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Angular and spatial profiles of undulator radiation have been investigated to

derive a universal function that evaluates the brilliance of undulator radiation

and takes into account the effects of electron beam emittance and energy

spread. It has been found that the effects of energy spread on the angular

divergence and source size can be expressed by simple analytic expressions, and

a universal brilliance function has been derived by convolution with the electron

beam distribution functions. Comparisons with numerical results have been

carried out to show the validity and applicability of the universal function.
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1. Introduction

Brilliance, which is usually defined by the photon flux density

in the phase space spanned by position and angle, is a common

figure of merit to specify the performance of a synchrotron

radiation (SR) source. It specifies the number of photons in

the phase space, and thus is strongly associated with the

throughput of a SR beamline.

Strictly speaking, brilliance should be calculated by the

method based on the theory of Wigner (Kim, 1986) as a

function in four-dimensional phase space (x, y, x0, y0). The

brilliance distribution should then be convoluted with the

electron beam distribution function in order to take into

account the effects of the emittance and energy spread. If the

experimental users of SR need to know the exact profile of

brilliance in the four-dimensional phase space, the above

method should be adopted. In practice, however, the brilliance

is usually evaluated only on-axis, i.e. at the observation point

x = y = x0 = y0 = 0 (on-axis brilliance, hereinafter simply called

brilliance), just to represent the performance of a SR source.

It is well known that the brilliance is quite sensitive to the

quality of the electron beam: lower beam quality results in

significant degradation of brilliance, especially in the case of

undulator radiation (UR). It is therefore important to eval-

uate the effects of the electron beam quality, such as the

emittance and energy spread. This actually requires a

complicated numerical analysis using a large number of

parameters to specify the SR source and accelerator perfor-

mance, which is usually bulky for those who are not familiar

with numerical methods or accelerator physics. This is the

reason why a number of computer codes have been developed

(Walker & Diviacco, 1991; Chubar & Elleaume, 1998; Tanaka

& Kitamura, 2001) to compute the brilliance of various kinds

of SR sources. Although the brilliance can be precisely eval-

uated by means of these codes, it takes some time to obtain the

computation results. In addition, these codes do not help the

SR users understand the mechanism of how the electron beam

quality contributes to the brilliance degradation.

Instead of the numerical analysis described above, a simple

method can be applied, in which the brilliance is obtained by

dividing the total photon flux by the effective optical emit-

tance obtained by convolution between the natural optical

emittance determined by the diffraction limit, and the electron

beam emittance. This method enables the brilliance calcula-

tion only with computation of the Bessel functions of the first

kind and several elementary functions, and thus has usually

been used to evaluate the performance of a SR facility. It

should be noted, however, that the effect of the energy spread

is assumed to be negligible in the above method. This

assumption is valid if the effect of the beam emittance is much

larger than that of the energy spread, which is the case for a

typical third-generation SR facility with a beam emittance of

10�8 m rad and an energy spread of 10�3.

Although the above conventional method can be applied in

many cases, care should be taken if the undulator periodic

number is large and/or the harmonic number of UR is high.

Furthermore, the effect of the energy spread can be compar-

able with or larger than that of the finite emittance in SR

facilities that accommodate accelerators to generate a high-

quality electron beam, which will soon be available thanks to

the evolution of accelerator theories and technologies, such as

ultra-low-emittance storage rings or energy recovery linacs. In

a worst case, the conventional method can overestimate bril-

liance in such SR facilities by up to two orders of magnitude.

Thus the conventional formula should be improved to take

into account the effects of the energy spread as well as the

emittance for more precise evaluation of brilliance.

In this paper, a new analytic expression is derived as a

universal function to evaluate the brilliance of UR. Then the

universal function is compared with the conventional method

and numerical analysis in order to investigate its validity and

applicability.



2. Analytical method

2.1. Basic formulae on UR

Let us first start with the complex amplitude of radiation

emitted by a single electron, which is given by the temporal

Fourier transform of the electric field (Chubar & Elleaume,

1998; Tanaka & Kitamura, 2001),

E! ¼
e

4�"0c
i!

Z1
�1

1

Rðt0Þ
bðt0Þ � 1þ

ic

!Rðt0Þ

� �
nðt0Þ

� �

� exp½i!tðt0Þ� dt0

�
e

4�"0c
F!; ð1Þ

with

Rðt0Þ ¼ r� r0ðt0Þ;

nðt0Þ ¼ Rðt0Þ=R;

tðt0Þ ¼ t0 þ Rðt0Þ=c;

where "0 is the dielectric constant of vacuum, c is the speed of

light, e is the electron charge, ! is the photon energy, r = (X, Y,

Z) is the position of observation, and r(t0) = (x, y, z) and b(t0) =

(�x, �y, �z) specify the position and velocity of the electron at

the retarded time t0. Using the complex amplitude F!, the

spatial flux density at r is calculated as

d2N

dS d!=!
¼

�

4�2
jF!j

2; ð2Þ

where � is the fine-structure constant.

Under the far-field approximation, i.e. |r|� |r0| and R ’ r =

a constant, equation (1) is simplified to

F! ¼
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where � is the Lorentz factor of the electron and we have

introduced the observation angles �x,y and changed the inte-

gration variable from t0 to z/c.

Now let us consider the complex amplitude of radiation for

the planar undulator with the number of periods N. Assuming

that the magnetic field is ideal, i.e. purely sinusoidal in the

vertical plane, the relative velocity is given by

�xðzÞ ¼
K=�ð Þ cosðkuzÞ jzj � N�u=2;

0 jzj >N�u=2;

�

�yðzÞ ¼ 0;

where �u is the periodic length and K is the deflection para-

meter of the undulator.

Substituting the above formulae into equation (3) and

expanding into a Fourier series, we have

F! ¼ N
X

n
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with
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where !n is the peak energy of the nth harmonic radiation.

Equation (4) gives the complex amplitude observed at a

position far from the source point and thus gives the angular

distribution. The spatial distribution at the same position is

obtained by the spatial Fourier transform of F!. In order to

evaluate the brilliance, however, we need to know the distri-

bution functions at the source point, i.e. the beam waist

position, which can be found by propagating the radiation

back to the source point. From the theory of wave optics, it is

found that such backward propagation is given by the math-

ematical operation (see, for example, Born & Wolf, 1984)

F!;o ¼ F! exp �i
!�2Z

2c

� �
;

where we have assumed that the distance from the source

point to the observer equals Z, which is valid because the

source point of UR exists at the mid-point of the undulator.

Substituting equation (4) into the above formula, we have

F!;o ¼ N
X

n

fnð�; �x; �yÞ sinc n�N
!� !nð�; �Þ

!nð�; �Þ

� �
: ð5Þ

The function F!,o gives the angular distribution of the complex

amplitude at the source point, while its spatial Fourier trans-

form gives the spatial distribution.

Now let us consider the case when the electron has an

energy offset �� compared with a reference energy �0. Then

the complex amplitude observed at the energy !n(�0, 0), which

is the nth harmonic energy of UR for the reference electron

with �0, is given by

F!;o ’ N fnð�0; �x; �yÞ sincð�2 � �Þ; ð6Þ

with
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� ¼ �0�
n�N

1þ K2=2

� �1=2

; ð7Þ

� ¼ 2�nN��=�0; ð8Þ

where we have assumed that �� � �0. Apart from the

constant, the function F!,o is given by the product of two

factors, i.e. fn and the sinc function. The former function

denotes the complex amplitude of the nth harmonic radiation

within one undulator period and thus is a slowly varying

function of �x,y , independent of the number of periods N,

while the latter function represents the effects of the coherent

summation of radiation emitted over the total undulator

length, and is strongly associated with N. Under the condition

N� 1, which is satisfied in most SR beamlines with undulators

as light sources, the angular profile is thus dominated by the

sinc function, and equation (6) can be simplified to

F!;o ¼ N fnð�0; 0; 0Þ sincð�2 � �Þ: ð9Þ

Note that this simplification gives rise to an error in brilliance

evaluation especially for higher harmonics, as discussed later.

Equations (7)–(9) are the basic formulae for studying the

effects of electron-beam energy spread on brilliance, which

will be discussed in the following sections. Note that these

equations are valid for any types of undulators, such as the

helical, elliptical and figure-8 undulators, except that fn should

be recalculated according to the electron trajectory in the

concerned undulator, and K2 should be replaced by Kx
2 + Ky

2,

where Kx and Ky are the horizontal and vertical deflection

parameters, respectively. In addition, a reservation should be

made for even harmonics of planar undulators and for higher

harmonics (n > 1) of helical undulators, because fn vanishes

on-axis (�x,y = 0).

2.2. Angular profile

Substituting equation (9) into (2), we have the angular

profile of the flux density at the photon energy !n(�0,0),

d2N

d� d!=!
¼

d2N0

d� d!=!
sinc2
ð�2
� �Þ;

where the function d2N0/d�(d!/!) denotes the flux density on

axis (� = 0), which is given by the well known expression on

UR (see, for example, Kim, 1989),

d2N0

d� d!=!
¼ �N2�2

0 K2�2 Jnþ1
2
ðK2�=4Þ � Jn�1

2
ðK2�=4Þ

h i2

; ð10Þ

with

� ¼
n

1þ K2=2
;

where Jm is the mth-order Bessel function of the first kind.

Let us consider the effects of the energy spread of the

electron beam. Assuming the energy distribution function to

be a Gaussian function with the standard deviation 	E, we

have

d2Ne

d� d!=!
¼

d2N0

d� d!=!
Pað�; 	�Þ ð11Þ

with

Pað�; 	�Þ ¼
1

ð2�Þ1=2	�

Z1
�1

sinc2
ð�2 � �Þ exp �

�2

2	2
�

� �
d�; ð12Þ

where we have introduced the normalized energy spread 	�
defined as

	� ¼ 2�nN	E: ð13Þ

Fig. 1(a) shows the graphical plot of Pa for different values of

	�. It is found that the peak value at � = 0 decreases and the

peak is broadened as 	� increases.

Let us approximate the function Pa by the two-dimensional

Gaussian function with the standard deviation 	�, i.e.

Pað�; 	�Þ ¼ Pað0; 	�Þ exp �
�2

2	2
�

� �
:

Integrating over �, we have

	� ¼
Sað	�Þ

2�Pað0; 	�Þ

� �1=2

; ð14Þ

with

Sað	�Þ ¼ 2�
R

�Pað�; 	�Þ d�:

Now let us show that Sa is independent of 	� and is equal to

�2/2. First let us modify the above equation as follows,
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Figure 1
(a) Angular profile function Pa and (b) spatial profile function Ps for
different values of 	�.



Sa ¼ �

Z1
0

d#

Z1
�1

d�
1

ð2�Þ1=2	�
sinc2# exp �

ð#� �Þ2

2	2
�

� �

� �

Z1
0

d# Ið#Þ:

Thus, Sa is the area of Ið#Þ obtained by integrating from 0 to

1. The function Ið#Þ is obtained by convoluting sinc2# with

the Gaussian function having the total area (obtained by

integrating from �1 to 1) of unity. From the theory of

convolution, it is therefore obvious that the total area of Ið#Þ is
the same as that of sinc2#, i.e. �. In addition, Ið#Þ is an even

function because both sinc2
ð#Þ and the Gaussian function are

even functions. Thus we obtain Sa = �2/2.

As for Pað0; 	�Þ, the integration can be performed analyti-

cally to give

Pað0; 	�Þ ¼
1

ð2�Þ1=2	�

Z1
�1

sinc2� exp �
�2

2	2
�

� �
d�

¼
�1þ expð�2	2

� Þ þ ð2�Þ
1=2	�erfð21=2	�Þ

2	2
�

; ð15Þ

with

erfðxÞ ¼
2

�1=2

Zx

0

exp �t2
� �

dt

being the Gauss error function.

Now we can calculate the angular divergence 	r0 of UR with

the effects of the energy spread taken into account. Substi-

tuting the above results into equation (14) and considering

equation (7), we have

	r0 ð	�Þ ¼
1

�0

1þ K2=2

�nN

� �1=2
Sa

2�Pað0; 	�Þ

� �1=2

¼
�n

2L

� �1=2

Qað	�Þ ¼ 	r00Qað	�Þ; ð16Þ

with

�n ¼ 2�c=!nð�0; 0Þ;

QaðxÞ ¼
2x2

�1þ expð�2x2Þ þ ð2�Þ1=2x erfð21=2xÞ

� �1=2

; ð17Þ

where �n is the wavelength of the nth harmonic radiation and

L is the total length of the undulator. The parameter 	r00,

which is the angular divergence of UR at 	� = 0, is the well

known expression found in textbooks on SR (see, for example,

Kim, 1989). Equation (16) indicates that the angular diver-

gence grows according to the energy spread by the factor Qa .

Fig. 2(a) shows a graphical plot of the growth factor Qa =

	r0 ð	�Þ=	r00 as a function of the normalized energy spread 	�.
Note that Qa has a minimum value of 1 at 	� = 0, and becomes

greater for larger 	� values. For example, Qa reaches 2 around

	� = 5, meaning that the angular divergence is doubled owing

to the effects of the energy spread.

2.3. Spatial profile

Next, let us investigate the spatial profile of the flux density

at the source point, which is given by taking the square of the

spatial Fourier transform of F!,o ,

~FF!;oðqÞ ¼

Z
dk F!;o expðik 	 qÞ

¼
8�2

�n�u

fnð�0; 0; 0Þ

Z1
0

d# J0ð2�#
1=2RÞ sincð#� �Þ; ð18Þ

with

R ¼



�n�0

1þ K2=2

�nN

� �1=2

ð19Þ

being the normalized radial coordinate. Now we have the

spatial profile of the flux density at the source point,

d2N

dS d!=!
/ Ps R; 	�

� �
;

with

PsðR; 	�Þ ¼
1

ð2�Þ1=2	�

Z1
�1

d� exp �
�2

2	2
�

� �

�

Z1
0

d# J0ð2�#
1=2RÞ sincð#� �Þ

������
������

2

:

If the Gaussian approximation is possible, which has been

used to obtain the angular divergence in the previous section,

the standard deviation of Ps, i.e. the normalized source size

�R , can be determined by
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Figure 2
Effects owing to the energy spread of the electron beam on (a) the
angular divergence and (b) the source size. The blue (dashed) line in (b)
shows the fitting function to approximate the source size growth factor.



�Rð	�Þ ¼
Ssð	�Þ

2�Psð0; 	�Þ

� �1=2

; ð20Þ

with

Ssð	�Þ ¼ 2�
R1
0

RPsðR; 	�Þ dR:

Then the source size of UR, which is denoted by 	r, is given by

	rð	�Þ ¼ �Rð	�Þ�n�0

�nN

1þ K2=2

� �1=2

¼ 2�3=2�Rð	�Þ	r0;

with

	r0 ¼
2�nLð Þ

1=2

4�
;

where 	r0 is the well known expression for the source size of

UR at 	� = 0 (see, for example, Kim, 1989).

Fig. 1(b) shows a graphical plot of Ps for difference values of

	�. It is found that the peak value at R = 0 increases and the

peak shrinks as 	� increases. It should be noted, however, that

a long-range tail exists together with the narrow peak around

R = 0 for larger values of 	�. Owing to this tail, the Gaussian

approximation is not valid and thus equation (20) is not

available for larger values of 	�. Thus we have to modify the

above equation in order to utilize the Gaussian approximation

as follows.

First, we convolute Ps with the Gaussian function with a

standard deviation �ref. If �ref is large enough, the resultant

spatial profile P 0s can be well approximated by the Gaussian

function. Then the normalized source size �0R, which is

determined by P 0s, is obtained by applying the same method as

in the previous section. Namely,

�0Rð	�Þ ¼
Ssð	�Þ

2�P 0sð0; 	�Þ

� �1=2

;

with

P 0sð0; 	�Þ ¼
1

�2
ref

Z
dR PsðR; 	�ÞR exp �2R2=�2

ref

� �
:

Because �0R is regarded to be the convolution between �ref

and �R, we have

�R ¼ �0R
2
��2

ref

� 
1=2

: ð21Þ

The value of �ref should be determined to meet two

requirements. Firstly, the convoluted profile P 0s can be well

approximated by the Gaussian function. Secondly, �0R is not

significantly different from �R . In order to meet the two

requirements, we have repeated numerical analysis and found

the reasonable condition that �ref = 1/�3/2. It is interesting to

calculate the source size 	ref that corresponds to the normal-

ized source size �ref, namely,

	ref ¼ 2�3=2�ref	r0 ¼ 2	r0: ð22Þ

As shown later, 2	r0 is found to be the source size of UR at

	� = 0.

Let us define the function Qsð	�Þ as

Qsð	�Þ ¼ 	r=	r0 ¼ 2�3=2�Rð	�Þ; ð23Þ

which is regarded to be the growth factor of the source size

according to the energy spread.

Fig. 2(b) shows a graphical plot of Qsð	�Þ obtained by the

numerical analysis described above. It should be noted that

Qsð0Þ = 2, meaning that the source size of UR obtained with

the current analysis is larger than the well known expression

by a factor of 2. This discrepancy is attributable to the

difference in the method of analysis. The well known

expression is derived based on the assumption that both the

spatial and angular profiles are given by the Gaussian function

and thus UR is like a single-mode laser, which is not neces-

sarily valid. Although we also use the Gaussian approximation

to determine the angular divergence and source size, the

spatial profile has been derived by the spatial Fourier trans-

form of the angular distribution of the complex amplitude,

which is more reasonable. The brilliance degradation of UR

owing to the non-Gaussian angular profile has also been

pointed out by Kim (1986). In addition, the discrepancy may

become more pronounced at the detuned photon energy ! =

!n (Coisson, 1988), which is out of scope in this paper.

It is worth noting that the function Qs can be well fitted

using the function Qa,

QsðxÞ ¼ 2 Qaðx=4Þ
	 
2=3

: ð24Þ

The above fitting function is plotted in Fig. 2(b) to be

compared with the results obtained by the numerical analysis,

where we find a good agreement between the two. Herein-

after, we use the above fitting function to calculate Qs .

2.4. Evaluation of brilliance

Having determined the angular divergence and source size

with the effects of the energy spread taken into account, let us

now evaluate the brilliance, which is given by

B ¼
F

4�2�x�x0�y�y0
; ð25Þ

where F is the total flux of radiation emitted over the whole

solid angle, and �x0;y0 and �x;y are the angular divergence and

source size of the photon beam in the horizontal and vertical

directions, respectively. Using the formulae derived in the

former sections, we have

F ¼ 2�	2
r00

d2N0

d� d!
; ð26Þ

�x0 ¼ 	2
x0 þ 	

2
r00Q2

a

� �1=2
; ð27Þ

�x ¼ 	2
x þ 	

2
r0Q2

s

� �1=2
; ð28Þ

and similar equations for y, where 	x0 and 	x are the angular

divergence and beam size of the electron beam in the hori-

zontal direction, respectively. Note that we have omitted the

argument 	� of the function Qa and Qs for simplicity. Equa-

tions (13), (17) and (24)–(28) form a universal function to
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evaluate the brilliance of undulator radiation, which takes into

account the finite emittance and energy spread of the electron

beam. This is the conclusion of the discussions so far. Note

that the expression on brilliance by the conventional method

is obtained by substituting Qa,s = 1 into equations (27) and

(28). This means that the conventional formula has been

derived with an assumption that the UR is a Gaussian beam

and the effects of the energy spread are negligible.

Assuming that the position of the electron beam waist is

placed at the source point (mid-point of the undulator) and

that the dispersion function is zero, the above equation is

simplified to

�x0�xð Þ
2
¼ "2

x þ 2"x"�QsQaGð�x=�oÞ þ ð"�QsQaÞ
2
� E2

x;

with

GðxÞ ¼ xþ x�1
� �

=2;

"� ¼
�n

4�
;

�o ¼
L

2�

Qs

Qa

;

where �x is the horizontal betatron value at the mid-point of

the undulator, and Ex can be regarded as the emittance of the

photon beam with the effects of the electron beam emittance

and energy spread (effective optical emittance), while "� is the

optical emittance of the Gaussian beam at a wavelength of �n.

The factor G(�x/�o) has a minimum value of 1 when �x = �o,

then Ex is simplified to

Ex ¼ "x þ "�QaQs:

Thus the effective optical emittance is given by a simple

summation of the electron beam emittance ("x), and the

natural optical emittance ("�) multiplied by the growth factor

(QaQs) determined by the energy spread, if the betatron

function is optimized.

3. Comparison with numerical results

In order to examine the validity of the expressions derived so

far, comparisons with numerical results have been made using

SPECTRA (Tanaka & Kitamura, 2001), the computer code for

numerical analysis on SR characteristics. For this purpose, the

code has been revised to implement the function to calculate

the spatial profile at the source point with the effects of the

energy spread taken into account, which was not implemented

in the former version. The brilliance is then evaluated by

dividing the angular flux density by the source size, which is

obtained from the spatial profile at the source point.

The accelerator and undulator parameters of the third-

generation SR facility SPring-8 have been used for the bril-

liance calculation, and are summarized in Table 1. The length

of the standard straight section (S) is around 5 m, in which in-

vacuum undulators with L = 4.5 m and �u = 32 mm are usually

installed for X-ray beamlines. In addition to S, SPring-8 has

four long straight sections (LSs) of length 27 m, and a 25 m in-

vacuum undulator has been installed in one of them. Because

of the large number of periods, the brilliance available with

the long undulator in a LS is expected to be sensitive to the

energy spread, and thus is well suited for examination of the

calculation method.

The brilliance calculations have been carried out for

harmonics between the first and 11th by three different

methods, i.e. the numerical method with SPECTRA, the

universal function derived in the former sections, and the

conventional formula.

Figs. 3(a) and 3(b) show the results of calculations in the

case of S and LS undulators, respectively. It is found that the

conventional formula overestimates the brilliance under all

the conditions, and the overestimation depends on the

harmonic number and the undulator type, i.e. the undulator

length. In other words, the brilliance evaluation with the

conventional formula is not reliable for large values of the

normalized energy spread 	�. On the other hand, we find a

good agreement between the results of the numerical analysis

and universal function when the harmonic number is less than,

for example, 7. For larger harmonic numbers, the universal

function overestimates the brilliance to some extent.

In order to understand the overestimation of brilliance at

higher harmonics, let us derive the angular profile of the flux

density without approximation. By using equation (6) instead

of its simplified form (9), we have

d2Ne

d� d!=!
¼

d2N0

d� d!=!

nð�x; �yÞPað�; 	�Þ; ð29Þ

with


nð�x; �yÞ �
jfnð�0; �x; �yÞj

2

jfnð�0; 0; 0Þj2
:

Note that the universal function has been derived under the

approximation


nð�x; �yÞ ¼ a constant ¼ 1: ð30Þ

research papers

J. Synchrotron Rad. (2009). 16, 380–386 Tanaka and Kitamura � Brilliance of undulator radiation 385

Table 1
Accelerator and undulator parameters used in the comparisons.

Straight section

S LS

Accelerator parameters
Electron energy 8 GeV 8 GeV
Average current 100 mA 100 mA
Natural emittance 3.4 � 10�9 m rad 3.4 � 10�9 m rad
Energy spread 0.001 0.001
Coupling constant 0.002 0.002
�x 22.28 m 21.7 m
�y 5.61 m 14.05 m
�x 0.11 m 0.103 m

Undulator parameters
�u 32 mm 32 mm
K 2 2
h- !1 6330 eV 6330 eV
L 4.5 m 25 m



It has been shown in x2.3 that integration of Pa over � is

constant and thus the total flux F obtained by integrating (29)

is found to be independent of the normalized energy spread 	�
as long as the approximation (30) is valid.

In order to examine the applicability of (30), we have

calculated the horizontal angular profiles of 
n for two

different harmonic numbers, 1 and 11, which are plotted in

Fig. 4. It is found that 
1 is a slowly varying function of �x,

while 
11 oscillates rapidly. We now find that F decreases more

rapidly as 	� for larger n, which is easily understood by looking

to the angular profiles of the two factors Pa and 
n shown in

Figs. 1(a) and 4, respectively. In other words, the approxima-

tion (30) becomes less accurate for larger n and N, and the

universal function tends to overestimate the brilliance, which

coincides with the results shown in Fig. 3.

4. Summary

New analytical expressions have been derived as a universal

function to evaluate the brilliance of UR, and have been

examined by comparing with numerical analysis. It has been

found that the brilliance can be evaluated precisely by the

universal function, although care should be taken on its use for

higher harmonics.

The universal function contains two special functions, i.e.

the Bessel function of the first kind and the Gauss error

function. The former function is also contained in the

conventional formula, while the latter function can be well

approximated by a combination of elementary functions (see,

for example, Stoer & Bulirsch, 1991). Thus the universal

function is easily utilized not only by experts on SR but also by

those who are not familiar with the numerical method on SR.

Although the brilliance can be evaluated precisely by the

numerical codes as already mentioned in the Introduction, the

universal function derived in this paper is useful for many

applications. For example, it can be easily implemented not

only in general-purpose computer software for investigating

the performance of SR sources but also in specialized codes

written for a variety of purposes.
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Figure 4
Graphical plot of the function 
n for the harmonic numbers 1 and 11.

Figure 3
Comparison of brilliance calculated by three different methods. Red
(squares): numerical method using SPECTRA; blue (circles): conven-
tional formula; green (triangles): universal function. The calculations
have been made for harmonic numbers between 1 and 11 in the case of
undulators in (a) S and (b) LS, respectively.
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