly the same for each measurement

(applicable where the background is the main source of noise).

2.1. Comparison of crystallographic and non-crystallographic
cases

For the crystallographic case, measurements normally

consist of the integrated intensity of the diffraction spots. This

means that no information is obtained concerning the non-

repeating parts of the crystal. Differences between adjacent

unit cells give short-range disorder resulting in diffuse scatter

between the diffraction spots. This diffuse scatter can be the

main source of background and, for weak spots, can therefore

be the main source of noise in the data. For a non-crystal-

lographic case, the measurements are made over the complete

scattering pattern and the material surrounding any feature of

interest gives the contrast (�f � �s), where �f is the density of

the feature and �s is the density of the surroundings.

For the non-crystallographic case, where the reconstruction

is carried out for the whole object, the corresponding scattered

intensities derived from the object boundaries will be strong

and influence intensity statistics such as intensity based CCCs.

For this reason, a Gaussian or similar smearing is used at the

boundary of the object to obtain intensity based CCC

values. The distribution of intensities captures both the

contrast of individual features and the interference between

them due to common interparticle distributions. The FSC

formulation (van Heel & Schatz, 2005) is widely used for

single-particle electron microscopy and has been adopted for

X-ray imaging.

If a continuous intensity distribution is measured, it is

possible to obtain an estimate of the Poisson noise by over-

sampling. This can complement the estimates obtained for a

photon counting detector. However, other sources of error

such as sample or instrument instabilities and radiation

damage will generally occur.

3. Common distributions

The electron density distributions covered below are, in

principle, independent of whether the sample is crystal-
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lographic or non-crystallographic, with the crystallographic

case having a multiplication factor given by the number of

unit cells.

3.1. Atomic resolution regime

At atomic resolution the Wilson distribution can be applied.

In the ideal case, this assumes equal atoms so approximation

(i) in Section 2 holds. The random distribution of interatomic

distances [approximation (ii)] allows a random phase distri-

bution to be assumed, giving the Wilson distribution of

intensities [approximation (iii)]. Finally, at high resolution, the

background can be the dominant contribution to the

measurement error, allowing the approximation that the same

values of sigma can be applied for all reflections satisfying

approximation (iv).

Because the electron density distribution is similar for

different proteins, there is some merit in quoting a single

agreed – though subjective – threshold for the correlation

coefficient and calling this the resolution. This is particularly

the case for the majority of ordered atoms in the interior of a

protein where the scattering factors are similar. One would

expect a higher contrast from sulfur atoms and a lower

contrast from hydrogen atoms while, at the protein surface,

disorder would lower the contrast. For single-particle electron

microscopy, this can be handled if desired by the concept of

local resolution (e.g. Penczek, 2020) or via Q values (Pintilie et

al., 2020). However, what this is really measuring is the

decrease in contrast due to the disorder.

3.2. General imaging regime

In solution scattering, the particles of interest are separated

by a much greater distance than the spatial frequency of

interest. This means that interference effects between the

particles can be ignored. The one-dimensional distance (or

pair) distribution function of a particle is obtained from the

scattered intensities without loss of information. It is possible

to extend this concept to three dimensions with an approx-

imate model of a biological cell. This only contains features

giving a distribution of electron density (positive and negative

contrast) at a particular spatial frequency and random

distances between the features [satisfying both criteria (i) and

(ii)]. The square of the electron density distribution can then

be used to give the intensity distribution [criteria (iii)] as inter

particle interference does not occur. Finally, if it is assumed

that only Poisson noise is present, an estimate can be made for

the errors from the square root of the intensities [satisfying

criteria (iv)], noting that this is different from the distribution

of contrasted electron densities which can be positive

or negative.

The relationships discussed above between a target CNR

for electron density and a correlation coefficient for intensity

will not generally hold. Typical investigations for cellular

imaging have the aim of identifying differences between

heterochromatin and euchromatin, or identifying the location

of virus particles inside the cell. In these cases, the electron

density probability distribution in the sample could change

significantly. For another example, see Jakubauskas et al.

(2021). However, if the probability distribution of electron

density at a particular spatial frequency together with a

corresponding distribution of scattered intensity both remain

stable, then a reference sample can provide useful information

linking a desired contrast to noise level to a target CCC for

the intensities.

4. Contrast to noise ratio as a function of spatial
frequency

In general, a feature (e.g. an atom, group of atoms, whole

protein, virus particle) cannot be defined by a single voxel as

any feature has an associated form factor. To accurately

represent this in an electron density map, several voxels will

be needed for each feature. Taken together, these voxels

can be represented by a single ‘Shannon’ sample of the

density, centred on the feature, with a form factor corre-

sponding to that for the feature. However, it is assumed for

the present purpose that a single feature can be represented

by a single voxel centred on the feature, following Howells

et al. (2009).

To calculate a defined probability P for a false positive

identification of a feature, the relevant signal to noise ratio

needs to be defined. This depends on the contrast of the

feature and the noise level. The contrast can be defined as

|�f � �s|, where �f is the electron density of the feature at the

spatial frequency (F) defined by the feature size and �s is the

density of the surroundings. The ratio |�f � �s|/(�f + �s)
1/2,

defined as the CNR (e.g. Timischl, 2015), can then be used to

avoid a false-positive identification. The CNR is related to the

Rose criterion (Rose, 1948) and can be used to derive the

minimum required dose (energy deposited per unit volume)

and fluence (incident photons per unit area) for achieving the

required CNR. The Rose model emphasizes the contrast for a

voxel of a particular size. It is consistent with the resolution

defined as the half period of an equal-width line and space

grating as used to measure the resolution of an instrument. If

two features of size d are separated by a gap of size d then they

it should be possible to identify them if there is adequate

contrast at a spatial frequency of 1/(2d). Note that the equal-

width line and space grating is a poor model for distinguishing

individual atoms as most of the electrons are concentrated

near the atomic centre, over a distance much less than

interatomic distances.

As well as the shot noise, errors from the instrument (e.g.

beam instabilities) and errors from the model (e.g. inability to

interpret disordered solvent) can contribute to the CNR for a

particular feature. These errors will also contribute to differ-

ence maps (e.g. mFo � DFc maps) used in protein crystal-

lography.

In the work by Howells et al. (2009), the requirement for

observing a feature above the surroundings with a signal to

noise ratio of 5 (Rose criterion of 5) was that the electron

density contrast (e.g. �f � �s) should scatter 25 photons.

Although a signal to noise ratio of 5 might seem to be a severe

requirement, there can be many voxels in a three-dimensional
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image, increasing the probability of a false positive. Starodub

et al. (2008) suggested that only 6.25 photons would be needed

as the signal to noise ratio for the amplitudes (from which the

electron densities are derived) follows the square root of the

intensities. This apparent discrepancy can be resolved if it is

recognized that the probability of a feature being observed

falsely above a background is a separate criterion from the

accuracy of the electron density for an isolated feature. Only

6.25 photons (standard error 2.5) for the intensity measure-

ment would be required to achieve a standard error of 5 for

the electron density of an isolated particle. In any case, there

are other options for the noise model in addition to using the

amplitude (Godard et al., 2012).

4.1. Contrast for X-ray imaging and protein crystallography

Fig. 1 illustrates the contrast for the case of some features in

a biological cell and for a protein at near atomic resolution.

For protein crystallography, most work is carried out at

spatial frequencies where van der Waals and covalent bonding

distances apply. In these circumstances, the contrast for a

particular feature is relative to vacuum rather than disordered

or unresolved solvent molecules. The electron density distri-

bution and the intensity distribution as a function of spatial

frequency is reasonably well defined by Wilson statistics. The

concept of contrast then comes in when distinguishing

between features with small differences in the number of

electrons (e.g. different metal atoms, distinguishing between

carbon, nitrogen or oxygen in a substrate). A special proce-

dure (CCanom) has been developed for the case of small

changes due to anomalous scattering (Karplus & Diederichs,

2015). For a given value of CC1/2, features below the line in

Fig. 1 will have a lower contrast compared with features above.

At spatial frequencies common in X-ray imaging, the

concept of contrast is more important. This is because there

are a wide range of different features, some of which have

densities well above the surrounding solvent (e.g. starch

granules, polyphosphate bodies) and some of which can be

almost contrast matched (e.g. plasma membranes contrasted

against cytosol as shown in Fig. 1) or have negative contrast

(e.g. lipid droplets). Specifying a resolution for a particular

image (e.g. via some correlation coefficient threshold or
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Figure 1
Single features (e.g. 10 nm protein, helix exposed to solvent, CH3 group, Zn atom) are shown in orange. Paired features (e.g. helix:helix, C C triple
bond) are shown in blue. The contrast (in electrons) for paired features is given by the total number of electrons (e.g. 12 electrons for a C:C pair). This
could be divided by a factor of 2 if one is interested in observing each component independently. When distinguishing between features (e.g. Zn and Fe,
Tyr and Phe, or a protein surrounded by water), the difference in the number of electrons is relevant and the minus sign is used (e.g. Zn–Fe). For single
features, the voxel size is given by the cube root of the atomic, group or molecular volume (as stated in Section 4, the atomic volume is a rather poor
approximation for deriving the electron density distribution of an atom). For paired features it is given by the distance between the individual features.
The straight line gives the contrast for different size proteins in a vacuum. Density values for cellular components are adapted from the work by Nave
(2018). See Table S1 of the supporting information from which all values were derived.



making measurements across some boundary) demonstrates

that a particular instrument is capable of reaching this reso-

lution. It does not mean that any feature of a particular size

can be reliably identified.

5. Relationships between contrast to noise ratio and
cross correlation coefficients for a model cell

To illustrate the process of linking the desired CNR with

CC1/2, a cartoon biological cell is constructed with a set of

features with a different contrast, different size and different

probability (Pf) of occurring. The contrast for a particular

feature (�fc) can be defined as �f � �cytosol where �f is the

electron density of the feature and �cytosol is the electron

density of the surrounding cytosol. The contrast can also be

defined as �f� h�i, where h�i is the average density. The latter

definition of the contrast is used in the example below. The

size of the voxel (dv) is chosen and the calculation is made for

the distribution of the total scattered X-rays from each voxel.

In the calculation below, the corresponding value of CC1/2

therefore corresponds to the total intensity distribution from

voxels of a defined size. The calculation could then be repe-

ated with different sized voxels to obtain an estimate of CC1/2

for different spatial frequencies.

The following relationship between CC1/2 values and other

intensity statistics is derived in the appendix of Karplus &

Diederichs (2012).

CC1=2 ¼
�2
�

�2
� þ �

2
"

;

where �� is the standard deviation of the true distribution of

intensities and �" denotes the mean error within a half dataset.

Assuming Poisson statistics for the scattering of each feature,

h�fi replaces the � derived from merging statistics in Box1 of

Karplus & Diederichs (2015), with �f being the standard

deviation of photons scattered by a feature. This gives

�2
" ¼ 2h�fi

2.

The number of electrons (Nef) in the feature above or below

the average (or above or below the cytosol) is given by

Nef ¼ d3
v�fc: This is reduced for features smaller than the voxel

size by a factor corresponding to the difference in volume. For

example, the plasma membrane (10 nm thick) has a volume of

30 � 30 � 10 nm within a 30 nm voxel.

To obtain an estimate for the distribution of scattered

photons, it is assumed that each feature is randomly positioned

in the cell so the features can be considered to scatter inde-

pendently. This assumption is an approximation for a real

sample. The assumption means that the scattered intensity

from each feature is proportional to the square of the contrast.

This gives Npf ¼ ðN
2
ef=KÞ;where Npf is the number of photons

scattered by the feature, Nef is the number of electrons in the

feature above or below the average (or above or below the

cytosol), and K is a constant of proportionality with a value

dependent on the X-ray exposure.

The above applies for the case where the intensities are

derived from the real space image. For the case where the

intensities are obtained directly from the scattered X-rays, an

additional term is needed, corresponding to the Lorentz factor

in crystallography, as uniform sampling of the intensities does

not occur in tomographic imaging. This affects the intensities

and the errors if Poisson statistics is assumed. It also means
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Table 1
Parameters for a cartoon biological cell to illustrate the effect of observing features with different contrast, size and probability of occurring rather than
representing a real cell which would have a much wider range of features.

The calculations are carried out for a voxel size of 30 nm, corresponding to a spatial frequency of 0.0167 nm�1 and a K value of 1.3 � 1011.

Feature Cytosol Plasma membrane 10 nm protein Cristae 30 nm protein Hetero-chromatin Lipid droplet

Type Globular Planar Globular Planar Globular Globular Globular
Pf 0.45 0.10 0.20 0.05 0.05 0.10 0.05
df (nm) 30 10 10 28 30 30 30
�f (e nm�3) 340 350 420 380 420 380 300
�fc (e nm�3) �25 �15 55 15 55 15 �65
Nef �6.75 � 105

�1.35 � 105 5.50 � 104 3.78 � 105 1.49 � 106 4.05 � 105
�1.76 � 106

N2
ef 4.56 � 1011 1.821 � 1010 3.03 � 109 1.43 � 1011 2.21 � 1012 1.64 � 1011 3.08 � 1012

|Nef|Pf 3.04 � 105 1.35 � 104 1.10 � 104 1.89 � 104 7.43 � 104 4.05 � 104 8.78 � 104

N2
efPf 2.05 � 1011 1.82 � 109 6.05 � 108 7.14 � 109 1.10 � 1011 1.64 � 1010 1.54 � 1011

Npf 3.50 0.14 0.023 1.10 17.0 1.26 23.7
NpfPf 1.58 0.014 0.00465 0.055 0.848 0.126 1.18
N2

pf 12.3 0.0197 5.41 � 10�4 1.21 288 1.59 561
N2

pfPf 5.53 0.00197 1.08 � 10�4 0.0604 14.4 0.159 28.1
�f 1.87 0.374 0.153 1.05 4.12 1.12 4.87
�fPf 0.842 0.0374 0.0305 0.0524 0.206 0.112 0.243
�fPf 153 35 84 19 21 38 15

Whole cell
h�i 365
hNpi 3.81
d�� 6.54
h�fi

2 2.32
��

2 4.65
CC1/2 0.902



that the required fluence and dose follows the fourth power of

the resolution rather than the third power which would

otherwise be obtained from the volume of the feature. This is

discussed in detail by Gureyev et al. (2018).

The average value of Np is given by

hNpi ¼
X

NpfPf

� �
;

and the value of �� is given by

�� ¼
X

Npf � Np

� �2
Pf

h i1=2

:

Assuming a perfect instrument and following Howells et al.

(2009), �f should follow the square root of Npf giving

�f ¼
ffiffiffiffi
N
p

pf:

The average value of �f is given by

h�fi ¼
X

�fPfð Þ;

and the required value of �2
" is

�2
" ¼ 2h�fi

2:

Table 1 gives the predicted value for CC1/2 for a biological cell

containing seven components at a voxel size dv of 30 nm and

an X-ray exposure corresponding to K = 1.33 � 1011.

With the exposure and corresponding CC1/2 value the 30 nm

protein will scatter 17 photons (Npf value) above the

surroundings giving the probability of a false identification of

approximately 0.1% (depending on the exact distribution).

The probability of a false identification will be higher for the

10 nm protein. It will also be much higher for the plasma

membrane unless one is able to correlate the contrast across

several voxels.

Contrast can be improved by heavy atom stains, and this is

commonly used for imaging of brain tissue where optimizing

the stain density is often necessary for obtaining the required

information. Measurements of stain density can be found in

the work by Fera et al. (2020). An analysis similar to that given

in Table 1 might prove useful for both optimizing and moni-

toring stain density for a particular system. It is possible that

stained material will have a much simpler electron density

distribution meaning that, as for protein structure determi-

nation, the use of the term resolution will have some merit.

6. Conclusions

Although the use of the term resolution could be considered a

largely terminological issue, in the case of X-ray imaging of

cells and tissue the use of the term is more misleading than

illuminating.

Given the limitations of a single resolution estimate for an

image, several additional metrics could be calculated from the

images or measured/derived intensities. In order to be useful,

they should be either single numbers or one-dimensional

graphs. Possibilities include a complete FSC or CC1/2 graph

as a function of spatial frequency; intensity distributions at

selected spatial frequencies; histograms of image electron

densities or refractive indices, for both the real and the

imaginary components, at selected spatial frequencies; calcu-

lating the entropy from the histogram of densities at selected

spatial frequencies. Note however that this does ignore the

spatial distribution of densities in the image.

A discussion is required regarding which would be most

useful. This could occur under existing initiatives such REMBI

as described by Sarkans et al. (2021).

Even for protein structure determination the established

methods for determining a resolution are still under debate.

The use of a single metric such as resolution for defining the

quality of an electron density map is potentially misleading. It

would be of some benefit if a second easily understood metric

could be agreed or at least error estimates for the claimed

resolution are provided. The problem for both X-ray imaging

and protein structure determination is that any metrics must

be reasonably robust, agreed by the experts and under-

standable by less-expert users.

Finally, compiling a list of electron densities as a function of

spatial resolution for typical cells would be a useful exercise

for X-ray imaging.
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