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Amplitude reduction in EXAFS 
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In real systems, inelastic processes remove photoelectrons from the 
elastic scattering channel. This reduces the amplitude of the EX- 
AFS causing disagreement between the experimental and theoret- 
ically predicted amplitudes. Traditionally these discrepancies were 
treated by including two semi empirical reduction factors in the data 
analysis: a mean tree path term, which models the so called extrin- 
sic loss processes, and a constant amplitude reduction factor which 
accounts for many electron excitations at the absorbing atom. The 
extrinsic inelastic effects may, however, be modelled more rigor- 
ously using a complex exchange and correlation potential. For ex- 
ample the Hedin-Lundqvist (H-L) potential used in most EXAFS 
data analysis programs. We present a method by which the losses 
caused by such a potential may be evaluated quickly and easily in 
the first Born approximation. The losses produced by the H-L po- 
tential significantly overestimate those produced by the mean free 
path alone. Instead the losses appear to agree well with the total re- 
duction given by the semi-empirical reduction factors. These losses 
do not exhibit the correct low or high energy behaviour but do show 
excellent agreement with experiment over the range of a typical EX- 
AFS spectrum. We therefore conclude, that the semi-empirical re- 
duction parameters should not be included when data fitting using 
the H-L potential. 

Keywords: EXAFS; Many Body Theory; Inelastic 
processes. 

1. Introduction 

Interpretation of the EXAFS may be based on a simple equation 
(Lee & Pendry, 1975) obtained using the plane wave approxima- 
tion. The single electron, single scattering expression for the EX- 
AFS function x(k)  is, 

Njlfj(k)l 
x ~ ( k )  = 

2 - -  2 R j / ~ ( ~ ) ~ ( - -  '2 k 2 ~ . 2 ) 

J ~o~ ~ " kR  2 

x sin(2krj + 2&j(k,r) + ¢5)" (1) 

Equation (l) describes the EXAFS due to scattering by shells of 
Nj atoms at a distance Rj from the absorbing atom. f j  (k) is the 
backscattering amplitude from each of the Nj neighbours whilst 
the Debye-Waller factor, aj, allows for static and thermal disor- 

, 2 der effects. The reduction factors, e -2nj/~(k) and so account for 
discrepancies between the predicted and experimentally measured 
amplitudes. 

These discrepancies arise because only elastically scattered pho- 
toelectrons contribute to the primary channel EXAFS. With a real 
scattering potential, the reduction factors are needed to account for 
effective absorptions from the photoelectron beam due to various 
inelastic scattering processes, e -9nj/~'(k) is the mean free path 
term. This accounts for the extrinsic losses (Penn 1987), those pro- 
duced by inelastic electron-electron scattering events at neighbour- 
ing atoms and in the medium in between. The constant amplitude 

Conference Proceedings 

2 approximates the losses due to multiple elec- reduction factor, So, 
tron excitations at the absorbing atom. The multiple electron exci- 
tations are caused by the creation of a core hole in addition to the 
photoelectron when the x-ray photon is absorbed. They are usually 
referred to as the 'intrinsic losses' in the literature (Bardyszewski 
& Hedin, 1985). 

Most modem EXAFS data analysis programs use a complex ex- 
change and correlation potential to model the extrinsic inelastic 
effects, for example the H-L potential (Hedin & Lundqvist, 1969) 
used in the standard Daresbury package EXCURV92 (Binsted et al, 
1992). The H-L potential approximates the effect of the electron- 
electron interactions as the photoelectron propagates between the 
central and neighbouring atoms. This potential gives rise to com- 
plex phase shifts in equation (1) and therefore reduces the ampli- 
tude of the EXAFS without the need for ad hoc reduction param- 
eters. We shall now proceed to calculate the amplitude of the EX- 
AFS in the presence of the H-L potential. 

2. Calculation 
We could, in principle, use a program such as EXCURV92 to in- 
vestigate the effect of the H-L potential on the EXAFS amplitudes. 
The full EXAFS could be calculated both in the presence and the 
absence of the imaginary part of the H-L potential and the am- 
plitudes compared. However for the sake of ease of computation 
we choose to evaluate the EXAFS in the first Born approximation. 
This approach gives the standard textbook results in the case of an 
isolated atom (Bransden and Joachain 1983). 

Standard single electron EXAFS theory may be developed 
within the 'muffin tin' approximation using the Hartree photoelec- 
tron Greens function, Gc(r, r'), and the basis state wave function, 
dpo(kr). Where ¢o(kr) = ~-~tm 27rztei6' Rl(kr)Yzm(÷)Yt~([¢) 
inside the muffin tin, and Rt(kr)  is a regular solution of the 
SchrOdinger equation in the presence of the atomic potential and 
the real part of the H-L potential. We examine the effect of the 
imaginary part of the H-L potential, 1/'i, on the EXAFS by treat- 
ing it as a perturbation on the wave functions, ¢o(kr). V] is 
zero outside each of the muffin tin spheres. To first order in VI, 
¢1 (kr) = ¢o (kr) + Gc (r, r') VI (r')¢o (kr). Outside the muffin tin 
the perturbed basis state is then found to have the same functional 
form as dpo(kr). The phase-shifted parts are merely multiplied by 

k,,~ (Rtl l,"t I Rt) } which we can subsume into the a factor { 1 + n--r 
phase shifts making 3t complex. Using the complex phase shifts, 
6~ = ~l + ~2kn-~ (Rz I VII Rz), in the expression for the basis state 
wave functions and in the Hartree Greens function we may pro- 
ceed with the standard theoretical treatment to derive the EXAFS 
in a form similar to equation ( 1 ), 

kR~ --~-(R, I V, I R,) } 

x sin(2krj  + 2~j(k,r)  + e j ) .  (2) 

In equation (2) l is the angular momentum of the relevant photo- 
electron final state and the perturbed backscattering factor, f~ (k), 
is given by, 

z { km } 
g ( k )  = ~-~ ~ ( - - 1 ) L ( 2 L + I )  1 -- --~-<RLI v, I  RL>e 2'6L , 

L 
(3) 

Comparing equations ( ! ) and (2) we can easily see that the ampli- 
tude reduction produced by the imaginary part to the H-L potential 
is given by, 

2kin <Rz I Vzl Rt> } lY;(k)l (4) 
A = t 1 - ~ J I f~(k) l  

@ 1999 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

Journal of Synchrotron Radiation 
ISSN 0909-0495 @ 1999 



1.0 We calculate the radial wave functions used in equation (4) by 
numerically integrating out the Schr6dinger equation to the edge 
of the muffin tin sphere. The calculated phase shifts are then used 

to evaluate f j  (k) and f~ (k). 

The exchange and correlation potential is also evaluated numer- 
ically. We follow a scheme outlined by Lee and Beni (Lee & Beni, 
1976) who first developed the H-L potential for EXAFS calcula- 
tions by applying standard results for the electron self energy in a 
homogeneous electron gas within a local density formalism. The 
self energy is calculated using the single plasmon pole approxi- 
mation in which the elementary excitations of the electron gas are 
replaced by a single plasmon-like absorption for all wavevectors. 
This absorption is weighted so as to exhaust the sum rule on the di- 
electric function (Hedin & Lundqvist, 1969). Thus the H-L poten- 
tial should include all the relevant inelastic electron-electron scat- 
tering events. 
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Figure 2 
Calculated and best fit EXAFS reduction factors plotted against photo- 
electron wave vector for Copper. 

3. Results 

The EXAFS amplitude is calculated using equation (4) for three 
elements: Silicon, Copper and Silver. This is then compared to 
known values of the empirical parameters, s2o(k) and e -2nj/x(k) ,  
fitted using the real X-alpha potential for the three elements with 
the data analysis program EXCURV92. The best fit values of so 2 
and an effective, constant, imaginary potential, VPt, were found 

2 2 to be So = 0.72 4- 0.1 for Silicon, So = 0.70 4. 0.1 for Cop- 
per, and so 2 = 0.67 4. 0.15 for Silver. The VpI values used 
were: - 4 . 0 e V  4. 0 .2eV for Silicon, - 4 . 0 e V  + 0.2eV for Cop- 
per and - 6 . 3 e V  4. 0 .2eV for Silver where the quoted uncertain- 
ties are 2a errors. The mean free path term is calculated from 
the constant imaginary potential, VpI,  using the standard relation 

A(k) = h 'Zk/mVpt .  
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Figure 1 
Calculated and best fit EXAFS reduction factors plotted against photo- 
electron wave vector for Silicon. 
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Figure 3 
Calculated and best fit EXAFS reduction factors plotted against photo- 
electron wave vector for Silver. 

In figures 1, 2 and 3 we plot the calculated amplitude as a func- 
tion of the photoelectron wave-vector, k, in ,~1-x. The solid band 

2 e-2Rj/X(k) shows the product of the fitted values of so and within 
the limit of experimental error. We can clearly see that the losses 
obtained from the H-L potential agree with the total reduction 
given by the semi-empirical reduction parameters and must there- 
fore overestimate that produced by the mean free path effects alone. 
Over the range of a typical EXAFS spectrum, 4:1.- 1 to 14)1- x, the 
calculated reduction parameters lie within the error range of the 
best fit experimental data. We measure the correlation between our 
calculations and the fitted empirical parameters in this region using 

the R-factor, R = ~ [expt-theorlt[ X 100%. We find R = 4.9% 
E [expt[ 

for Silicon, R = 6.5% for Copper, and R = 10.4% for Silver. 
These uncertainties are much lower than those observed in the best 
fit parameters for the various elements: 15.5% for Silicon, 16.1% 
for Copper and 24.4% for Silver, which suggests that the reduction 
given by the H-L potential is equivalent to that produced by the 
semi-empirical reduction parameters. 

EXCURV92 was also used to fit values for the adjustable pa- 
2 rameter, so, using the H-L potential. We found values of s2o(k) = 

0.92 4- 0.10 for Silicon, S2o(k) = 1.05 4- 0.05 for Copper and 
S2o(k) = 1.02 4- 0.05 for Silver. These values are all consistent 
with unity which again would suggest that, empirically, the H-L 
potential accounts for all of the losses to the EXAFS. 
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At low x-ray energies the calculated results exhibit unphysical 
behaviour. Close to the edge the calculated amplitude does not vary 
from unity until, at about k -,~ 3 ~  -1 , it cuts in rapidly to its min- 
imum value. This low energy cut off is a feature of the H-L po- 
tential. No inelastic scattering events are possible until the photo- 
electron is above the minimum plasmon energy. Above this energy 
the reduction cuts in rapidly because most of the contribution to 
the imaginary part of the H-L potential comes from the region of 
almost constant electronic density close to the edge of the muffin 
tin. 

A theoretical model by Thomas (Thomas, 1984) suggests that 
the reduction factor should vary smoothly from unity to its full 
strength within about 5 0 e V  above the edge. Our calculations do 
not show this smooth energy dependence because the H-L poten- 
tial does not include single electron excitations with energies below 
the minimum plasmon energy. At higher energies these single elec- 
tron events are included by appropriately weighting the plasmon 
excitation strength, thus this failure only occurs at low k. 

At high k the H-L potential overestimates the EXAFS ampli- 
tudes. The H-L potential models the extrinsic loss effects and so, 
like the mean free path term it will disappear at high energies. From 
Figures 1, 2 and 3 it is clear that the calculated amplitudes are still 
increasing at k = 15~ -x.  The H-L potential itself varies as 1 / k  

at large k, and, as the radial wave functions, Rt (kr) ,  are also pro- 
portional to 1 / k  at high energies, the EXAFS amplitudes given 
by the H-L potential will obviously tend to unity. However, using 
the sudden approximation we can show that the intrinsic loss pa- 
rameter, and hence the total amplitude reduction, should tend to a 
constant value of about 0.7 at high photoelectron energies (Rehr et 

al, 1978, Roy & Gurman, 1997). This is because the H-L potential 
does not include a contribution from the core hole. In the region of 
energy appropriate to the EXAFS it merely overestimates the mean 
tree path effects in order to obtain the correct amplitude reduction 
factors. Indeed, an explicit calculation of the mean free path using 
the H-L potential gives values much shorter than those observed 

experimentally. 

4. Conclusion 

We have calculated the effect of the imaginary part of the H-L po- 
tential on the EXAFS amplitude using a perturbation series to first 
order in VI (r).  We find that the H-L potential overestimates the 
losses to the EXAFS due to the finite photoelectron mean free path 
alone. However, it happens to give excellent agreement with the to- 
tal experimental losses in the range of most EXAFS data analysis. 

Empirically the H-L potential accounts for all of the losses to 
the EXAFS amplitudes. We therefore conclude that it should not 

2 be necessary to use the additional amplitude fitting parameters, So 
and e -2n~/;'(k), when data fitting with the H-L potential. 

However the H-L potential is 'merely a phenomenological 
model that happens to work for the EXAFS' (Tyson 1991). It also 
does not exhibit the correct behaviour at very high and low pho- 
toelectron energies. As such the development of a more accurate 
exchange and correlation potential for use in EXAFS calculations 
would be desirable. 
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