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Modern X-ray free-electron lasers (XFELs) operating at high repetition rates

produce a tremendous amount of data. It is a great challenge to classify this

information and reduce the initial data set to a manageable size for further

analysis. Here an approach for classification of diffraction patterns measured in

prototypical diffract-and-destroy single-particle imaging experiments at XFELs

is presented. It is proposed that the data are classified on the basis of a set of

parameters that take into account the underlying diffraction physics and specific

relations between the real-space structure of a particle and its reciprocal-space

intensity distribution. The approach is demonstrated by applying principal

component analysis and support vector machine algorithms to the simulated and

measured X-ray data sets.

1. Introduction

Conventional X-ray studies on small biological samples are

generally limited for two major reasons. First, well established

X-ray crystallographic methods are applicable only to suffi-

ciently large crystals and these cannot be crystallized for all

systems of interest (Drenth, 2007). Second, in X-ray imaging

of non-crystalline biological samples radiation damage limits

achievable resolution to a few tens of nanometres

(Henderson, 1995; Howells et al., 2009). The single-particle

diffractive imaging approach (Gaffney & Chapman, 2007;

Aquila et al., 2015) may allow the second limitation to be

overcome and increase the resolution of biological objects to

the sub-nanometre range in X-ray experiments at X-ray free-

electron lasers (XFELs).

High-power XFELs (Emma et al., 2010; Ishikawa et al.,

2012; Altarelli et al., 2007) with a femtosecond pulse duration

can be used to perform structure determination experiments

on single particles (Gaffney & Chapman, 2007; Seibert et al.,

2011; Mancuso et al., 2010). In these experiments, reproducible

particles in random orientations are injected into the XFEL

beam [see Fig. 1(a)]. If X-ray diffraction patterns can be

measured before there is any notable radiation damage to the

particles (Neutze et al., 2000; Lorentz et al., 2012; Gorobtsov et

al., 2015) then the three-dimensional structure of a particle

can be reconstructed from these patterns. Such a ‘diffract and

destroy’ approach has been successfully applied to study the

structure of protein nanocrystals (Chapman et al., 2011;

Boutet et al., 2012) using classical crystallography approaches

for Bragg peaks analysis.
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Single-particle diffractive imaging, in fact, requires the

measurement of a large number of diffraction patterns from

particles in different orientations, in order to sufficiently

sample the three-dimensional intensity distribution in reci-

procal space. To determine this three-dimensional intensity

distribution a large measured data set should go through a few

steps of preprocessing (Gaffney & Chapman, 2007). These

preliminary steps include an image classification procedure

and orientation analysis. The latter has been discussed in

detail elsewhere (Loh & Elser, 2009; Fung et al., 2009; Yefanov

& Vartanyants, 2013) and in this paper we focus on classifi-

cation algorithms.

The necessity of image classification arises owing to the

technical aspects of single-particle X-ray diffraction experi-

ments where not all of the measured diffraction patterns

contain useful information about the object of interest. Most

of the measured images contain only background scattering

or blank frames, some may contain diffraction from water

droplets or even from some contaminant. In single-particle

experiments it is also desirable to distinguish images that

originate from multiple particles (Hantke et al., 2014). While

these data cannot be used in a classical single-particle imaging

(SPI) technique, they could be treated by the X-ray cross-

correlation analysis (XCCA) approach (Kurta et al., 2013a;

Pedrini et al., 2013; Saldin et al., 2011) along with single-

particle hits, provided that the inter-particle interference

contribution from multiple particles can be neglected. In this

way one can substantially increase the amount of useful data

measured in imaging experiments at XFELs.

It is, therefore, necessary to classify the measured images

before applying an orientation determination procedure, and

use only those ones that originate

from the particle of interest. While it

is possible to perform such classifica-

tion manually, this would be a very

time-consuming procedure, consid-

ering that the expected number

of measured diffraction patterns

in a typical single-particle imaging

experiment can be of the order 105–

106 or even larger. Significant reduc-

tion of the initial data set can be

performed online during the X-ray

experiment; for example, using the

real-time image rejection based on

the signal measured by an ion time-

of-flight spectrometer (Andreasson et

al., 2014). However, further classifi-

cation is required to reach the input

data quality required for the sub-

sequent orientation determination

procedure. All of this motivates the

development of efficient computa-

tional methods for diffraction pattern

classification.

Recently, computational methods

for single-particle data classification

were proposed that are based on principal component analysis

(PCA) or spectral clustering (Yoon et al., 2011), and also on

particle size filters determined via image autocorrelation

functions (Andreasson et al., 2014). Practically, it is very likely

that robust data classification will be achieved by combining

several different approaches; therefore, the development of

novel methods of data classification and extension of already

existing ones is an important task.

In image processing, various methods for data classification

are based on the extraction and analysis of a so-called

‘feature’. Such methods are used in face recognition (Yang et

al., 2004), computer vision (Viola & Jones, 2001), linguistics

(Sebastiani, 2002) and data mining (Berkhin, 2006). The

feature itself represents a small set of parameters which

encompass the most valuable information about the object of

interest that can be used for data classification. In this paper,

we present an approach for X-ray diffraction patterns classi-

fication based on PCA (Jolliffe, 2002) and support vector

machine (SVM) (Cortes & Vapnik, 1995) algorithms. The

basic idea of our approach is that the feature vector can be

composed of parameters that take into account the underlying

diffraction physics and relations between the real-space

structure of a particle and its reciprocal-space intensity

distribution.

The paper is organized as follows: in x2 we provide a

theoretical basis for our approach of image compression and

feature extraction; in x3 we describe the two data sets that

were used in the development of our approach; in x4 we

demonstrate the results of diffraction pattern classification

using PCA and SVM algorithms, and complete the paper with

a summary.
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Figure 1
(a) Generic scheme of the SPI experiment. Typical simulated diffraction patterns for different
particles: (b) BTV protein, (c) adenovirus protein, (d) water droplet.



2. Theoretical background

In this section, we present a method for feature extraction

from the measured diffraction patterns. We propose to para-

metrize the feature vector in terms of the Fourier components

(FCs) of the intensity cross-correlation functions (CCFs). We

show that these functions provide useful relations between the

electron density of a particle and the scattered intensity

distribution; in particular cases leading to very compact

features. We also describe a feature vector calculation proce-

dure.

2.1. X-ray cross-correlation analysis of scattered intensities

Kinematically scattered intensity I i
ðqÞ at the momentum

transfer q from a single particle in an arbitrary orientation  i

is related to its electron density � i
ðrÞ as follows (Als-Nielsen

& McMorrow, 2011),

I i
ðqÞ ¼

�� R � i
ðrÞ expðiqrÞ dr

��2; ð1Þ

where r is a real-space coordinate. The intensity distribution

I i
ðqÞ measured in the experiment on a two-dimensional

detector represents a section of reciprocal space by the Ewald

sphere. It can be expressed in the polar coordinate system

of the detector q = ðq; ’Þ ð0<’ � 2�Þ, in the form of angular

Fourier series:

I i
ðq; ’Þ ¼

P1
n¼�1

In
q; i

expðin’Þ; ð2Þ

In
q; i
¼

1

2�

R2�
0

I i
ðq; ’Þ expð�in’Þ d’; ð3Þ

where In
q; i

are the FCs of I i
ðq; ’Þ. The set of the FCs In

q; i

calculated for all possible resolution rings q completely

determines the scattered intensity I i
ðq; ’Þ measured on a

given diffraction pattern. At the same time these FCs are

defined by the unique electron density distribution � i
ðrÞ of

the particle, which makes them attractive parameters for

identification of particles with different structures.

Angular X-ray cross-correlation analysis (Wochner et al.,

2009) is a technique that allows statistical studies of the scat-

tered intensities and provides convenient means of extraction

of the FCs In
q of intensity (Altarelli et al., 2010; Kurta et al.,

2013b). The basic component of XCCA is an angular intensity

CCF. The two-point CCFs can be defined on two resolution

rings q1 and q2 (Kam, 1977; Altarelli et al., 2010),

C i
ðq1; q2;�Þ ¼ I i

ðq1; ’ÞI i
ðq2; ’þ�Þ

� �
’
; ð4Þ

where 0 � � � 2� is the angular coordinate and h. . .i’
denotes the average over the angle ’. It can be directly shown

(Altarelli et al., 2010) that the FCs Cn
q1;q2; i

of the CCF

C i
ðq1; q2;�Þ for n 6¼ 0 are defined by the FCs of the scattered

intensity,

C i
ðq1; q2;�Þ ¼

X1
n¼�1

Cn
q1;q2; i

expðin�Þ; ð5Þ

Cn
q1;q2; i

¼
1

2�

R2�
0

C i
ðq1; q2;�Þ expð�in�Þd�; ð6Þ

Cn
q1;q2; i

¼ In�
q1; i

In
q2; i

: ð7Þ

In the particular case of cross-correlation on the same reso-

lution ring q1 ¼ q2 ¼ q, equations (4) and (7) reduce to

C i
ðq;�Þ ¼ I i

ðq; ’ÞI i
ðq; ’þ�Þ

� �
’

ð8Þ

and

Cn
q; i
¼
��In

q; i

��2; ð9Þ

respectively. In this case the magnitudes of the FCs of intensity

can be directly determined as jIn
q; i
j ¼ ðCn

q; i
Þ

1=2. The advan-

tage of applying the CCF here is that the undesirable

experimental factors (e.g. the presence of gaps between

detector tiles or masked/missing data on the measured

diffraction patterns) can be eliminated from the data analysis.

Analysis of the FCs Cn
q; i

has shown that for two-dimen-

sional particles with a certain symmetry the FCs of specific

orders n should be predominant (Altarelli et al., 2010; Kurta

et al., 2012). For example, scattering from a two-dimensional

particle with a fivefold rotational symmetry axis parallel to the

incoming beam would lead, in the case of a curved Ewald

sphere, to dominance of FCs of the orders n that are multiples

of five (n mod 5 ¼ 0), i.e. n ¼ 5; 10; 15; . . .. For a flat Ewald

sphere, the Friedel symmetry allows only even orders of

the FCs and one would observe only FCs of the orders

n ¼ 10; 20; . . .. In the case of a particle without any

pronounced symmetry, there will be no dominating compo-

nents. Therefore, simple analysis of the Fourier spectra of the

CCF could help to distinguish particles with certain rotational

symmetry and without symmetry. The feature vector in this

case can be represented by a small number of FCs of the CCF.

In the case of three-dimensional particles the situation is

more complicated because the X-ray beam scatters from a

particle in different orientations  i in each XFEL snap-shot

that leads in each case to a different spectrum Cn
q; i

. If particle

orientations are uniformly distributed, the spectra averaged

over many diffraction patterns converge to an average

hCn
q; i
i i

that can be used to distinguish between different

types of particles. Interestingly, even in the case of simulta-

neous scattering from a few identical particles in different

orientations  i, the average hCn
q; i
i i

converges to the spec-

trum of just a single particle, provided that the inter-particle

interference contribution can be neglected (Kurta et al., 2012,

2013a,b). Importantly, the q-dependence of the FCs hCn
q; i
i i

has a characteristic profile defined by a particular structure of

a particle (Kurta et al., 2012, 2013b). This brings us to conclude

that, even in the case of three-dimensional particles, the FCs

Cn
q; i

contain specific information that encodes the underlying

particle structure. We utilize these properties of the CCFs and

their Fourier spectra in our approach to distinguish diffraction

patterns originating from different sources of scattering.
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2.2. Feature vector for diffraction pattern classification

In our image classification approach we parametrize the

feature vector F in terms of the FCs of the CCF introduced in

the previous section. Here we describe a general procedure for

feature vector construction. Some practical details of data

preprocessing are discussed in Appendix A.

Owing to the specific features of an SPI experiment, infor-

mation in a diffraction pattern is distributed non-uniformly. A

beamstop may cover a central part of the diffraction pattern

and gaps between detector tiles lead to an additional loss of

information in different parts of the measured patterns. Also,

the scattered intensity decreases rapidly as a function of q, and

at higher momentum transfer values the pattern contains rare

photon counts. Therefore, in image classification it is reason-

able to analyze the intensity distribution only within a certain

region of interest (ROI) in the form of an annulus

qmin � q � qmax, where the measured signal is mostly infor-

mative (see Fig. 2 and Appendix A).

In the selected ROI the diffraction patterns typically have

noticeable differences. To parametrize these differences

quantitatively we applied to each image1 the CCF Cðq;�Þ
defined in equation (8). Determined in such a way, the two-

dimensional CCF Cðq;�Þ was subsequently averaged over the

q-range within the defined ROI in order to reduce the number

of parameters:

Cð�Þ ¼ hCðq;�Þiq: ð10Þ

The result calculated for each diffraction pattern was

normalized by the angular averaged squared intensity also

averaged over ROI:

�CCð�Þ ¼
Cð�Þ

hIðq; ’Þ2i’;q
¼

Cð�Þ

Cð0Þ
: ð11Þ

Such normalization is necessary to reduce the effect of

intensity fluctuations from one diffraction pattern to another,

owing to intensity fluctuations of the incoming XFEL beam as

well as particle position in the focused XFEL beam.

In a similar way to the CCF Cðq;�Þ, the function �CCð�Þ
defined in equation (11) can be expanded into a Fourier cosine

series,

�CCð�Þ ¼ 2
P1
n¼1

�CnCn cosðn�Þ; ð12Þ

�CnCn ¼
1

�

R�
0

�CCð�Þ cosðn�Þ d�; ð13Þ

where �CnCn are the FCs of �CCð�Þ. The FCs �CnCn constitute a

compact set of parameters that carry information on angular

features of the diffraction patterns. Typically, a limited number

m (that is much smaller than the total number of pixels on a

detector) of nonzero FCs contributes to the spectrum �CnCn,

depending on the particle structure and experimental condi-

tions (Kurta et al., 2013a,c). This helps to reduce dimension-

ality of the feature vector F and to speed up the data analysis.

Additional information about a particle can be obtained from

the normalized q-dependence of Cðq; 0Þ ¼ hIðq; ’Þ2i’ [see

equation (8)] within the defined ROI:

�CCq ¼
Cðq; 0Þ

hIðq; ’Þi2’
¼
hIðq; ’Þ2i’
hIðq; ’Þi2’

: ð14Þ

Two subsets of parameters defined by �CnCn and �CCq can differ

significantly in terms of the corresponding values of variance

determined for each subset. Therefore, the effect of one of

the subsets may be diminished compared with another, while

performing classification by means of PCA. To avoid such an

undesirable situation one can linearly transform two subsets �
and � using the weights a and b expressed by the respective

values of standard deviation,

a ¼ 1=��; b ¼ 1=��: ð15Þ

Here the values of standard deviations �� and �� are defined

as

�� ¼

�
1

Nm

PNm

n¼ 1

�
�n
�

�2
�1=2

; �� ¼

�
1

Nq

Pqmax

q¼ qmin

�
�q
�

�2
�1=2

; ð16Þ

where

�n
� ¼

1

M

PM
i¼ 1

	
�Cn
 i

Cn
 i
�
�

�Cn
 i

Cn
 i

�
 i


2

and

�q
� ¼

1

M

PM
i¼ 1

	
�CCq; i
�
�
�CCq; i

�
 i


2

:

In (16), summation is performed over Nm FCs and Nq values

in the range of q from qmin to qmax . The sum over different

orientations  i is practically realised as a sum over M

measured diffraction patterns. The weighted parameters �CnCn

and �CCq can then be used to construct the feature vector F of a

diffraction pattern as
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Figure 2
The region of interest (ROI) of a diffraction pattern, defined in the form
of an annulus qmin < q< qmax.

1 In this sub-section, similar to the previous one, all quantities are defined for a
particular particle orientation  i, with the subscript  i omitted for brevity.



F ¼
�
a �CC

1
; . . . ; a �CC

m
; b �CCqmin

; . . . ; b �CCqmax

�
: ð17Þ

The resulting feature vector is determined by the particle

structure and its orientation with respect to the incoming

beam direction.

3. Data description

Here we describe the two data sets that were used in the

development and testing of our image classification algo-

rithms.

3.1. Simulated data

The simulated data set consists of diffraction patterns

calculated for three types of particles: adenovirus 2/12 penton

base chimera [entry 2c6s in the Protein Data Bank (PDB)]

(Zubieta et al., 2006) referred below as adenovirus protein; an

assembly of VP3 and VP7 proteins from the bluetongue virus

core (entry 2btv in the PDB) (Grimes et al., 1998) referred

below as BTV protein; and a 10 nm-diameter droplet of water.

The adenovirus protein has a hexagonal symmetry, while the

BTV protein is asymmetric. The particles were chosen to have

a comparable size to complicate their classification. For each

particle type 1000 images were generated. The simulated data

set was divided into two groups: 100 training images for which

the particle type was known and the remaining 2900 images

for classification with our algorithm.

In X-ray scattering simulations a detector was assumed to

be located at a distance of 100 mm from the sample and to

have a size of 100 mm� 100 mm and 224� 224 pixels in total.

The X-ray wavelength was considered to be 0.3 nm. The

angular speckle size was 0.06 rad for this configuration. The

beam incident on the sample was assumed to be Gaussian with

full width at half-maximum of 150 nm and a fluence of

107 photons nm�2, which is a typical fluence for a focused

incident beam at the XFEL facilities (Emma et al., 2010;

Ishikawa et al., 2012). Poisson noise and a beamstop of

10 pixels in diameter (about 0.74 of a speckle) were applied

to generated patterns. Simulations were performed using

MOLTRANS code.

Typical diffraction patterns for different samples are shown

in Figs. 1(b)–1(d). While water droplets produce images that

are quite distinctive and can be easily identified, patterns from

the other two particles look similar. Therefore, the main

objective was to distinguish diffraction patterns originating

from the bluetongue virus core and the adenovirus penton

base chimera.

3.2. Experimental data

In addition to the simulated data set, we used the experi-

mental data from Kassemeyer et al. (2012) which were

deposited in the Coherent X-ray Imaging Data Bank (Maia,

2012). The measurements were performed at the Atomic,

Molecular and Optical Science beamline (Bozek, 2009) at the

LCLS using the CFEL-ASG Multi-Purpose (CAMP) end-

station (Strüder et al., 2010). In this experiment, diffraction

patterns from Paramecium bursarium chlorella virus

(PBCV-1) (Van Etten et al., 1983) and bacteriophage T4

(Kassemeyer et al., 2012) were measured. As compared with

the simulated patterns, the experimental data set is more

challenging for classification. Besides the effect of experi-

mental factors, for example, fluctuations of the incident beam

position and fluence, the samples themselves can be different:

particles could be coated by the solvent or multiple particles

could be present in the beam. We considered for classification

a random mixture of 532 patterns from the PBCV-1 and 964

patterns from the bacteriophage T4. The experimental data

set was also divided into two groups: one with 100 training

images and the other with 1396 images for classification with

our algorithm.

4. Results

Here we present the results of image classification for the

simulated and the experimental data sets. For each image, the

feature vector was determined according to equation (17)

with the FCs �CnCn [equation (13)] up to the maximum order

m = 50 and parameters �CCq [equation (14)] were determined

with a one pixel sampling rate within the defined ROI,

qmin � q � qmax. The feature vectors were used as input data

in PCA and SVM algorithms to perform data clustering.

4.1. Classification of X-ray images by means of PCA

Briefly, PCA is an orthogonal linear transformation that

converts the data to a new coordinate system defined in terms

of the so-called principal components (Jolliffe, 2002). The

principal components are the eigenvectors of the data covar-

iance matrix, arranged in descending order of the corre-

sponding eigenvalues. In the present context, the data

covariance matrix is constructed using the feature vectors of

the diffraction images (see Appendix B for details). One of the

main PCA features is that the principal component space

constructed using the first n components has the largest

possible variance among any possible n-dimensional ortho-

normal bases. Therefore, the feature vectors projected onto a

two-dimensional coordinate space defined by the first two

principal components should account for as much of the

variability in the data as possible. In this way we transform the

input set of feature vectors to a new set of parameters that can

be visualized as points on a two-dimensional plane corre-

sponding to different images, which can be subsequently

classified.

The feature vectors determined for the simulated data set

were projected onto a two-dimensional plane defined by the

first two principal components (PC1, PC2). The results of such

a transformation are presented in Fig. 3. First, we applied PCA

to the training data set to see if the images corresponding to

different types of particles can be visually separated (orange

and red dots). The images corresponding to water droplets fall

into one distant group that can be easily identified (black

dots). Then, the rest of the data set was classified by PCA,

showing clustering of the data into two different sets of points

outlined by the training set (blue and green dots). To establish
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a classification rule one needs to draw a dividing line between

different clusters on the PC1–PC2 plane. If different clusters

do not overlap with each other on the plane (as it is in our

case, see Fig. 3), one can readily set up a separating line

between them. This line may be not optimal as it is understood

in classification methods like SVM but, in our case, it gives

100% accuracy of classification for the entire data set. Notice

that small modifications of the feature vector [equation (17)]

may lead to a significant overlap of two clusters on the PC1–

PC2 plane. In that case, clusters could be visually separated in

three-dimensional space (PC1–PC2–PC3) or on the PC1–PC3

plane. For the particular data set considered here, clusters do

not overlap in PC1–PC2–PC3 space. This is a problem of the

PCA method because components of the largest possible

variance do not strictly correspond to components of best

separation. We believe that successful classification of the

simulated data set was possible due to the appropriate selec-

tion of the feature extraction method.

4.2. Classification of X-ray images by means of SVM

A similar clustering procedure based on PCA was applied to

the experimental data set, with the results presented in Fig. 4.

As the experimental data set is more complex compared with

the simulated one, the same procedure fails to achieve the

desired level of clustering. As one can see, visual separation of

images corresponding to different types of particles has not

been achieved in this case (see Fig. 4).

Next, we applied the SVM algorithm in an attempt to

classify the experimental data. Generally, SVM constructs a

hypersurface in the feature vector space which can be used to

separate different image types (Cortes & Vapnik, 1995). In the

present case of two different types of particles we applied

linear SVM, where the optimal hyperplane can be determined

by maximizing the distance between the points associated with

different types of particles. As SVM employs learning algo-

rithms to construct such a hyperplane, it requires a training

data set with known image types, which was provided as in the

case of clustering with PCA. In the case of a few particles, the

multiclass SVM can be implemented by recursive application

of SVM to a certain class of images against all other image

types. First, the SVM-based classification was verified on the

simulated data set (Fig. 5). Our results show that SVM

provides better separation of different clusters than PCA. The

results of classification of the experimental data using SVM

are presented in Fig. 6, where the determined hyperplane

crosses the origin of the horizontal axis and is aligned parallel

to the vertical axis (perpendicular to the image plane). The

distance from a point to the separating hyperplane (horizontal

coordinate) could be considered as a probability of classifi-

cation (class score): the longer the distance, the higher prob-

ability of a point to belong to a certain class. Probability is

determined by Platt scaling (Platt, 1999):

Pðy ¼ 1=xÞ ¼ 1=ð1þ exp xÞ; ð18Þ

where x is a class score. According to this definition, points

that have a class score close to zero could not be classified
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Figure 4
Results of PCA for the experimental data set. The dots correspond to two
types of images, measured from PBCV-1 (red dots) and bacteriophage T4
(green dots) particles. Patterns are colored according to the final SVM
result (see text). Clustering of the data is not sufficient for reliable image
classification.

Figure 3
Results of PCA for the simulated data set. Every dot corresponds to
image coordinates in the plane formed by the first two principal
components (PC1, PC2). Orange dots correspond to adenovirus protein
images and red dots correspond to BTV protein diffraction patterns that
were used for algorithm training. Blue and green dots correspond to
images of the adenovirus protein and the BTV protein, respectively,
which were classified by the PCA algorithm. Black dots correspond to
diffraction patterns from water droplets.



reliably, i.e. have smaller probability to belong to a certain

cluster. For the experimental data set, 87% of images with the

probability of correct classification above 75% were properly

classified.

5. Summary

Future XFELs will operate at MHz repetition rates (Altarelli

et al., 2007) and produce a tremendous amount of data in short

periods of time. Here we have presented an approach that

should facilitate classification of diffraction patterns measured

in prototypical diffract-and-destroy single-particle imaging

experiments at XFELs. It is aimed to selectively extract the

necessary information and to reduce the initial data set to a

manageable size for further analysis. The proposed approach

is based on the image feature extraction, parametrized in

terms of the Fourier spectra of the angular intensity cross-

correlation functions that maintain relations between the real

space structure of a particle and its reciprocal space intensity

distribution. We demonstrated our approach by applying PCA

and SVM algorithms to simulated and measured X-ray data

sets. While both methods demonstrate accurate clustering of

the simulated data, only the SVM algorithm allowed us to

classify different biological species in the experimental data

set. We believe that the success achieved in data clustering is

largely determined by the specific parametrization of the

image feature. Such feature parametrization is the central

result of the paper and can be adopted for other algorithms of

X-ray diffraction data classification.

APPENDIX A
Data preprocessing

A1. Simulated data

In the case of the simulated data set, the incident intensity

and the particle position in the beam was the same for each

simulated image, as well as the position of the pattern center

on the detector. The ROI ðqmin; qmaxÞ (see Fig. 2) was chosen in

such a way that qmin was a few pixels larger than the size of the

central beamstop and qmax corresponds to the momentum

transfer where the average scattered intensity was twice as

high as the signal near the image boundaries, where we believe

it contains mostly noise and rare random photon counts. The

determined ROI was kept the same for all images to provide

the same length of the feature vector F [equation (17)].

A2. Experimental data

Compared with the simulated data set, the experimental

one contains a few points that have to be properly treated:

(a) The center of a diffraction pattern was determined for

each image prior to classification. It was also necessary to

adjust the value of qmin to completely cover the beamstop area

for all determined positions of the pattern center. A natural

choice for qmin was its maximum value determined for the

whole data set.
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Figure 5
Results of the SVM classification for the simulated data set for
adenovirus protein and BTV protein diffraction patterns. The horizontal
coordinate corresponds to the probability of a diffraction pattern being
related to a certain type of a particle. The vertical coordinate corresponds
to the pattern number. Blue dots correspond to adenovirus protein
images and green dots correspond to BTV protein diffraction patterns.
Yellow (adenovirus) and red (BTV) dots were used for training.

Figure 6
Results of the SVM classification for the experimental data set. The
horizontal coordinate corresponds to the probability of a diffraction
pattern being related to a certain type of a particle. The vertical
coordinate corresponds to the pattern number. Blue dots correspond to
bacteriophage T4 and green dots correspond to PBCV-1 particles. Black
dots correspond to patterns with probability of correct classification
below 75%. Yellow (bacteriophage T4) and red (PBCV-1) dots were used
for training.



(b) Some of the measured patterns were supersaturated

and/or contain parasitic scattering. In such cases bad pixels

were discarded from the analysis by masking.

(c) A number of diffraction patterns contained only back-

ground scattering or blank images. To filter out such images,

we prepared a training data set composed of such images and

applied the classification algorithm to divide the entire data

set into two classes of images: informative and non-informa-

tive. Further classification was performed only for the infor-

mative images.

APPENDIX B
Principal component analysis calculations

To perform PCA, we first constructed a data matrix,

A ¼ jjaijjj, in which indices i and j specify the i th image in the

data set and the j th component of the feature vector F

[equation (17)] of the corresponding image. Then, the eigen-

vectors of the data covariance matrix, i.e. the principal

components, can be evaluated. The fastest way to do this is

first to column-center the matrix A to obtain the matrix
�AA ¼ jj�aaijjj:

�aaij ¼ aij �
1

N

PN
k¼ 0

aki: ð19Þ

The principal components sought are the eigenvectors of the

covariance matrix �AAT �AA. Using a singular value decomposition

one can write

�AA ¼ U�VT; ð20Þ

where U and V are unitary matrices and � is a diagonal.

Finally, using equation (20) we obtain

�AAT �AA ¼ Vð�T�ÞVT : ð21Þ

Because �T� is a diagonal matrix, the columns of V are the

principal component vectors we are looking for.
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