J. Synchrotron Rad. (1999). 6, 731-733

Electronic structure of Ni₃Al and Ni₃Ga alloys

W. F. Pong,¹ K. P. Lin,¹ Y. K. Chang,¹ M.-H. Tsai² H. H. Hsieh,¹ J. Y. Pieh,¹ P. K. Tseng,¹ J. F. Lee,³ L. S. Hsu⁴

This work investigates the charge transfer and Al (Ga) p-Ni d hybridization effects in the intermetallic Ni, Al (Ni, Ga) alloy using the Ni $L_{3,7}$ and K-edge and Al (Ga) K x-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the Ni $L_{3,2}$ -edge in the Ni₃Al (Ni₃Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni 3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni₃Al (Ni₃Ga) alloy. Two clear features are also observed in the Ni, Al (Ni, Ga) XANES spectrum at the Al (Ga) K-edge, which can be assigned to the Al (Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni, Al (Ni, Ga). The threshold at Al K-edge XANES for Ni, Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni, Al. On the other hand, the Ni K-edge shifts towards lower photon energies in Ni, Al (Ni, Ga) relative to that of pure Ni, which is consistent with the results of the Al K-edge XANES spectrum and is indicative of a charge transfer from Al to Ni sites. Our data support that no significant net charge flow occurs on and off sites in Ni, Al (Ni,Ga).

Keywords: hybridization effect, XANES, charge transfer

1. Introduction

The intermetallic Ni_3Al compound has received extensive attention owing to its potential applications in high-temperature structural materials (Stoloff, 1984). The unique properties of Ni_3Al compound are principally attributed to the nature of its electronic and atomic structures. Muller et al. (1995) performed Ni $L_{3,2}$ -edge electron energy loss spectroscopy (EELS) to investigate the electronic structure of segregated grain boundaries in Ni_3Al with boron-doped and undoped conditions. Owing to the absence of a core level shift in the Ni L_3 -edge EELS spectra of Ni_3Al from that of pure Ni, Muller et al. concluded that little net charge is transferred between Al and Ni sites in Ni_3Al . On the other hand, Iotova et al. (1996) systematically

calculated electronic structures and elastic properties in the series of Ni_3X (X = Mn, Al, Ga, Ge, and Si) and found an increasing trend of shear module that goes from Ni_3Mn to Ni_3Si . This trend could be related to the anisotropic bonding charge density resulting from a combination of the charge transfer from X to Ni and strong X p-Ni d (Mn d-Ni d in Ni_3Mn) hybridization effects in Ni_3X . Here, we focus on the understanding of how X influences the p-d hybridization between Al and Ni in Ni_3Al and between Ga and Ni in Ni_3Ga and clarification of the controversy over the charge transfer between Al (Ga) and Ni sites in Ni_3Al (Ni_3Ga). How charge transfer influences the filling of the Ni_3d band in Ni_3Al (Ni_3Ga) will be addressed.

2. Experimental

The XANES measurements were performed using the high-energy spherical grating monochromator (HSGM) with an electron beam energy of 1.5 GeV and a maximum stored current of 200 mA at the Synchrotron Radiation Research Center (SRRC), Hsinchu, Taiwan. The spectra of the Ni $L_{3,2}$ -edge and Al K-edge XANES were measured using the sample drain current mode at the room temperature. The Ni and Ga K-edge XANES measurements were also performed in a total electron mode at the wiggler beamline of SRRC. A Si(111) double crystal monochromator was used to record the spectra. The samples were prepared by arc melting after argon backfill, as described elsewhere (Hsu et al., 1996).

3. Results and discussion

Figures 1 and 2 display the Ni $L_{3,2}$ -edge and Al K-edge XANES spectra of the Ni, Al and Ni, Ga alloys, respectively, in which pure Ni and Al metals are given as references. All the spectra shown in these figures were divided by the incident intensity I₀ and, then, normalized to an edge jump of unity. By using the dipole-selection transition rule, we can assign the white-line features at the Ni $L_{3,2}$ -edge (labeled L_3 and L_2) XANES to photoelectron transitions from the Ni $2p_{3/2}$ and $2p_{1/2}$ ground states to the final unoccupied Ni 3d electron states. The general spectral lineshapes in the Ni $L_{3,2}$ -edge XANES spectra of Ni, Al and Ni, Ga display similar white-line features (labeled A_1) above the Ni L_3 -edge. However, their intensities are reduced in comparison with that of pure Ni. The dependence of the general behavior of the spectra's lineshape and intensity on the photon energy for Ni, Al and Ni, Ga are similar except that the intensity of the white-line features A₁ (the higher energy satellite structure, B_1) at Ni L_3 -edge is slightly lower (larger) in the Ni₃Al spectrum than in the Ni, Ga spectrum. The difference curves (hereinafter referred to as ΔA_1 and ΔB_1) of Ni L_3 -edge XANES in Ni, Al and Ni, Ga with respect to pure Ni are shown in the inset of Fig. 1. No significant energy shifts of the highest peak in Ni $L_{3,2}$ -edge XANES spectra for both alloys from that of pure Ni are observed. Our data are in agreement with earlier Ni $L_{3,2}$ -edge EELS measurements made on Ni_{1.x}Al_x alloys (Muller et al., 1995). In addition, the satellite structures B₁, occurring at ~6 eV above the Ni L3-edge in the XANES spectra of both Ni3Al and Ni3Ga are enhanced and broadened relative to that of pure Ni. This satellite structure can be assigned to the excitation of Ni $2p_{3/2}$

[&]quot;Department of Physics, Tamkang University, Tamsui 251, Taiwan

⁽²⁾ Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan

⁽³⁾ Synchrotron Radiation Research Center, Hsinchu Science-based Industrial Park 300, Taiwan

⁽⁴⁾ Department of Physics, National Chang-Hua University of Education, Chang-Hua 500, Taiwan

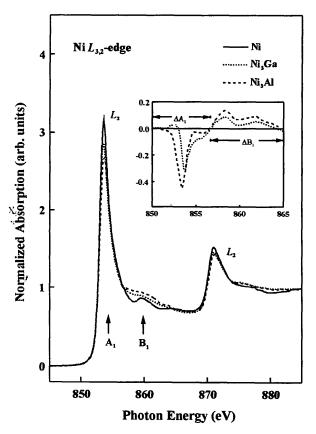


Fig. 1 Normalized Ni $L_{3,2}$ -edge x-ray absorption spectra of Ni₃Al and Ni₃Ga alloys and pure Ni metal at room temperature. The inset shows the Ni L_3 -edge difference curve for Ni₃Al and Ni₃Ga with respect to pure Ni.

 $2p_{3/2}$ photoelectrons to 4s states in the conduction band of Ni (van der Laan *et al.*, 1986 & Chen *et al.*, 1991). Our results obviously indicate a decrease in the intensity of white-line features A_1 at the Ni L_3 -edge for both Ni₃Al and Ni₃Ga alloys relative to that of pure Ni, which can be attributed to the enhancement of Ni 3d states filling that decreases the density of Ni 3d unoccupied states in the alloys.

Fig. 2 displays the Al K-edge XANES spectra for Ni, Al and pure Al. In the Ni₃Al spectrum, the intensity of feature A₂, which is located between ~1573 and 1577 eV, is reduced. In addition, a prominent feature B, (located between ~1577 and 1590 eV) is significantly enhanced in the Ni₂Al spectrum. The lower inset of this same figure reveals a similar behavior of features A, and B, at the Ga K-edge XANES in the Ni, Ga spectrum. Furthermore, based on results of the spin-polarized first-principles calculations using the pseudofunction method (Chang et al., 1998), the features A_2 (A_2) and B_2 (B_2) in the Al (Ga) K-edge XANES spectra as shown in the (inset) of Fig. 2 can be assigned to the transitions to Al (Ga) unoccupied 3p (4p) states, which have hybridized with the Ni 3d/non-d bands of Ni, Al (Ni, Ga) above the Fermi level. The inflection point in the Ni₃Al XANES spectrum at the Al K-edge apparently shifts towards higher photon energies than those of pure Al. This

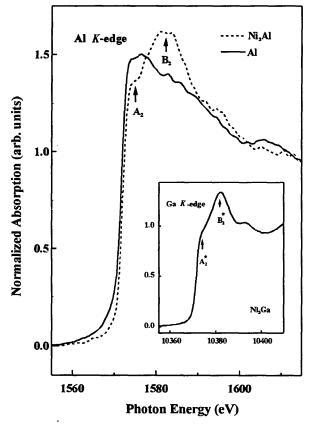


Fig. 2

Normalized Al K-edge x-ray absorption spectra of Ni₃Al (dot line) and pure Al (solid line) at room temperature. The lower inset shows the normalized Ga K-edge x-ray absorption spectra of the Ni₃Ga alloy, in which the zero energy was selected at the inflection point of the edge.

suggests that Al loses charge upon forming Ni, Al. In metals, the charge count at the atomic site (Wigner Seitz volume) tends to remain neutral, i. e. only a small amount of net charge transfer possibly occurs upon alloying. Although electroneutrality is the general rule, charge redistribution of localized d electron and itinerant sp type conduction electrons according to relative electronegativity of the constituent metals in the alloy can still occur without any significant net charge flow on and off a site in alloys (Kuhn & Sham, 1994; Sham et al., 1997; Hsieh et al., 1998). The threshold of the Ni, Al XANES spectrum at the Al K-edge shifts to higher photon energies in comparison with that of pure Al, which implys that electron transfer occurs from Al to Ni sites because the loss of local 3p electrons reduces the screening of the Al nuclear charge and consequently lowers the 1s core level energy of Al. This finding is consistent with that of the Ni L_{32} -edge XANES spectrum, which is also indicative of the charge transfer from Al to Ni sites in Ni₃Al. Based on the electroneutrality argument (Kuhn & Sham, 1994; Sham et al., 1997; Hsieh et al., 1998), one would intuitively expect that the Ni levels should shift to lower photon energies in Ni₃Al since the positive shift in photon

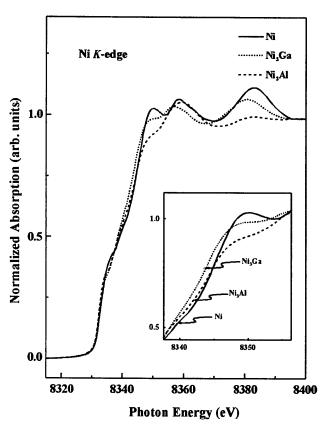


Fig. 3
Normalized Ni K-edge x-ray absorption spectra of the Ni₃Al and Ni₃Ga alloys and pure Ni at room temperature. The region of threshold edge in the inset is on a magnified scale.

energy of the Al p states in Ni₃Al tends to be accompanied by the shift of the Ni levels in an opposite direction. However, the Ni 3d states in Ni₃Al and Ni₃Ga did not shift noticeably towards lower photon energies at Ni $L_{3,2}$ -edge, as shown in Fig. 1. Thus, we argue that the charge transfer or charge flow occurs not only through the Al 3p (Ga 4p)-Ni 3d hybridized states, but also through the rehybidized s-p-d states involving one or two sites in Ni₃Al (Ni₃Ga). The involvement of conduction electrons of Ni p character in rehybridization can be revealed from the Ni K-edge XANES, which probes the unoccupied Ni 4p states above the Fermi level.

Fig. 3 displays the Ni K-edge XANES of Ni₃Al, Ni₃Ga, and pure Ni. The absorption intensity above the main edge decreases noticeably and the shift of the main edge towards the lower photon energies for both Ni₃Al and Ni₃Ga is comparable with that of pure Ni (refer to the inset of Fig. 3). The pre-edge shoulder in the Ni K-edge XANES can be attributed to the Ni $Is \rightarrow 3d$ transition facilitated by band formation and Ni p-d rehybridization (Kuhn & Sham, 1994; Sham $et\ al.$, 1997; Hsieh $et\ al.$, 1998). A reduction of the Ni K near edge intensity suggests that Ni 4p orbitals gain electron charges upon alloying in Ni₃Al and Ni₃Ga. Correspondingly, Ni must loss s electron charges in both Ni₃Al and Ni₃Ga for metallic systems tend to maintain charge neutrality locally.

Thus, the density of unoccupied Ni s states in the vicinity of the Fermi level will increase in both Ni, Al and Ni, Ga relative to that of pure Ni. This indeed can be observed in the satellite structure B_1 at the Ni L_3 -edge of the XANES spectra for Ni₃Al and Ni₃Ga as shown in Fig. 1, which can be seen to be relatively dispersive and stronger. This observation is consistently supported by the observed difference curves of the Ni L_3 -edge spectra between alloys and Ni as shown in the inset of Fig. 1. Under the framework of local electron conservation or compensation argument, our results indicate that the larger negative integrated intensity of ΔA_1 (indicating that Ni 3d orbitals gain more electron charges) implies a larger positive integrated intensity of ΔB_1 (indicating that Ni 4s orbital loses more electron charges) in Ni, Al and Ni, Ga. We did not discuss Ni p orbital charges because s electrons are more important than p electrons in these metallic systems and its effect can be implicitly included in the d orbitals. Our data support that no significant net charge flow occurs on and off sites in Ni, Al (Ni, Ga).

Acknowledgments

One of the authors (W. F. P.) would like to thank the National Science Council of the R.O.C. for supporting this research under contract No. NSC 88-2112-M-032-009. SRRC is also appreciated for use of their wiggler and HSGM beamlines to perform this study.

References

- Y. K. Chang et al., (submitted to Phys. Rev. B, 1998).
- C. T. Chen et al., Phys. Rev. B 43, 6785 (1991).
- H. H. Hsieh et al., Phys. Rev. B 57, 15204 (1998)
- L. S. Hsu et al., Mat. Res. Soc. Symo. Proc. 437, 53 (1996).
- D. Iotova et al., Phys. Rev. B 54, 14413 (1996).
- M. Kuhn and T. K. Sham, Phys. Rev. B 49, 1647 (1994); T. K. Sham et al., Phys. Rev. B 55, 7585 (1997).
- D. A. Muller et al., Phys. Rev. Lett. 75, 4744 (1995).
- N. S. Stoloff, International Metals Review 29, 123 (1984).
- G. van der Laan et al., Phys. Rev. B 33, 4253 (1986).

(Received 10 August 1998; accepted 1 December 1998)