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Iterative methods for tomographic image reconstruction have the computational

cost of each iteration dominated by the computation of the (back)projection

operator, which take roughly O(N 3) floating point operations (flops) for N � N

pixels images. Furthermore, classical iterative algorithms may take too many

iterations in order to achieve acceptable images, thereby making the use of these

techniques unpractical for high-resolution images. Techniques have been

developed in the literature in order to reduce the computational cost of the

(back)projection operator to O(N 2 logN) flops. Also, incremental algorithms

have been devised that reduce by an order of magnitude the number of

iterations required to achieve acceptable images. The present paper introduces

an incremental algorithm with a cost of O(N 2 logN) flops per iteration and

applies it to the reconstruction of very large tomographic images obtained from

synchrotron light illuminated data.

1. Introduction

One of the approaches used in tomographic image recon-

struction is to consider that the function to be reconstructed

(a tomographic image is modeled as a function from the plane

to the set of non-negative real numbers) lies in a finite

dimensional space and then to solve the resulting linear

system of equations. Iterative techniques may be required

because of the very large dimensions of the system, which may

have a coefficient matrix reaching sizes of 107 � 107 or more,

and because of the unstructured and sparse nature of the

coefficients matrix. In general, noise in images obtained by

such techniques is smaller when compared against images

reconstructed by the FBP algorithm (Bracewell, 1965). On the

other hand, image quality can still be affected by low photon

counts and other sources of noise in the data, allied to the ill-

conditioning of the system matrix (Helou, 2009).

In order to reduce the effects of poor photon counts, more

advanced strategies have been developed, such as the statis-

tical model, also known as the maximum-likelihood (ML)

(Vardi et al., 1985) model, which advocates the maximization

of the likelihood that the data have been generated by the

reconstructed image. ML models in tomographic reconstruc-

tion have first been introduced for the emission tomography

problem and the expectation maximization (EM) algorithm

was proposed for its solution (Shepp & Vardi, 1982) with good

resulting image quality. Despite the improvements in image

quality, application of the EM algorithm could not be made

practical because of the large amount of iterations required to

obtain reasonable reconstructions.
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Therefore, Hudson & Larkin (1994) introduced an EM-

based technique, the ordered subsets expectation maximiza-

tion (OSEM) algorithm, which processes subsets of the data at

each step within the iteration, updating the image in between

the processing of each of the data subsets. OSEM brought a

major speed-up to maximum-likelihood techniques and, while

not having a fully satisfying convergence theory to support its

use, it pioneered the use of incremental techniques in the

realm of maximum-likelihod tomographic image reconstruc-

tion and spurred a host of new efficient methods for tomo-

graphic reconstruction through the ML model. Among these,

we can mention: the row-action maximum-likelihood algo-

rithm (RAMLA) (Browne & De Pierro, 1996), which

processes one line at a time between updates and has

the advantage of being convergent; dynamic RAMLA

(DRAMA), proposed by Tanaka & Kudo (2003), whose

convergence was demonstrated by Helou & De Pierro (2005);

block sequential regularized expectation maximization

(BSREM), an extension of RAMLA which uses the maximum

a posteriori (MAP) regularization technique (De Pierro &

Yamagishi, 2001); string-averaging expectation-maximization

for maximum-likelihood (SAEM), an extension of EM that

uses string-averaging (Helou et al., 2014); and ordered subsets

for transmission tomography (OSTR), which applies the idea

of data subdivided into ordered subsets to separable para-

boloidal surrogates (SPS) (Erdoǧan & Fessler, 1999). OSTR,

unlike the other methods mentioned in the present paragraph,

is meant to be used for transmission tomography imaging.

Non-incremental algorithms such as the EM method

require the projection (the forward operator in tomography)

and its adjoint to be computed on every iteration, which

amounts to OðN3Þ floating point operations (flops) for N � N

images under reasonable data sampling using traditional on-

the-fly algorithms for the computation, including straightfor-

ward ray-tracing techniques to trace the voxels along a certain

projection ray (Siddon, 1985; Han & You, 1999) and the slant

stack, where each projection can be obtained by summing the

columns of a image slanted by an angle (Thorson, 1978;

Hawkes, 2006). In order to decrease the per-iteration over-

head of these algorithms, several fast techniques have

been devised to reduce this figure to

OðN2 log NÞ flops, such as the fast

slant stack (Averbuch et al., 2008), the

hierarchical decomposition algorithm

(George & Bresler, 2007), the technique

based on Fourier in log-polar grid

(Andersson, 2005) and the non-equis-

paced fast Fourier transform (NFFT)

(Fessler & Sutton, 2003; Potts & Steidl,

2000).

To the best of our knowledge,

however, there is no work in the litera-

ture merging the ideas from the

previous two paragraphs. That is, no

incremental algorithm with OðN2 log NÞ

complexity seems to have been studied

so far. The main contribution of the

present paper is to show that this is indeed a practical possi-

bility by applying the concept to tomographic reconstruction

of large transmission tomography images from data obtained

by synchrotron light illumination.

2. Tomographic reconstruction problem

One of the fundamental mathematical concepts in tomo-

graphy is the Radon transform (RT), formulated by Johann

Radon in 1917 (Radon, 1986). The image reconstruction

problem in tomography is to recover a function f : R2
! R

from its arc length integrals along straight lines. Thus, f is to be

determined from its Radon transform R½ f �:

R f½ �ð�; tÞ :¼

Z
R

f t
cos �
sin �

� �
þ s

� sin �
cos �

� �� �
ds: ð1Þ

We will also use the alternative notation R�½ f �ðtÞ :¼
R f½ �ð�; tÞ. The function p� = R� f½ � will be called the

projection with relation to the angle �. A geometric repre-

sentation of the RT is given on the left in Fig. 1. In this figure, a

Sheep–Logan phantom, which is an image composed of ten

ellipses described by Kak & Slaney (1988), is centralized in

axes x and y. The t axis, whose slope is determined by the angle

�, is also shown. For the point t = t 0, the perpendicular dashed

line represents the integration path, and the graph ofR� f½ �ðtÞ

is plotted. The representation of the RT in the plane � � t

is called the sinogram. The sinogram of the Sheep–Logan

phantom is presented on the right in Fig. 1.

An alternative to obtain the inverse of the Radon transform

R
�1
� f½ �ðtÞ in order to reconstruct the image f is the Fourier

slice theorem (FST). This is an important result that relates

a projection to the image in the Fourier space. The Fourier

transform (FT) definition, some considerations and this

theorem are presented in the following subsection.

2.1. Fourier slice theorem

The representation of a function in the Fourier or frequency

space is given by the Fourier transform. Denoting by hx; xi the

inner product between the vectors x, x 2 Rn, the Fourier
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Figure 1
Geometric representation of the RT.



transform F½ f � (or f̂f ) of a function f : Rn
! C is defined as

follows,

F½ f �ðxÞ ¼

Z
R

n

f ðxÞ exp �{hx; xið Þ dx; ð2Þ

where { =
ffiffiffiffiffiffi
�1
p

. In turn, the inverse Fourier transform F�1
½ f �

of the function f is defined by the expression

F
�1
½ f �ðxÞ ¼

1

ð2�Þn

Z
R

n

f ðxÞ exp {hx;xið Þ dx:

If f ; f̂f 2 L1
R

n, then the inverse Fourier transform retrieves the

original function such that F�1
½ f̂f � = f .

Fourier analysis is important in image reconstruction from

projections due to the Fourier slice theorem, which states that

the Fourier transform of a projection with angle � is equal to a

slice with the same angle of the Fourier transform of the image

(Herman, 1980; Natterer, 1986; Kak & Slaney, 1988).

Theorem 1 (Fourier slice theorem). Let f : R2
! C be

defined such that f 2 L1
R

2 and ! 2 R follows

p̂p�ð!Þ ¼ f̂f ð! cos �; ! sin �Þ: ð3Þ

Therefore, determining p̂p�ð!Þ for any ð�; !Þ allows f̂f to be

known at any point. Using the inverse Fourier transform it

is then possible to reconstruct the image. Since only a finite

number of samples are determined, other samples of the

function f in the frequency space can be obtained by inter-

polating the radial samples. Methods that use this strategy and

then reconstruct the function f through the inverse Fourier

transform are known as Fourier methods. However, they have

inferior accuracy when compared with iterative methods,

which are presented in the following sections. This is caused

because higher frequencies are insufficiently sampled due to

the sampling distribution of the Fourier domain being much

denser near the origin, and higher frequencies contain the

finer details of the image.

2.2. Discrete model

Considering that the function to be recovered lies on a finite

dimensional space generated by the base f f1; f2; . . . ; fng, the

aim becomes to find a vector x such that the function f =Pn
i¼ j xj fj satisfies the equality (1). Knowing that the dataset

provided by the tomographic scanner consists of a finite

number of samples of the RT, we discretize the problem as

Rx ¼ b; ð4Þ

where x 2 Rn determines the desired image, b 2 Rm contains

the (approximate) RT samples bi � R½ f �ð�i; tiÞ,

i 2 f1; 2; . . . ;mg, obtained during the tomographic scan, and

R 2 Rm�n is the discretized RT, with coefficients given as

rij ¼ R½ fj�ð�i; tiÞ: ð5Þ

One of the existing strategies for solving this problem is

presented in the following section.

3. Statistical model for transmission tomography

Following Erdoǧan & Fessler (1999), the negative log-likeli-

hood function for independent transmission data is given by

�LðxÞ ¼
Xm

i¼ 1

hi Rxð Þi
� �

; ð6Þ

where

hiðlÞ ¼ ’i expð�lÞ þ di � �i log ’i expð�lÞ þ di

� �
; ð7Þ

di is the mean number of detected background photons, ’i is

the blank scan photon count and �i is the tomographic scan

photon count. Thus, the model consists of solving

min
x2Rn

þ

�LðxÞ: ð8Þ

In the above statement, the function �L to be minimized is

also known as the objective function of the minimization

problem.

The next subsection presents the method of ordered subsets

for transmission tomography aiming at solving the problem

proposed above. Before proceeding, note that

h0iðlÞ ¼
�i

’i expð�lÞ þ di

� 1

� �
’i expð�lÞ:

These derivatives will be used to simplify exposition of the

algorithm in the following.

3.1. Ordered subsets for transmission tomography

The ordered subsets for the transmission tomography

method (OSTR), proposed by Erdoǧan & Fessler (1999),

arises from the application of the ordered subsets principle

to the separable paraboloidal surrogates algorithm (SPS)

(Erdoǧan & Fessler, 1998), which can be used to solve the

statistical model for transmission tomography without penalty

defined by (8). Again, the index set is divided into s subsets

such that
Ss

i¼ 1 Ui = f1; 2; . . . ;mg and Ui \ Uj = ; if i 6¼ j. The

iterative procedure of the algorithm is presented as follows:

The pre-computations of �i and d �j in lines 1–6 require the

calculation of a projection and its adjoint once before we can

start iterating algorithm OSTR. Partial versions of these
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calculations are repeated in each sub-iteration of the same

algorithm at lines 10–13. We will make use of NFFT techni-

ques in order to compute these operators efficiently.

3.2. Fast iterative shrinkage thresholding algorithm

The fast iterative shrinkage thresholding algorithm

(FISTA), proposed by Beck & Teboulle (2009a,b), is a

modification of the iterative shrinkage thresholding algorithm

(ISTA), which is used to solve linear inverse problems. ISTA is

similar to the classical gradient method and, although it is

known for solving large-scale problems in a simple and prac-

tical way, it converges slowly. FISTA retains the computational

simplicity of ISTA but substantially improves its convergence

rate. FISTA is presented in order to compare its results with

OSTR. Notice that application of fast Radon operators to

FISTA is immediate, but the algorithm is not as fast as

incremental methods in the first iterations, which motivates

our research.

The general model to be solved by FISTA is

min
x2Rn

�ðxÞ :¼ $ðxÞ þ %ðxÞ; ð9Þ

where % : Rn
! R is a non-smooth convex function and

$ : Rn
! R is a smooth differentiable convex function with

Lipschitz gradient. For our purposes, we will use $ = �L

[from (6)–(7)] and % = �Rn
þ

, where for a given non-empty

closed convex set X the indicator function �X is given by

�XðxÞ :¼
0 if x 2 X;
1 if x =2 X:

	

Given this, unconstrained minimization $ðxÞ þ �Rn
þ

is

equivalent to minimizing $ðxÞ constrained to x 2 Rn
þ. The

steps of the method for the case � = �Rn
þ

are described below:

4. Non-equispaced fast Fourier transform

Non-equispaced fast Fourier transform (NFFT) algorithms are

used to perform the non-equispaced discrete Fourier trans-

form (NDFT) quickly, which is a generalization of the discrete

Fourier transform (DFT) from equally spaced to arbitrary

sampling points or spatial nodes. Most NFFT methods are

based on the calculation of the fast Fourier transform (FFT)

(Keiner et al., 2009; Fourmont, 2003; Fessler & Sutton, 2003)

in order to obtain the NDFT.

We briefly discuss the method here in order to obtain,

coupling it with the Fourier slice theorem previously

presented, a fast and efficient way to calculate the partial

projections and backprojections that are used in the sub-

iterations of OSEM, OSTR and other incremental methods.

Thus, these computations can be incorporated in the execution

of the aforementioned methods to achieve quality images

under a reasonable computational effort even for very large

image sizes.

We will discuss, for simplicity, the one-dimensional case,

but the generalization for higher-dimensional domains follow

the same principle (Keiner et al., 2009; Fourmont, 2003;

Fessler & Sutton, 2003). There are other related problems,

such as computing the equispaced Fourier coefficients from

non-equispaced data or the more general computation of

non-equispaced Fourier coefficients from non-equispaced

data. However, for tomography, the important case is to

compute non-equispaced Fourier coefficients from equi-

spaced data. That is, given samples  i = f ðxiÞ with

i 2 f�N=2;�N=2þ 1; . . . ;N=2� 1g, one wishes to compute

 ̂ k ¼
XN=2�1

i¼�N=2

 i exp �{�kxið Þ; ð10Þ

�k 2 ½��; �Þ, k 2 f�N=2;�N=2þ 1; . . . ; N � 1g.

The main principle of the NFFT algorithm is to use FFTs

(Cooley & Tukey, 1965) to find an approximation of the

trigonometric function (10). FFTs are algorithms for the

effective computation of the discrete Fourier transform at

samples �k = 2�k=N, k 2 f�N=2;�N=2þ 1; . . . ;N=2� 1g. In

order to achieve non-equispaced DFTs from FFT-computable

equispaced results, a key tool is the following (from Fourmont,

2003):

Proposition 1. Given c > 0, let 0 < �=c < � and � <
�ð2� 1=cÞ. Let also ! : R! C be continuous and piece-wise

continuously differentiable in ½��; ��, vanishing outside

½��; �� and non-zero in ½��=c; �=c�. Then

expð�{x�Þ ¼
1

!ðxÞ
ffiffiffiffiffiffi
2�
p

X
j2Z

!̂!ð� � jÞ expð�{jxÞ:

In the above statement, !̂!, for a given ! : Rn
! C, is the

continuous Fourier transform as given by (2). Returning to

the computation of the NDFT using FFTs, we denote 	k =

ðN�k=2�Þ 2 ½�N=2;N=2� 1� (not necessarily equispaced)

and use Proposition 1 with xi = 2�i=cN in formula (10) to

obtain

 ̂ k ¼
XN=2�1

i¼�N=2

 i exp �{�kxið Þ ¼
XN=2�1

i¼�N=2

 i exp �{
2�i

N

� �
	k

� �

¼
1ffiffiffiffiffiffi
2�
p

XN=2�1

i¼�N=2

 i

! 2�i=cNð Þ

X
j2Z

!̂!ðc	k � jÞ exp �{
2�i

cN

� �
j

� �

¼
1ffiffiffiffiffiffi
2�
p

X
j2Z

!̂! c	k � jð Þ
XN=2�1

i¼�N=2

 i

! 2�i=cNð Þ
exp �{

2�i

cN

� �
j

� �
:

In this formula, the inner summation can be computed using

FFTs of length cN. If the function ! is chosen so that its decay

is sufficiently fast when away from 0, few FFTs are necessary

for results with a good precision. For a discussion on appro-
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priate window functions !, see Keiner et al. (2009) and

Fourmont (2003).

In the present paper paper, we used the NFFT 3 free library

to perform the above computations in order to obtain fast

projection and backprojection operators and use them in

iterations and subiterations of the methods FISTA and OSTR

described above.

4.1. NFFT and the Fourier slice theorem

The tomographic dataset provided by the experimental

setup at the LNLS (Brazilian Synchrotron Light Laboratory)

has the following form,

R½ f �ð�
; t‘Þ; ð
; ‘Þ 2 f1; 2; . . . ; n�g � f1; 2; . . . ; ntg; ð11Þ

where

�
 ¼ �
ð
� 1Þ

n� � 1
and t‘ ¼ �1þ 2

ð‘� 1Þ

nt � 1
: ð12Þ

Thus, the steps required to approximate the necessary samples

of the discrete Radon transform represented by Rx are the

following: (i) compute, using a bidimensional NFFT routine,

the samples

F

hP
j fj xj

i
t‘

cos �

sin �


� �� �
;

(ii) for each fixed 
, set

 ̂ 

‘ ¼ F

hP
j fj xj

i
t‘

cos �

sin �


� �� �

and compute the one-dimensional inverse FFT of each

vector ŵw
.

According to Theorem 1, vector ŵw 
 contains samples of the

Fourier transform p̂p�
 of p�
. Therefore, after computing its

inverse FFT, we get samples of p�i
. This is obtained with a

Oðn� nt log nt þ N2 log NÞ computational complexity, where

the image is supposed to have N � N pixels. Then, since in

practice we use nt � n� � N, we actually use OðN2 log NÞ flops

to complete this operation. The adjoint operation can be

obtained by computing the adjoint of each step, each of which

is linear, in the reverse order of the direct transform.

5. Computational experimentation

In this section we present the numerical experiments that were

performed in order to ascertain the effectiveness of the

proposed methodology. We experiment testing two different

techniques for computing Rx and its adjoint: the ray-tracing

method of Han & You (1999) and the NFFT technique

described in the previous section. Each of the two different

forms of computing the discrete Radon transform was used in

two iterative algorithms: OSTR and FISTA, as described in

x3.1 and x3.2. We had, therefore, in principle four combina-

tions of methodologies to evaluate. However, in some

experiments, the number of subsets used with OSTR was

varied in order to verify how this parameter affects the

method’s behavior.

The experiments used both synthetic and real-world data.

Synthetic data were used to evaluate the speed, as the dataset

size varies, and accuracy, under ideal and noisy data acquisi-

tion schemes, of the methods. Practical data were used to

evaluate the algorithms in practical circumstances that appear

in the LNLS tomographic beamline. The remainder of the

present section details the data simulation and collection

procedures, details the algorithmic parameters setup we have

used and reports the results of the reconstruction methods.

In order to make a more comprehensive assessment of the

computational characteristics of the proposed methodologies,

two different hardware setups were used in the experiments:

one off-the-shelf high-end laptop computer featuring 32 GB

of RAM running an Intel Core i7-7700HQ CPU at clock

speeds up to 3.4 GHz. We will denote this equipment as the

i7 computer. The second computational hardware used was a

dedicated node of a large cluster, running two Intel Xeon E5-

2680v2 processors at 2.8 GHz with 128 GB of available RAM.

This machine will be referred to as the Xeon computer. These

two different hardware setups allowed us to evaluate algo-

rithmic performance in both high-performance computing

specialized equipment as well as in readily available

consumer-grade computers.

5.1. Accuracy comparison experiments

In order to precisely evaluate the accuracy of the proposed

method, we have simulated data acquisition from a known

image in the following form. There is an analytical formula for

the Radon transform of the indicator function of an ellipse.

Because the Shepp–Logan phantom (see the left part of Fig. 1)

is a sum of such functions, in this caseR½ f �ð�; tÞ can be exactly

computed for any pair ð�; tÞ. For this set of experiments we

have used the i7 computer.

5.1.1. Data simulation. We have assumed an ideal constant

flat-field of value ’yi = 23000 photons pixel�1 and again an

ideal dark field of d
y

i = 400 photons pixel�1, and computed

�yi = ’yi expf�R½ f �ð�
i
; t‘i
Þg þ d

y

i . Here, we defined 
i =

bði� 1Þ=ntc þ 1, where bxc is the largest integer smaller than

x, and ‘i = ½ði� 1Þ%n�� þ 1, where x%y is the remainder of

the integer division of x by y. The pairs ð�
; t‘Þ were as in (11)–

(12) with n� = 512 and nt = 2048, so that i 2 f1; 2; . . . ; nt n�g

reconstructed images had N � N pixels with N = nt and

represented the square ½�1; 1�2. After computing ideal data,

Poisson noise was simulated with means ’i ’ Poissonð’yi Þ, di ’

Poissonðdyi Þ and �i ’ Poissonð�yi Þ. These parameters were

meant to mimic the acquisition conditions found at the real

data experiment that we will describe later in the present

section.

5.1.2. Algorithmic parameters. FISTA requires a step size

to be determined. We have found that for this dataset T =

5� 104 worked well. The OSTR algorithm requires determi-

nation of the number and composition of subsets; we have

used versions of OSTR with ns 2 f1; 2; 4; 8; 16; 32g subsets.

Each subset S� was composed of the data obtained at the pairs

ð�
; t‘Þ with ð
; ‘Þ 2 f�; �þ ns; . . . ; � + ns � ðn�=ns � 1Þg �

f1; 2; . . . ; ntg, where ns is the number of subsets and
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� 2 f1; 2; . . . ; nsg. We have denoted by OSTR-ns the algorithm

OSTR using ns subsets. Both FISTA and OSTR require a

starting image xð0Þ to be determined. We have used the

following formula for it, where 1 is the vector of appropriate

dimension with all its components set to 1:

xð0Þ ¼ 1

Pm
i¼ 1 bPm

i¼ 1ðR1Þi
;

where the vector b is the approximate Radon transform of the

original image, which can be component-wise estimated as

bi ¼ log
’i � di

�i � di

� �
:

5.1.3. Discussion. We have measured each algorithm’s

reconstructed image accuracy using the well known structural

similarity index measure (SSIM) (Wang et al., 2004; Wang &

Bovik, 2009). For this measure, a higher value is better. Figs. 2

and 3 show the values of the SSIM plotted versus iteration and

computation time, respectively. Note that FISTA attains a

higher peak SSIM value, but this is because this algorithm

maintains non-negativity of the iterates, while OSTR does not.

However, since images are displayed with negative values

truncated to 0, the larger SSIM obtained by FISTA does not

actually translate to better images for human viewing, as can

be seen in Fig. 4.

A noticeable difference can be seen

in Fig. 2 between the SSIM values of

the iterates of methods that use NFFT-

based methods compared with the

equivalent algorithms that use ray-

tracing operators. This, as can be seen

from Fig. 5, is not due to a different

iteration-wise convergence rate in terms

of the objective function value but

instead is due to the fact that the ray-

tracing-based operator is more accurate

than the NFFT-based one. However,

while the effect of this difference may

seem from the plots in Fig. 2 to be

relevant, when we look at the images

from the same iteration number of a

ray-tracing-based method and compare

with its NFFT-based counterpart, the

difference is not visible. Fig. 6 shows this

comparison for two of the methods.

If, on one hand, there is no relevant

difference in images obtained in the

same iteration number by NFFT-based

methods when compared with ray-

tracing-based methods, on the other

hand, when we compare computational

time to reach a given reconstructed

image, the NFFT-based methods have a
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Figure 2
Structural similarity per iteration number for a simulated noisy image.

Figure 3
Structural similarity per computation time for a simulated noisy image.

Figure 4
Best images obtained by FISTA and OSTR-32. Note that the NFFT-
based versions are virtually indistinguishable from the ray-tracing-based
ones. The number of iterations and computation time required for
obtaining the reconstruction are displayed in the bottom-left and bottom-
right corner, respectively, of each image.



major advantage over ray-tracing-based

methods. Fig. 3 shows that most NFFT-

based algorithms have already reached

a satisfactory image reconstruction by

the time that the ray-tracing-based

methods take to compute the first

iteration. Furthermore, as Fig. 5 shows,

OSTR-ns performs better, iteration-

wise, than FISTA if ns 	 8 and that such

convergence is faster if ns is larger.

Table 1 makes it clear that the iteration-

wise speed-up provided by a larger

number of subsets translates itself to

a time-wise speed-up as well. As

expected, for NFFT-based algorithms,

the time-wise speed-up is not propor-

tional to the number of subsets, as is

approximately the case for ray-tracing-

based methods. However, it is still

advantageous to use several subsets

with NFFT-based techniques.

One drawback of the NFFT-based

algorithms, especially with a large

number of subsets, is the high memory

consumption for the computations. This

is the case because the NFFT routines

demand storage of the precomputed

window functions used to perform the

calculations, and these precomputations

will result in different windows for each

subset. Therefore, the memory usage

grows in proportion to the number of subsets, not only to the

image size. We have recorded the memory required to run

each of the algorithms in Table 2, where it can be seen that the

memory requirements for the algorithms using ray-tracing-

based operators use essentially a constant amount of memory

as the number of subsets is increased, while the NFFT-based

methods use around 250 MiB of extra memory for each new

subset in which the user splits the data.

5.2. Increasing data sizes

In this subsection we investigate how the algorithms behave

as the dataset and reconstructed image sizes grow. We focus on

memory usage and iteration time, since the convergence speed

issues are quantitatively the same independent of problem

size. That is, the OSTR-n algorithm takes approximately twice

the number of iterations to reach the same image as the

OSTR-2n and this behavior continues up to a reasonably large

number of subsets (such as 32 in the case of n� = 512).

Data generation was similar to that described in the

previous subsection except that we have used n� = nt = N,

the flat-field was set to 1, the dark-field was set to 0

and no noise was generated. We have tested

N 2 f1024; 2048; 3072; 4096; 5120; 6144g. The experiments

described below were performed on the Xeon computer. For

the results reported, FISTA stepsize is not important (we have
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Figure 6
Images obtained at iterations 80 and 40 by OSTR-8 and OSTR-16,
respectively.

Table 1
Iteration number and computation time for the best reconstruction for each algorithm.

FISTA OSTR-1 OSTR-2 OSTR-4 OSTR-8 OSTR-16 OSTR-32

NFFT k = 21 k = 91 k = 46 k = 23 k = 11 k = 6 k = 3
Ray-tracing k = 22 k = 93 k = 47 k = 23 k = 12 k = 6 k = 3
NFFT 33.5 s 143.4 s 81.9 s 48.8 s 30.7 s 24.6 s 20.2 s
Ray-tracing 907.0 s 3820.6 s 1956.2 s 980.2 s 536.6 s 293.4 s 171.6 s

Table 2
Memory usage for each algorithm.

FISTA OSTR-1 OSTR-2 OSTR-4 OSTR-8 OSTR-16 OSTR-32

NFFT 1558 MiB 1557 MiB 1821 MiB 2387 MiB 3346 MiB 5315 MiB 9278 MiB
Ray-tracing 439 MiB 440 MiB 457 MiB 449 MiB 444 MiB 443 MiB 441 MiB

Figure 5
Objective function per iteration number for a simulated noisy image.



used T = 2) as image quality or

convergence speed measurements are

not the objective here, only the

computation time per iteration. We

have fixed the number of subsets and

used OSTR-16 as representative of the

OSTR family of algorithms. Starting

image and composition of subsets were

selected as in the previous section, only

adapting the procedure for the new

values of n� , nt and N. The algorithms

were run for seven iterations and the

mean value of the measured computa-

tion times or the iterations was

computed, disregarding the largest and

smallest values. The deviation from the

mean was small because the computa-

tional environment was well controlled.

This could not be the case if other loads

were present while reconstruction was

being performed, which we have

avoided.

5.2.1. Discussion. Fig. 7 shows that

the computation time of the NFFT-

method, as expected, becomes even

more competitive as the dataset size grows because of the

considerably lower asymptotic flops count required for each

iteration of these techniques. On the other hand, as can be

seen in Fig. 8, memory usage may become a bottleneck for

larger image sizes or if a larger number of subsets, for more

speed-up, is desired. However, for the image sizes tested, the

amount of computation is still the main issue since, for

example, for 6144� 6144 pixel images reconstructed from

6144� 6144 datasets, a maximum of around 47 GiB of

memory was used, which is commonly available in current

workstations. On the other hand, computation time for this

size of dataset was over ten times smaller using NFFT-based

operators than using ray-tracing-based operators, as can be

seen in Fig. 7.

5.3. Reconstruction from real data

In the present section we discuss results obtained by

applying the presented methodology to real data obtained at

the IMX tomography beamline at the LNLS. Data dimensions

were the same as those for the noisy phantom experimented

with in x5.1, that is, n� = 512, nt = N = 2048 and reconstruction

was again performed on the i7 computer.

These data were acquired with a mean flat-field count of

23359 photons pixel�1 and a mean dark-field count of

401 photons pixel�1. The imaged subject is an apple seed,

within a field of view measuring 7.58 mm � 7.58 mm. Dark-

field counts were measured before and after acquisition and

linearly interpolated in order to obtain approximate counts

for the number of events that would have occurred during

acquisition. This is necessary because the LNLS storage ring is

a second-generation ring and beam intensity decays with time.

The full polychromatic spectrum was used in the data collec-

tion, with no correction for eventual beam-hardening effects.

The resulting images are shown on Fig. 9, where we can

confirm that the conclusions made from simulated testing still

apply to real-world data. In particular, OSTR-32 converges

iteration-wise approximately twice as fast as OSTR-16. Time-
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Figure 7
Mean iteration time per simulated data size. The vertical axis is on a logarithmic scale.

Figure 8
Memory usage per simulated data size.

Figure 9
Images obtained by OSTR-16 and OSTR-32 from synchrotron-illumi-
nated tomographic acquisition.



wise, however, we are starting to see some saturation for

the NFFT-based algorithms and, indeed, although not shown,

OSTR-48 spends as much time as OSTR-32 (but uses more

memory) to obtain similar reconstructions if both are used

with NFFT-based operators. This is because the NFFT-based

methods have a large per-subset overhead. On the other hand,

ray-tracing-based methods could benefit from further speed-

up, but it would still not be competitive against the corre-

sponding NFFT-based algorithms. Images are visually very

similar and it is possible to say that there is no degradation

caused because of the replacement of the ray-tracing by

the NFFT.

6. Conclusions

We have proposed a combination of two different acceleration

techniques for iterative methods for maximum-likelihood

transmission tomography image reconstruction. We have

applied NFFT-based Radon operators with incremental

(ordered subsets) iterative techniques. The results are

promising and the methods were successfully applied to both

synthetic and real data, showing a good speed-up combined

with uncompromising accuracy.

Current hardware for numerical computation focus on very

large parallelism and we consider this trend to be a topic of

future research. All of the codes used in the present paper

were able to take advantage of the multi-core architecture of

the hardware where they had been tried, but the general

purpose GPUs currently on the market require specially

crafted code and it remains to be seen if the advantage that

NFFT-based algorithms present when running on CPUs

remains valid when translated to GPUs.

Finally, there are other options of fast operators available,

many of which have been applied to iterative algorithms [see,

for example, Arcadu et al. (2016) for a comparison among

many of the possibilities]. However, no other work in the

literature, to our knowledge, has applied such methods to

incremental iterative algorithms. In the present paper we have

used the NFFT as implemented in the NFFT 3 library solely

because of its availability and good documentation. Therefore,

another direction for future work could focus on comparing

the performance of other existing methods for fast Radon

operators when applied to incremental methods.
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