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A new tool is introduced for screening macromolecular X-ray crystallography

diffraction images produced at an X-ray free-electron laser light source. Based

on a data-driven deep learning approach, the proposed tool executes a

convolutional neural network to detect Bragg spots. Automatic image

processing algorithms described can enable the classification of large data sets,

acquired under realistic conditions consisting of noisy data with experimental

artifacts. Outcomes are compared for different data regimes, including samples

from multiple instruments and differing amounts of training data for neural

network optimization.

1. Introduction

The recent introduction of X-ray free-electron laser (XFEL)

light sources has made it possible to determine three-dimen-

sional macromolecular structures from crystal diffraction

patterns, acquired before radiation damage processes occur,

that are generated from samples equilibrated at room

temperature. This ‘diffract-before-destroy’ approach, enabled

by femtosecond X-ray pulses, has allowed the examination of

proteins in states that closely resemble the biologically rele-

vant form, where metal atom co-factors remain in their native

valence state (Alonso-Mori et al., 2012), and amino acid

residues populate the full ensemble of rotational states

important for the function of a given protein (Keedy et al.,

2015). The necessity of replacing the crystal after every shot

(serial crystallography) has led to the development of entirely

new methods for sample delivery (Weierstall et al., 2012, 2014;

Sierra et al., 2012, 2016; Sugahara et al., 2015; Fuller et al., 2017;

Roedig et al., 2017; Orville, 2017), since the assembly of a full

dataset requires the collection of 102–105 diffraction patterns

(Fig. 1).

In serial crystallography, as with traditional single-crystal

diffraction protocols, it is important to arrange for data

processing capabilities that produce real time feedback, in

order to understand the characteristics of the experimental

results. Full data analysis, on a time scale significantly shorter

than the data collection, permits key indicators to be moni-

tored so that experimental parameters can be adjusted before

the available sample and allotted beam time are exhausted.

Such indicators include the rate of increase in reciprocal space

coverage (i.e. how fast the multiplicity and completeness

increase over time), the limiting resolution of the diffraction

pattern, the crystalline disorder or mosaicity, and the extent to
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which the reaction has been triggered, for those experiments

where the macromolecule is being followed as a function of

time. Providing for sufficient computing resources is a conti-

nuing challenge (Thayer et al., 2016), with current-year

experiments at the Linac Coherent Light Source (LCLS) able

to draw upon either a dedicated 288-core Linux cluster1, or a

shared supercomputer facility such as the National Energy

Research Scientific Computing Center (NERSC)2. As data

collection capacity continues to increase, it is important to

assure that the data production rate does not exceed the

network bandwidth for transmission to such facilities. To this

end, it is critical to develop the ability to veto certain

diffraction events (such as those images that contain no Bragg

spots) at the time and place of data collection, so that network

and data processing resources are not overloaded by data with

little value. Ideally, a screening tool that can quickly distin-

guish a ‘hit’ (an image with Bragg spots) from a ‘miss’ plays a

major role in data reduction, so that only the hits are propa-

gated to data analysis and storage.

In this paper, we propose such a screening tool using a data-

driven deep learning approach on a convolutional neural

network (CNN) model. Compared with traditional image

processing techniques, the CNN has the advantage of being

able to encode both visual perception and human knowledge

that are difficult to quantify precisely. A knowledgeable X-ray

crystallographer can readily recognize a pattern of Bragg

spots, if one exists. Even when the intensity of the spots is low

relative to the background, the expert will draw upon other

heuristics such as the Bragg spot areas and shapes, the reci-

procal lattice pattern, the density of spots, and the distribution

of the brightest spots at low scattering angles, all of which may

be difficult to express in a precise mathematical fashion. The

use of a CNN can exploit these heuristics through supervised

learning, the process that optimizes the CNN’s parameters and

thus encodes a highly nonlinear mathematical model that

represents the expert knowledge.

Other types of neural networks have been used to screen

X-ray diffraction images in the past (Becker & Streit, 2014;

Berntson et al., 2003). In Becker & Streit (2014), a number of

image attributes, such as the maximum pixel intensity, mean

pixel intensity and the standard deviation, are calculated for

each image and used as the inputs to a single-layer feed-

forward neural network to classify an image as good or bad.

However, since these attributes do not contain any informa-

tion about the presence of Bragg spots, this type of neural

network may only allow us to remove a subset of the images

that have poor contrast or that contain a significant amount

of noise or artifacts. A number of sophisticated preprocessing

algorithms are used by Berntson et al. (2003) to analyze the

distribution and patterns of high intensity pixels, for input into

a feed-forward neural network. In contrast, the optimization

of our CNN requires us only to provide labeled data, i.e. a set

of previously analyzed images that are classified by an expert.

A potential deliverable is that a CNN, properly trained on

a small number of datasets, can be used to screen new

measurements in real time. If implemented on dedicated

hardware such as an energy-efficient neuromorphic chip

(Merolla et al., 2014; Esser et al., 2016), this type of screening

procedure could in the future be coupled directly with the

imaging detector as part of the data acquisition system.

2. Methodology

2.1. Convolutional neural network

Deep learning has become a powerful tool for machine

learning that can be used to leverage existing human knowl-

edge present in properly annotated data, to perform a wide

variety of cognitive and inference tasks (Goodfellow et al.,

2016; Geron, 2016; LeCun et al., 2015). CNNs are widely used

to solve numerous computer vision problems, e.g. image

classification and object tracking. These artificial neural

networks are composed of several layers of neurons, mediated

by connections between successive input and output layers. In

the connection layer, each output neuron at one level is

connected to some or all of the input neurons at the next level.

Also, different spatial locations in one layer may share the

same connection patterns. Each connection unit acts as a

linear or a non-linear operator defined in terms of a set of

parameters. These parameters are optimized jointly in an

iterative learning process that minimizes the discrepancy

between the nonlinear output of the network and the desired

output labels.

For the present problem of classifying X-ray crystallography

diffraction images, we adopt a network with a structure similar

to that of AlexNet (Krizhevsky et al., 2012), the first successful

deep learning network used for object recognition over large-

scale real-world datasets (Deng et al., 2009). A similar

implementation was also used recently to calibrate the rota-

tion axis in X-ray computed tomography data (Yang et al.,

2017). The CNN employs two steps (Fig. 2): feature extraction

and feature classification. Feature extraction takes a gray-scale

image stored as a two-dimensional array of size Nrow � Ncol as
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Figure 1
Generic scheme depicting the detection of Bragg spots in an XFEL
crystallography experiment. After the diffraction is recorded (within
several tens of femtoseconds), the X-ray pulse destroys the crystal
sample, which is therefore replenished after each shot by any one of
numerous sample delivery mechanisms.

1 https://confluence.slac.stanford.edu/display/PSDM.
2 https://www.nersc.gov.



its input, and maps the two-dimensional image to a feature

vector of size 1� Nf through multiple neuron layers, where Nf

is the number of high-level features described by the output

(here, Nf = 288). In the second step, the feature vector is

mapped to a probabilistic classification vector of size 1� Nc,

where Nc is the number of classification categories. This paper

considers three categories: ‘Hit’, ‘Maybe’ or ‘Miss’, with

‘Maybe’ indicating that a given image contains only a rela-

tively small number of Bragg spots. An output vector

[0.6, 0.3, 0.1] indicates that the CNN predicts the input image

to have a 60% chance of being a Hit, 30% chance of being

Maybe and 10% chance of being a Miss. To assign the input

image to a single class, we add the Hit or Maybe probabilities

and then use a winner-takes-all approach that turns the soft

classification vector (e.g. ½0:6; 0:3; 0:1�) into a hard yes/no

decision, which in this particular case is ½1; 0�: a ‘Hit’.

2.1.1. Feature extraction. The purpose of feature extraction

is to produce a final 1� Nf vector (Fig. 2a) that succinctly

summarizes the relevant information in the original image.

This vector is produced from the input image by the applica-

tion of four successive computational filters, each reducing the

spatial resolution. Each filter consists of convolution, batch

normalization, rectification and downsampling operations

(Fig. 2b) that are described as follows.

(i) A convolutional layer that takes Kin images as the

input and produces Kout images as the output contains

Kin � Kout two-dimensional convolution kernels W
ðkÞ

j 2 R
m�m,

k ¼ 1; 2; . . . ;Kout, j ¼ 1; 2; . . . ;Kin, that are local and trans-

lation invariant. By convolving the input image xj with kernels

W
ðkÞ

j , we obtain Kout neural activations at that layer,

y ðkÞ ¼
XKin

j¼ 1

xj �W
ðkÞ

j ; ð1Þ

where� is used to denote the convolution operation. The size

of the output image N out � N out depends on the size of the

input image N in � N in, the kernel size m�m, as well as the

stride s used during the convolution, which is defined to be the

number of pixels the kernel moves in each direction as the

moving average is computed in the convolution process. With

zero-padding at the image boundaries, N out ’ N in=s, where

N in is the square edge size of the input image. Earlier

convolutional layers tend to extract and separate local

features such as edges and corners from x into y ðkÞ. These

features are then used as input to the next layer.

In our implementation, we set the convolutional kernel size

to m = 3 and stride to s = 2. If we consider fW
ðkÞ

j g,

j ¼ 1; 2; . . . ;Kin, as a single three-dimensional convolutional

kernel with Kin two-dimensional slices, then the number of

convolutional kernels used in each of the four iterations is set

to Kout = 4, 8, 16 and 32, respectively.

To illustrate this computational workflow in Fig. 2(b),

the first filter (labeled ‘Convolution’) depicts the action of

4 ðKinÞ � 8 ðKoutÞ = 32 total two-dimensional convolution
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Figure 2
The proposed CNN for screening X-ray images consists of four sets of convolution / batch normalization / rectification (ReLU) / downsampling
(MaxPooling) layers, as detailed in x2.1. (a) Numbers and the sizes of the output feature response maps produced by each of the filter layers. The
resulting feature map is concatenated (flattened) into a one-dimensional feature vector, and fed into the feature classification stage. (b) Details of the
particular sequence of filters that is responsible for the transformation from the 4 � 180 � 180 image stack to the 8 � 45 � 45 stack.



kernels each of size 3� 3, thus mapping four input images

to eight output images. The size reduction from N in = 180 to

N out = 90 is a consequence of the stride size (s = 2) with which

the kernel is moved along the input image during the convo-

lution process. The yellow square depicts the first kernel, W
ð1Þ

1 ,

which results in the contribution of a 3� 3 square of pixels

from the first input image to a single pixel in the first output

image.

(ii) Batch normalization [BN (Ioffe & Szegedy, 2015)] is a

layer that rescales each image based on the distribution of

image intensities within a subset of training images often

referred to as a mini-batch. A mini-batch is a random minia-

ture version of the entire training set, and the CNN is opti-

mized over the exposure to one mini-batch at a time. The

rescaling parameters are determined as part of the training

process. It has been observed that rescaling allows the training

process to converge faster.

(iii) The rectified linear unit layer [ReLU (Nair & Hinton,

2010)] applies an activation function to an input neuron at

each pixel location. The activation function is defined as

ReLUðxÞ ¼ maxð0; xÞ; ð2Þ

where x is the intensity of a pixel. It controls how much

information is passed through the network.

(iv) A pooling layer performs a down-sampling process that

coalesces an a� b patch of pixels into a single pixel with an

intensity defined as either the average (average pooling) or

the maximum (max pooling) intensity among all pixels within

the patch. If we assume the input x is a square image of size

N � N, and a = b, then the output y of the pooling operation

is of size dN=ae � dN=ae. In our implementation, the down-

sampling rate is set to a = 2, and to illustrate this in Fig. 2(b)

the yellow square in the ‘MaxPooling’ filter represents the

contribution of a 2� 2 square of pixels from the input image

to a single pixel in the output image.

The 32 3�3 images that emerge from the fourth successive

filter in Fig. 2(a) are flattened into a single one-dimensional

vector before being sent into the classification layer.

2.1.2. Pattern classification. Once important features are

extracted from the input image and held in a 1� Nf feature

vector, the feature classifier maps them to a 1� Nc classifi-

cation vector z ¼ ½z1; z2; . . . ; zNc
�, through one fully

connected layer. Unlike the convolutional layer where the

output neurons in one layer share the same local connection

patterns with the input neurons, for a fully connected layer

each output neuron has its own connection patterns to all

the input neurons. Next, the real-valued Nc output vector is

mapped into a probabilistic classification vector using the so-

called SoftMax layer. The SoftMax layer maps the classifica-

tion vector z to a proper categorical distribution, by element-

wise exponentiation and vector-wise normalization,

yi ¼ SoftMaxðziÞ ¼
exp zið ÞPNc

j¼ 1

exp zj

� � ; i ¼ 1; 2; . . . ;Nc: ð3Þ

This operation turns every component of z, which may have

a positive or negative value, into a nonnegative number

between 0 and 1. The vector y is normalized to have a unit

sum. Hence the ith element of y can be interpreted as the

probability of the input image being in the ith class.

2.1.3. Network optimization. The parameters of the CNN

include the kernels used in the convolution layers and the

weights associated with the edges of the fully connected layer.

These parameters are ‘learned’ to minimize an overall loss

function L, defined in terms of the discrepancy between the

network prediction and the ground-truth labels of the input

images in the training set. This function has the form

L ¼ �
1

Ndata

XNdata

i¼ 1

log 1� yclassi

� �
; ð4Þ

where Ndata denotes the number of training data, classi

represents the target class of the ith data, and yclassi
is the

predicted probability of target class i.

The simplest minimization algorithm for such a highly

nonlinear function is the gradient descent algorithm, where at

each step of iteration the loss function is reduced along the

(negative) gradient direction – the steepest local descent

direction. The gradient of the loss function is computed using

the chain rule, commonly known as the back-propagation

algorithm in the neural network literature.

To train a CNN in a supervised learning setting, we split the

annotated data into training, validation and testing sets, with

the training data used for optimizing the network parameters,

and the validation set for tuning hyper-parameters such as the

learning rate, or step size along the steepest descent direction

in a gradient descent algorithm. The test set is used to

demonstrate the accuracy of the optimized network.

Due to the limitation of memory and computational power,

it is impractical to evaluate the loss function on the whole

training set at once. Instead, we update the learnable para-

meters iteratively over a mini-batch, a subset created by

randomly sampling the images. The parameters are updated

using gradient descent over each mini-batch. The updating

formula can be expressed as

w  w� �
1

Nbatch

XNbatch

i¼ 1

@Li

@w
; ð5Þ

where w denotes a learnable parameter, � is the learning rate

and Li represents the loss function of the ith data in the batch.

One epoch of training refers to the network going through the

entire dataset once after using several mini-batches to update

the parameter w.

To ensure that images of a majority class do not dominate

network optimization during the training process, we make

sure that all mini-batches have approximately equal numbers

of images per class.

When the training set is too small, the model can be trained

to fit the training data very well, but it performs poorly on test

samples, commonly known as overfitting. Overfitting can be

mitigated by using data augmentation techniques to enlarge

the training dataset. We describe data augmentation in x2.2.
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2.2. Data preprocessing

In this section, we discuss a number of data preprocessing

techniques we use to improve the fidelity of the trained CNN

model, reduce the training cost, and enhance the desirable

features of the raw data that we would like the CNN to

recognize.

Data augmentation is a commonly used technique in deep

learning to increase the variety of annotated data. By flipping,

cropping, resizing and rotating raw images, and scaling their

pixel values, we generate additional images that can be used

for training. Such an augmentation procedure can reduce

overfitting from a limited amount of training data.

Images recorded by modern detectors used in X-ray crys-

tallography experiments typically contain millions of pixels.

Using raw images of this size directly to train the CNN can be

computationally expensive in both memory usage and CPU

time. To reduce the computational cost, we downsample each

experimental image by a factor of four (2� 2 binning). Since

Bragg spots are typically located near the center of an image

(low-q regions), we crop out a 720� 720 subimage centered at

q = 0 from each downsampled image to further reduce its size.

This cropping process is referred to as center cropping. We use

a subset of these center cropped images for testing the accu-

racy of the CNN. In addition to center cropped images, we

generate more training images by shifting a downsampled

image by a few pixels (uniformly chosen from the range

½�120; 120�) in either the horizontal or vertical direction, prior

to center cropping. We refer to this type of cropping as

random cropping. Fig. 3 shows how center cropping and

random cropping are performed for a specific X-ray image.

The use of random cropping augments the original dataset

by introducing spatially translated versions of the input image.

It reduces the likelihood of a network overfitting the training

set and tends to improve classification performance during

testing.

In addition, we consider a local contrast normalization

(LCN) procedure to preprocess the raw image (Jarrett et al.,

2009), since it is sometimes difficult to identify Bragg spots

directly from the raw image intensity due to the large dynamic

range of pixel intensities recorded by modern detectors and

the high intensity of pixels that represent undesirable artifacts.

Our implementation is slightly different from Jarrett’s version

(Jarrett et al., 2009) since we first perform a global normal-

ization of the form

Px  
Px � �I
�I

; ð6Þ

where Px denotes the intensity at pixel x, and �I and �I are

the mean and standard deviation of the entire image. The

globally normalized image is then subject to a local normal-

ization of the form

Px  
Px � �x

�x

; ð7Þ

where

�x ¼
1

N

X
xi 2X

Pxi
; ð8Þ

�x ¼
1

N

X
xi 2X

Pxi

� �2
� �2

x

" #1=2

ð9Þ

are the local mean and standard deviation at x, X is the set

of neighboring pixels of x, and N is the size of X. The local

normalization has the effect of enhancing the intensity

separation of pixels with higher intensities from those of their

neighboring pixels. The LCN procedure is designed to reduce

the background noise and enhance the contrast between

background and Bragg spots. Fig. 4 shows the effect of

applying LCN to a typical image acquired in an X-ray crys-

tallography experiment, and compares the LCN preprocessed

image with the same image rendered with the simple linear

contrast adjustment used by the program dials.image_viewer

(described below). As shown in Fig. 4(b), LCN tends to

smooth out the variation of the background intensity. While

the white halos surrounding the Bragg spots may be visually

striking, the importance of LCN for training a CNN classifier
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Figure 3
An example of center cropping (blue box) to reduce the image size, and
random cropping (red boxes) to generate additional images to augment
the training dataset.

Figure 4
The effects of contrast adjustment through data preprocessing. (a) Simple
linear contrast adjustment by the program dials.image_viewer. (b) Image
preproccessing by LCN.



lies in its ability to reduce the range of intensities, thus making

weight optimization easier and convergence faster.

3. Results and discussion

This section describes the effectiveness of our CNNs to screen

images produced from X-ray crystallography experiments.

3.1. Datasets

Protein serial crystallography diffraction datasets used for

the Bragg spot analysis are listed in Table 1, and were

collected at the Coherent X-ray Imaging [CXI (Liang et al.,

2015)] and Macromolecular Femtosecond Crystallography

[MFX (Boutet et al., 2016)] instruments of the Linac Coherent

Light Source (White et al., 2015). These experiments were

selected as a representative cross

section of available imaging detectors,

beam energies and sample delivery

methods, and inclusive of crystals with

different space groups and unit-cell

parameters.

CXI data were recorded in vacuum,

on a CSPAD pixel array detector (Hart

et al., 2012; Herrmann et al., 2015; Blaj

et al., 2015), which converts diffracted

X-rays into detected charge, directly

within a pixelated silicon sensor. In

contrast, MFX data were recorded

at 1 atm, on a Rayonix MX170HS that

employs a coupled system, where X-ray

photons are first converted within a

phosphor layer into visible light, which

is then transmitted through a fiber optic

taper to a detecting CCD. As a conse-

quence, there is an appreciable point-

spread function such that Bragg spots,

which typically cover less than ten pixels

on the CSPAD detector, may extend to

many tens of pixels in area on a Rayonix

detector (Holton et al., 2012).

Due to this differing appearance

of Bragg spots across detector types,

it is of interest to assess whether

neural networks can be cross-trained

to recognize Bragg-spot-containing

patterns from both instruments.

Several distinct protocols were used to deliver the crystal

stream to the X-ray beam, each of which contributes unique

artifacts to the resulting images. Crystal specimens at the CXI

instrument were delivered with a liquid jet focused by an

electric potential, in either the microfluidic electrokinetic

sample holder (MESH) configuration (Sierra et al., 2012) for

L498 or the concentric MESH (coMESH) configuration

(Sierra et al., 2016) for LG36, either of which can generate

occasional diffraction spikes from the liquid jet at low

diffraction angles (Fig. 5). Experiments at MFX were

conducted with conveyor-belt delivery of crystal specimens

(Fuller et al., 2017) for LN84 and LN83, which partially

shadows half of the diffraction pattern that passes through the

Kapton belt material (Fig. 6). For experiment LO19, the

crystals were delivered by a liquid jet in the gas dynamic

virtual nozzle configuration (Weierstall et al., 2012).
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Figure 5
Challenges in expert hit recognition. (a) The large unit cell of photosystem II presents a clear,
densely spaced lattice with CSPAD detection. (b, c) The smaller unit cell and high crystalline order
of thermolysin generate a more difficult scenario. Some images (b) show an easily recognized lattice,
while others (c) require careful inspection. Several Bragg spots in (c) have only a single pixel square
area, and can only be recognized by contrast optimization, blink comparison against neighboring
images and evaluation of the spot density, which is greatest at low scattering angle. (d, e, f ) Rayonix
images with a large point spread function often display easily recognized spots; however, weak spots
are harder to recognize because they lack contrast with the background. Arrows indicate (b) a
diffraction spike due to the liquid jet sample-delivery system, (c) thermolysin Bragg spots 2–3 pixels
in square area, that are oriented radially with respect to the direct beam, (d) a hydrogenase spot
with area nearly 400 pixels in square area, due to large spot intensity and point spread function, and
( f ) photosystem II Bragg spots with very low contrast against the background.

Table 1
Experimental data.

LCLS dataset
(proposal, run)

Incident
energy (keV) Protein Space group, unit cell (Å) Instrument

Sample delivery
system Detector

L498, 27 9773 Thermolysin P6122, a = 93, c = 130 CXI MESH CSPAD
LG36, 87 7088 Photosystem II P212121, a = 118, b = 224, c = 331 CXI CoMESH CSPAD
LN84, 95 9516 Photosystem II P212121, a = 118, b = 223, c = 311 MFX Conveyor belt Rayonix
LN83, 18 9498 Hydrogenase P212121, a = 73, b = 96, c = 119 MFX Conveyor belt Rayonix
LO19, 20 9442 Cyclophilin A P212121, a = 42, b = 52, c = 88 MFX Liquid jet Rayonix



Finally, the data chosen represent a wide range of unit-cell

parameters and therefore Bragg spot densities, covering Bragg

spot densities that are sparse for cyclophilin A (Keedy et al.,

2015), intermediate for thermolysin (Hattne et al., 2014) and

O2-tolerant [NiFe]-hydrogenase (Fritsch et al., 2011), and

crowded for photosystem II (Young et al., 2016).

3.2. Preparation of the data

For each experimental run, the first 2000 images were

unpacked from the native LCLS data format (XTC, extended

tagged container) and converted to a 4-byte integer HDF5

format for further study. For the CSPAD detector, the raw (2-

byte) XTC data were recorded individually on 64 application-

specific integrated circuits (ASICs), each covering a 185� 194

pixel array. For our analysis, these data arrays were re-

assembled into their approximate physical locations (to within

�1 pixel accuracy) within a monolithic 1765� 1765 data

array, which the incident X-ray beam intersects near the

center. Pixels on the monolithic array outside of the 64 active

rectangles were set to a pixel value of 0 throughout the

analysis. An average dark-current array was subtracted from

each image. While this inevitably produced a few pixels with

negative values, it did not have an impact on the ability to

process the images with a CNN.

For the LG36 data, pixels were individually set during data

collection to be in either high- or low-gain mode (differing in

the ratio of detector counts to incident photons). This allowed

weak Bragg spots outside of the 3.2 Å cone to be accurately

recorded in a high-gain mode, while the low-gain setting was

employed for bright low-angle Bragg spots, to help avoid

detector saturation. Therefore, when producing the final

HDF5 array, low-gain pixels were multiplied by a factor of

about seven, to place inner and outer zones on an equivalent

scale.

Various experimental artifacts may be seen in the CSPAD

image data (Fig. 6d). The double row of pixels forming the

border between ASIC pairs always produces pixel values

higher than the surrounding background, because these pixels

pick up extra X-ray signal from the inter-ASIC spacing.

Additionally, the lower strip of ASICs from experiment LG36

is shadowed by equipment in the vacuum chamber, so the

affected area records no X-rays. We should note that the

preprocessing methods of x2.2 do not explicitly remove these

artifacts. For example, we do not explicitly mask out or remove

the edges of the CSPAD detector tiles, or flag the white space

in between tiles (represented by pixels set to a value of 0).

Although it is intuitively desirable to remove these artifacts,

we found that this type of data preprocessing yields little

performance improvement for a CNN. A possible explanation

is that CNN is trained to ignore such artifacts since they are

present regardless of whether the image is a Hit or Miss.

For the Rayonix detector, raw data were binned 2� 2 in

hardware, giving a final 2-byte data array of 1920� 1920

pixels. The data array is of monolithic construction, except for

the presence of a large hole in the center to allow passage of

the incident beam. These central pixels were set to a value of 0.

For both detectors, it was impossible to avoid saturating the

detector at the positions of the brightest Bragg spots, and

consequently these pixels are pegged at a high setting within

the final images.

3.3. Reference annotation

Two methods were used to provide a reference classification

for each image: annotation by a human expert, and the use of

an automated spotfinder in conjunction with thresholding. It

was necessary to decide at the outset what criteria to use for

classification. One possibility is to report images that can be

indexed (Fig. 6a), where indexing is defined as the successful

refinement of a model of the unit-cell parameters and lattice

orientation. However, it can be argued that lattice indexing as

a criterion to veto events is far too stringent, for much infor-

mation can be learned about the crystalline sample even if the

images cannot be explicitly indexed. For example, the limiting

resolution can be determined, some idea of the crystal

disorder (mosaicity) can be gained, and it can be assessed
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Figure 6
Representative diffraction patterns from the Rayonix (a, b, c) and
CSPAD (d) detectors. The photosystem II lattice patterns (a, d) illustrate
diffraction from single crystals that are readily indexed, while the pattern
from hydrogenase (b) contains many overlapping lattices (several crystals
are in the beam) that are relatively difficult to disentangle. Pattern (c) is a
‘Miss,’ containing solvent diffraction only, no protein. The purple boxes
(c, d) show the approximate inspection area for the human expert
annotation. The figure illustration was produced by binning the original
data 4� 4. Gray-scale display values D rendered in the viewer in the
range [0 = white, 1 = black] were calculated as follows: D = min(1, MPx /
P90), where Px is the value at pixel x in the raw data, P90 is the value of the
90th-percentile pixel over the image, and M is a contrast parameter set
manually within the viewer, with values in the range [0.004 = lightest,
2 = darkest], with a default of 0.4. The arrow in (a) highlights the shadow
cast by partial absorption of X-rays through the Kapton material of the
conveyor belt.



whether the images contain multiple

lattices that cannot easily be disen-

tangled (Fig. 6b). Therefore, we focused

exclusively on classifying ‘Hits’ based

on whether or not Bragg spots are

visible, in contrast to images that are

either blank or that contain diffraction

from diffuse scattering or water rings

(Fig. 6c), but not from single crystals.

3.3.1. Expert classification. HDF5-

format data were annotated by inspec-

tion within the program dials.image_viewer, using specialized

plug-ins for image format and pushbutton scoring. The viewer

contrast was set manually so that low-angle Bragg spots could

be distinguished visually from the background air and solvent

scatter; however, within each experiment the images were

viewed at a constant level of contrast. For the CSPAD pixel

array detector, and in particular for the L498 thermolysin

dataset, it was found that many Bragg spots were only 1 pixel

in square area (Fig. 5c). Therefore, data were viewed at a

zoom level where one image pixel was rendered over an area

of 2� 2 screen pixels. Since the work was done on a

1920� 1200-pixel monitor, it was only possible to inspect an

approximately 945� 520-pixel area of the image. As seen in

Figs. 6(c) and 6(d), the inspection window was positioned with

the incident beam located at the lower center of the screen.

Images were classified as ‘Hit’ if ten or more features were

recognized as Bragg spots, ‘Maybe’ with four to nine Bragg

spots, otherwise ‘Miss.’

The classification exercise presented varying levels of

difficulty among the five experiments. L498 was the most

challenging (Figs. 5b and 5c). Due to the high degree of

crystalline order for thermolysin, and the small point spread

function of the CSPAD detector, there are many Bragg spots

occupying only one pixel in square area, and these Bragg spots

are difficult to distinguish from the noisy background. Spots

are sparsely distributed on the images owing to the small unit-

cell dimensions, and thus for images with only a few spots

there is no discernible lattice pattern. Recognition of hits often

relies on the identification of individual Bragg spots in isola-

tion. For those spots extending over several pixels, a diagnostic

feature is the elongation along the radial direction, due to the

combination of the mosaic structure of the crystal, and the

spectral dispersion of the beam as previously described

(Hattne et al., 2014). Also, for evaluating whether features are

credible Bragg spots, priority was given to those candidates

that cluster at low scattering angles (near the direct beam), yet

are uniformly distributed at all azimuthal angles surrounding

the beam position. The L498 experiment is unique in having

more images classified as ‘Maybe’ than ‘Hit’. Also, it was

found that in repeat classification attempts, the Hit/Maybe and

Maybe/Miss distinctions are somewhat uncertain for L498.

In contrast, the large unit-cell dimensions of photosystem II

produce crowded Bragg spot patterns in the LG36 experi-

ment, where the lattice repeat is often immediately evident,

making classification much easier. Due to the spot density,

many fewer images are designated as ‘Maybe’. A large number

of ‘Miss’ images contain neither Bragg spots nor water rings,

indicating that the liquid jet has missed the beam.

The LN84 data likewise contain photosystem II diffraction

(Figs. 5e and 5f) but, due to the significant point spread

function of the Rayonix detector, Bragg spot candidates are

spread (isotropically) over many pixels, and often cover 10–30

pixels in square area. For those images that contain only a few

weak Bragg spots at low scattering angle, it is more difficult

than with the CSPAD to recognize these as Hits or Maybes, as

the signal presents less contrast with the background (Fig. 5f).

Care had to be taken to set the contrast within the viewer

display so as to increase the prominence of these weak spots.

Within the LN84 dataset, it is observed that many of the

patterns contain overlapping lattices (multiple crystals) and

that layer lines (rows of Bragg spots) are sometimes smeared

out.

The LN83 (hydrogenase; Fig. 5d) and LO19 (cyclophilin A)

datasets do not show smearing within the layer lines, but do

exhibit multiple overlapping lattices to some extent.

3.3.2. Automatic spotfinding. Several open-source software

packages are available for automatic hit-finding performed

on XFEL data, including Cheetah (Barty et al., 2014) and

cctbx.xfel (Sauter et al., 2013). Within the cctbx.xfel package,

automatic spot picking algorithms used for hit-finding are

implemented within both the CCTBX (Zhang et al., 2006) and

DIALS (Winter et al., 2018) component toolboxes. For the

present project, which employed the DIALS implementation,

we found it necessary to carefully tune the spotfinding para-

meters (Lyubimov et al., 2016) for each experiment when

counting the Bragg spot candidates for automatic annotation.

Prior to the spotfinding process, each experiment was eval-

uated to determine the set of ‘untrusted’ pixels to be ignored

during annotation. For CSPAD images, the untrusted pixels

included those pixels found to be ‘cold’ or ‘hot’ during a dark

run, those known to lack bump-bonding to any detector

circuit, and those on the 1 pixel-wide rectangular perimeter of

any ASIC. For both detector types, the image viewer was also

used to outline a set of pixels for each experiment that are

completely shadowed from X-rays.

Tunable parameters chosen for each experiment are listed

in Table 2, and were optimized by inspecting the results

of automatic spot segmentation within the image viewer.

Furthermore, an attempt was made, for each experiment, to

determine a threshold count of automatically found Bragg

spot candidates, above which the image is classified as a ‘Hit’.

Best-attempt threshold values from visual inspection are
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Table 2
Automatic spotfinding parameters.

Experiment
Gain
(ADU photon�1)

Global
threshold
(ADU)

Sigma
strong

Minimum spot
area (pixels)

Wall clock time (s),
16 processors

L498 4.55 100 6 3 100.2
LG36 15.64 100 3 2 79.3
LN84 0.31 200 3 3 89.2
LN83 0.27 200 3 3 80.3
LO19 0.19 200 3 3 80.9



shown in Fig. 7 (vertical blue lines). Table 2 lists the wall clock

time required to annotate 2000 images from each experiment

with dials.find_spots using a 16-core, 64-bit Intel Xeon E5-

2620 v4 processor (2.1 GHz) with 20 MB cache, 128 GB

RAM, running Red Hat Enterprise Linux Server 7.3. C++

code was compiled under GCC 4.8.5, and a Python wrapper

provided 16-core multiprocessing for load balancing.

Fig. 7 and Table 3 show that the automatic classification

results are only moderately successful, when compared with

the ‘ground truth’ of expert classification. For the three

Rayonix experiments (LN84, LN83 and LO19) it was possible

to identify good threshold values above which all hits are

expert-classified as ‘Hit’ or ‘Maybe’, although for LN84 a

significant fraction of ‘Hit’ images fall below the automatic

threshold. The outcome is worse for the CSPAD data sets,

where the chosen threshold leads to the false-positive classi-

fication of several ‘Miss’ images. The cause turns out to be the

grainy structure of the water ring, as detected on the CSPAD,

which cannot be distinguished from true Bragg spots using the

simple criteria used here. Finally, for L498, about half of the

‘Hit’s fall below the automatic threshold.

In view of these results, all CNN training described below is

performed with the expert annotation.

3.4. Experiment-specific training and testing

LCN preprocessing was performed on a 16-core, 64-bit Intel

Xeon E5-2620 v4 server (consisting of two 8-core chips,

2.1 GHz) with 20 MB cache, 128 GB RAM, running Ubuntu

Linux Server 16.06, with code programmed in C, utilizing an

algorithm implemented in the Torch library3 compiled under

GCC 5.4.0. LCN preprocessing, which was the rate-limiting

step for image classification, required 5.7 s per batch of 64

images, using parallel execution on 8 CPU cores of the Linux

server.

CNN networks were implemented with the Torch frame-

work (http://torch.ch), and were trained and tested using an

Nvidia 1080Ti GPU extension card (1.58 GHz) plugged into

the Ubuntu server, with 11.2 GB on-device memory, 2048

threads per multiprocessor, and 32-bit precision operations

programmed in CUDA. GPU operation was controlled by an

Ubuntu thread operating in parallel to the LCN preprocessing

step. Training required 0.26 s wall clock time (for the total of

120 epochs) per batch of 64 images, and testing required 0.05 s

per batch. Therefore, the CNN processing operations depicted

in Fig. 2 were run at a considerably higher throughput rate

(1280 Hz) than the current framing rate (120 Hz) at LCLS.
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Figure 7
Comparison of expert and automatic image classification trials for
experiments L498 (a), LG36 (b), LN84 (c), LN83 (d) and LO19 (e). From
the 2000-image source data, frames were divided into ‘Hit’, ‘Maybe’,
‘Miss’ classes by a human expert, with class totals listed at the upper right
of each panel. Separately, candidate Bragg spots were automatically
segmented on each image by the DIALS spotfinder, thus producing a
histogram of the number of Bragg candidates per image, with the number
of spots plotted here on a logarithmic scale over the horizontal axis. A
best-guess threshold for classifying images as hits or misses is indicated
for each experiment as a vertical line, along with the number of images
falling on each side of the threshold. The correspondence between expert
and automatic classifications is indicated by blue, orange and yellow
shading on the bar graphs.

Table 3
Confusion matrices for classification of the test data.

CNN Automatic spotfinding

Dataset Human expert Hit or Maybe Miss Hit Miss

L498 Hit or Maybe 69.0% 31.0% 12.8% 87.2%
Miss 6.9% 93.1% 0.5% 99.5%

LG36 Hit or Maybe 91.1% 8.9% 77.7% 22.3%
Miss 1.8% 98.2% 2.6% 97.4%

LN84 Hit or Maybe 98.5% 1.5% 69.9% 30.1%
Miss 10.1% 89.9% 0.4% 99.6%

LN83 Hit or Maybe 98.5% 1.5% 85.8% 14.2%
Miss 3.1% 96.9% 0.1% 99.9%

LO19 Hit or Maybe 94.8% 5.2% 80.6% 19.4%
Miss 4.0% 96.0% 0.0% 100.0%

3 https://github.com/torch/image/blob/master/doc/paramtransform.md#res-
imagelcnsrc-kernel.



For each dataset listed in Table 1, we separately train a CNN

using 50% randomly selected images as the training data, 20%

of the images as the validation data, with the accuracy of the

trained network being tested on the remaining 30% of the

images.

We use the same set of hyperparameters to train the

network in all the experiments. Each mini-batch has 64 images,

and each epoch contains 100 batches. We train the network for

120 epochs. We initialize the learning rate to 0.1 and allow it to

exponentially decrease to 0.0001.

Fig. 8 shows the training history of the CNN for the LO19

dataset. We plot the accuracy of the prediction, measured in

terms of the percentage of successful predictions on both the

training (blue curve) and testing (red curve) image data, over

the number of epochs. We observe that after being trained

for 10 epochs the CNN exhibits over 90% success rate in

predicting whether a training image is a ‘Hit’, ‘Maybe’ or

‘Miss’. The success rate continues to improve until it reaches

around 93%.

Table 3 shows the confusion matrices associated with the

CNN classifications, compared with the ground truth annota-

tion by the human expert. We also compare the automated

spotfinding software against the ground truth.

The confusion matrix measures the accuracy of a classifi-

cation method. Its rows represent the ground-truth (expert-

annotated) classes of the data, and its columns represent the

predicted class, either from CNN or automatic spotfinding.

The ith diagonal entry of the matrix represents the percentage

of class i images that have been correctly predicted as class i.

The (i, j)th off-diagonal entry represents the percentage of

class i images that are misclassified as class j images.

To compare the accuracy of the CNN prediction, which

produces three different classes (Hit, Maybe and Miss),

directly with that of the spotfinder prediction, which returns

one of the two classes (Hit and Miss) based on a hard

threshold of Bragg spot counts, we group the Hit and Maybe

classes predicted by the CNN together. The (1,1)th diagonal

entry records the percentage of images that are correctly

predicted to be either a Hit or a Maybe, and the (1,2)th off-

diagonal entry records the percentage of images that are

labeled as Hit or Maybe, but predicted to be Miss.

We can see from Table 3 that, for all datasets, over 90% of

the images that have been classified by a human expert as

‘Miss’ have been correctly predicted by the CNN. Although

these percentage numbers are slightly lower than those

produced by the spotfinder, which range from 98% to 100%,

they are already quite high, and indicate that CNN can be

reliably used to exclude images that do not capture crystal

diffraction events from being stored. A small percentage of

false positives that are retained can be identified later through

other image analysis tools.

Table 3 indicates that CNN does a much better job than

automatic spotfinding in identifying images that a human

expert considers to be a Hit or a Maybe. This is particularly

true for difficult datasets such as the L498 dataset in which Hit

and Maybe images contain a relatively small number of Bragg

spots that occupy only one pixel square area. To some extent,

this is not entirely surprising, because the CNN is capable of

encoding human vision and knowledge into the network

parameters so that it can make predictions more like a human

expert.

Although we are ultimately interested in whether each

X-ray diffraction image should be considered as a Hit or Miss,

it is also useful to know how much confidence we should place

on the classification given by a CNN. This information is

provided by the classification vector produced by the SoftMax

layer of the CNN. The ith component of the vector gives the

estimated probability that the image to be classified is in the

ith class. Fig. 9 shows the estimated class probabilities asso-

ciated with all correctly classified images. The left column

shows the estimated probabilities of Miss associated with

images that are correctly predicted to be Miss, while the right

column shows the aggregated probabilities of Hit and Maybe

associated with images that are correctly predicted to be either

Hit or Maybe. The aggregated probability is obtained by

simply adding the probability of an image predicted to be a Hit

with the probability of it being a Maybe. We observe from this

figure that, with the exception of the L498 dataset, the confi-

dence level of most correctly classified (both Miss and Hit/

Maybe) images are relatively high with estimated probabilities

above 90%. The difficulty associated with the L498 dataset is

revealed from the estimated class probabilities associated with

images that are correctly predicted to be Hit or Maybe.4

One remarkable capability of the CNN is that it can learn to

ignore most of the noise and undesirable artifacts even though
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Figure 8
Training and testing accuracy over 120 epochs for the LO19 dataset. The
test accuracy was never used for optimizing the CNN model during
training.

4 In response to a reviewer comment, we believe the best approach to
increasing the classifier’s reliability for L498 (in principle) would be to
increase the number of annotated images in the training set; this particular
data set had the fewest number of annotated Hits (148). While preprocessing
approaches may be envisioned to increase the visibility of the one-pixel Bragg
spots unique to L498, such as adding a Gaussian blur to the data, this might
have the unwanted effect of reducing the spatial resolution of the image.
Moreover, the intent is for the CNN to discover its own optimal filter weights
in a data-driven learning fashion, rather than having the experts supply the
CNN with dataset-specific hints.



the nature of these factors is not explicitly characterized in the

training process. Once trained, the CNN tends to focus on

areas of the input image that are likely to contain important

features pertinent to classification. To visualize this effect, we

plot in Fig. 10 the absolute value of the gradient of the loss

function L defined in equation (4) with respect to the pixel

intensities x of an LG36 input image. The gradient is evaluated

at optimized CNN parameters obtained from the training

process. Each element of the gradient rxL indicates how

sensitive the loss function is to the change of the corre-

sponding pixel. Since rxL is generally nonzero for all pixels,

we want to visualize only those with the highest and lowest

gradient values relative to the mean (i.e. the most sensitive

pixels seen by the CNN). Fig. 10 plots elements of jrxL� �j
whose values are 3� above or below the mean � of rxL, where

� is the standard deviation of rxL over

all pixels. The pattern suggests that the

most sensitive pixels do indeed cover

the general region of the image where

Bragg spots can be found. It is impor-

tant to note that the most sensitive

pixels cover not just the Bragg spots

but also some adjacent areas, thus

apparently helping the CNN recognize

the presence of Bragg diffraction

against background. Areas of the

image that contain unimportant arti-

facts such as the water ring appear to

be excluded.

Although it is well understood that a

CNN makes a prediction by extracting

important features of an image through

a multi-layer convolution / batch

normalization / ReLU / maxpooling

process, it is generally difficult to

interpret the resulting feature maps

directly by human vision. However,

these feature maps are believed to

be more classifiable than the original

image stack. In a CNN, the final clas-

sification is performed by the last layer

of the network that connects every

feature map to every categorical

probabilistic distribution neuron (i.e.

the fully connected layer), yet there are

other nonlinear classification techni-

ques that can potentially yield more

information about the feature maps.

One such technique is based on

the T-distributed stochastic neighbor

embedding (t-SNE) (van der Maaten &

Hinton, 2008) method, a nonlinear

dimensional reduction technique that

can be used to preserve high-dimen-

sional structures at different scales. The

t-SNE method embeds the feature

vectors into a two-dimensional plane

that can be easily visualized, while preserving nearest

neighbor relationships between feature vectors from similar

images. Fig. 11 shows the t-SNE of a set of 32� 3� 3 feature

maps extracted from the last layer of the LG36-trained CNN,

with each dot in the plot corresponding to one of the LG36

test images. As we can see, images that are considered to be

Miss (green) by a human expert are clearly separated from the

images that are considered to be Hit (red). Images that are

considered to be Maybe (blue) lie somewhat in between the

Miss and Hit clusters. Therefore, this figure serves to confirm

that the LG36-trained CNN produces feature maps that can be

easily clustered when it is applied to test images in the LG36

dataset. It is also interesting that t-SNE actually reveals

additional feature clusters (such as blank images) that are not

explicitly annotated in the training process.
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Figure 9
Reliability of the test data set classification, as shown by the confidence level represented by the
CNN classification vector, for CNNs trained on data from the same LCLS run. Within each test data
set of 600 images the left column shows classification probabilities for images correctly classified as
Miss, while the right column shows the sum of the Hit + Maybe probabilities for those images
correctly classified as either Hit or Maybe. Each panel gives the total number of correct
classifications, and the average confidence probability for those images correctly classified. Notably,
the L498 network, that has a low success rate for predicting Hit/Maybe (Table 3), also has a low
confidence level in Hit/Maybe classification. In contrast, for networks such as LN83, the probabilities
associated with most Hit/Maybe images are above 90%, indicating that these images are relatively
easier to classify.



3.5. Cross-dataset training and testing

We envision the eventual application of CNNs as a

screening tool in serial X-ray crystallography experiments, in

which standard diffraction data are expert-annotated for

the training process, after which the CNN can be deployed

for real-time classification of new datasets from experiments

that presumably employ similar sample delivery systems and

detectors as those used for the training data. The results

presented above are encouraging, but do not directly

address the question of how similar the new experiment will

have to be to the previous experiments used for annotation

and training.

In this section, we investigate to what extent a CNN trained

on one data set can be applied to data acquired under

differing conditions. Table 4 lists the success rates achieved

when a CNN trained with one Rayonix dataset is applied to

the other Rayonix datasets, where success rate is defined as

number of correctly classified test images

total number of test images
� 100%: ð10Þ

A high success rate is mutually obtained by cross-application

between LN84 and LN83, both of which examine large-unit-

cell protein crystals delivered by conveyor belt. However, the

LO19 trained CNN yields relatively lower success rates when

applied to both the LN84 and LN83 test images. We suspect

that the low success rate is due to the

difference in the sample delivery

method used in LO19 (GDVN) in

contrast to the LN84/LN83 experiments.

Table 5 shows that a CNN trained

with the combined group of experi-

ments detected with the Rayonix device

(LN84, LN83 and LO19) yields a rela-

tively high success rate (92%) when

applied to test images within the

Rayonix group. However, when applied

to the LG36 or L498 CSPAD datasets,

the success rate is rather low, most likely

due to the differing tile geometry of the

CSPAD detector (Fig. 6c versus Fig. 6d)

that the Rayonix-trained CNN does

not know how to characterize. Table 6

shows that by combining the LG36

training data with that of the Rayonix

dataset we were able to train the CNN

to perform reasonably well on testing

images in both the Rayonix and LG36

datasets. However, the new CNN still

performs rather poorly (with a 54%

success rate) on the testing images in

the L498 dataset. The performance of
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Figure 10
The magnitude of the gradient of the loss function L with respect to the
pixel intensity for an LG36 input image overlayed on the input image.
Only the largest magnitudes relative to the mean of the gradient
components are shown as the brown shaded pixels, as they are most
responsible for the model prediction. Magnitudes smaller than three
standard deviations below the mean are disregarded.

Figure 11
Stochastic neighbor embedding of the feature maps extracted from an LG36-trained CNN applied
to the LG36 dataset. Each spot on the map corresponds to one image, and is colored by its ground-
truth classification of Hit (red), Maybe (blue) or Miss (green). On such an embedded map the x, y
coordinates have no specific physical interpretation; indeed, the final coordinates of the spots are
dependent on the random number seed utilized. Rather, the utility of the plot lies in the fact that
near neighbors within it display similar image characteristics, as encoded by their feature vectors. A
visual inspection of the images then reveals what the similarities are. Image insets illustrate the
cluster of Bragg-spot hits exemplified by shot 768, as well as the lower-right cluster, exemplified by
shot 438, which turns out to contain no diffracted photons (no X-ray beam, dark noise only). Miss
images that contain only a water ring, exemplified by shot 1161, form a continuous distribution,
shown by the black arrows, with the arrows’ arc roughly indicating an ordering from strongest to
weakest water signal.

Table 4
Screening success rate of applying a CNN trained with one Rayonix
dataset to another Rayonix dataset.

Train/test LO19 LN83 LN84

LO19 93% 85% 65%
LN83 91% 96% 90%
LN84 74% 92% 90%

Table 5
Success rate of using a CNN trained with a Rayonix, LG36 or L498
dataset to screen images contained in the same or a different dataset.

Train/test Rayonix LG36 L498

Rayonix 92% 12% 41%
LG36 33% 96% 30%
L498 67% 85% 82%



the CNN improves slightly (to 74% success rate) after we add

images from the L498 dataset to the training data and retrain

the CNN from scratch.

3.6. Prediction accuracy versus data size

To reduce the amount of work done by a human expert to

annotate experimental images used for CNN training, we

would like to keep the training dataset as small as possible.

Table 7 shows that we can achieve over 91% success rate in

screening the Rayonix (LO19, LN83, LN84) and LG36 test

images when as few as 100 images selected from the combined

Rayonix and LG36 datasets are used to train a CNN. As we

increase the number of training images, we achieve a slightly

higher success rate for the Rayonix testing images (94% when

4000 training images from the combined Rayonix and LG36

datasets are used). However, increasing the size of the training

set does not seem to improve the success rate for LG36

consistently. In fact, the success rate goes from 95% for a CNN

trained with 100 combined Rayonix and LG36 images to 91%

for a CNN trained with 4000 images. Nonetheless, the overall

success rate is still acceptable. Therefore, when a new CNN is

constructed and trained for a new experiment, the number of

images required to be examined and annotated by a human

expert is of the order of a few hundred, which is more

manageable. Annotating more images can possibly improve

the success rate, but the level of improvement is likely to be

problem dependent.

3.7. The effect of data preprocessing

We found that it is important to preprocess the data using

the LCN technique discussed in x2.2. Without any contrast

adjustment, it is almost impossible to train a CNN to make an

accurate prediction (Table 8). We believe that, when supplied

with the raw data, CNN training is dominated by artifacts and

background, while the LCN process visibly removes these

features, so that training can focus on Bragg spots. Table 8

shows that this approach appears to be more effective than the

simple linear contrast adjustment employed by dials.image_

viewer.

4. Conclusion

In this paper, we investigated the feasibility of using pre-

trained CNNs as a screening tool to veto certain diffraction

events, e.g. images that contain no Bragg spots, in a serial

X-ray crystallography experiment, so that data with little value

can be quickly pruned and discarded instead of being stored

for further examination and analysis. The screening process

selects images considered to be Hits, so they can be indexed,

integrated and merged into the downstream data processing

pipeline for biological structure determination. We showed

that with a modest set of carefully annotated images collected

from previous experiments, a CNN can be trained to

successfully distinguish Hits from Misses in most cases.

The major benefit of a CNN is that it does not require a

precise characterization of the Bragg spots or of the many

undesirable artifacts present in the images. Indeed, artifacts

are often difficult to quantify or describe mathematically.

Other than using local contrast enhancement to improve

image contrast and smooth out the background, and

augmenting the dataset by random cropping, we do not use

any sophisticated image processing techniques to isolate

Bragg peaks from noise or other types of random or

systematic artifacts. Compared with automatic spotfinding

tools implemented in the DIALS software toolbox, which still

require manual parameter tuning, the CNNs trained here have

a slightly lower success rates, but still above 90%, in identi-

fying images that are considered to be Misses by a human

expert. However, they have much higher success rates in

identifying images that are considered to be Hits.

The CNN implementation showed the ability to identify key

diffraction features (the presence of Bragg spots) via a

learning process that extracts relevant features from the raw

image processed through a neural network that consists of

convolution / batch normalization / rectification / down-

sampling layers. These features can then be used to separate

data into distinct classes (in this case, Hit, Miss and Maybe)
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Table 6
Success rate of CNN trained with multiple datasets.

Testing

Training dataset Rayonix LG36 L498

Rayonix 91% 12% 41%
Rayonix + LG36 94% 91% 54%
Rayonix + LG36 + L498 91% 94% 74%

Table 7
Variation of the success rate of CNN classification with respect to the size
of the training data, using a combination of Rayonix and LG36 images.

After data augmentation is applied, the total number of images in the full set is
8000. We split this into training, validation and testing subsets in a 50/20/30%
proportion, and list only the number of training images in the first column.
Successive rows reduce the size of the data by random sub-selection. Our
selection procedure also enforces a near-constant ratio between Hit and Miss,
even as the data size is reduced. The second and third columns report the
classification success when applied to the full testing sets of Rayonix and LG36
data.

Number of training data Rayonix LG36

4000 94% 91%
2000 92% 93%
400 93% 92%
100 91% 95%

Table 8
Comparison of the effect of data preprocessing techniques (simple linear
contrast adjustment used in dials.image_viewer versus LCN) on the
success rate of the CNN when applied to the Rayonix, LG36 and L498
datasets.

Dataset
Simple linear
contrast adjustment LCN

Rayonix 69% 91%
LG36 95% 96%
L498 68% 81%



through a so-called fully connected neural layer. The confi-

dence level of classification may be ascertained from the class

probability vectors produced by the final SoftMax layer.

Although we are primarily interested in whether the images

represent Hits or Misses, we found that stochastic neighbor

embedding, based on the final feature vector, can suggest

more granular classification categories, or reveal unantici-

pated structure in the data or experiment settings. Fig. 11, for

example, shows that the Misses containing solvent only (no

crystals) can be ordered by the intensity of the water ring

signal, and that a separate category of Misses can be identified

having no X-ray pulse intensity.

We found that the accuracy of CNN classification depends

largely on the quality of the annotated data used to train the

network. When the training dataset contains a limited number

of images with clearly identifiable Bragg spots (such as our

L498 dataset), and/or when the number of identifiable Bragg

spots within the images is relatively small, the CNN trained by

such a dataset tends to have lower inference accuracy when

applied to testing data. Because images produced by serial

X-ray crystallography reflect the type of detector used, beam

properties such as energy, dispersion and divergence, and the

sample preparation and delivery method (none of which are

part of the annotation used for training), a CNN trained on

one dataset cannot necessarily be applied to images collected

with different experimental methods. Although it is desirable

to train a universal CNN that can be used to screen images

from all experiments, the present results suggest that training

such a CNN may be difficult, or may require larger datasets

than those used here. A reasonable compromise is for CNNs

to be customized for the detector and sample delivery tech-

niques at particular X-ray endstations.

With serial crystallography framing rates of 1–100 kHz now

and in the next ten years, managing the high data flow rate will

continue to be a challenging aspect of experimental design.

While it is presently possible to archive all images for future

inspection, and marginally possible to process most data for

immediate feedback, it is expected that at some future time it

will be necessary to throw away some fraction of the data at

the time of collection, in order to enable faster data acquisi-

tion rates. CNN classification based on the presence of Bragg

spots offers one possible avenue to quickly sort the data into

productive and unproductive piles, thus economizing on data

storage and network bandwidth. We have shown that the CNN

classification step can easily be run on a single GPU expansion

card at throughput rates (1.3 kHz) that are consistent with

current detectors. While our data processing pipeline also

included a LCN preprocessing step running at slower

throughput rates when implemented on a Linux server, this

does not pose a fundamental barrier, as this step could also

be easily ported to the GPU platform. A deeper problem,

requiring further research, is whether the classification process

can be implemented and/or accelerated in an energy-efficient

manner by co-locating it with the detector, possibly on hard-

ware that is specialized to implement CNNs. Candidate

architectures include neuromorphic chips [known for their low

energy consumption (Merolla et al., 2014) and thus suitable for

embedded systems], or field programmable gate arrays, which

are becoming roughly comparable with GPUs in both energy

consumption and computing throughput (Nurvitadhi, 2017).

5. Data and code

Diffraction images have been deposited with the Coherent

X-ray Imaging Data Bank (Maia, 2012), accession number

76, at http://cxidb.org/id-76.html. The software package

DIALS may be downloaded from https://dials.github.io.

Scripts used for expert and automatic annotation,

LCN preprocessing and CNN classification are available at

https://github.com/nksauter/fv5080.
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Glöckner, C., Echols, N., Sierra, R. G., Schafer, D. W., Sellberg, J.,
Kenney, C., Herbst, R., Pines, J., Hart, P., Herrmann, S., Grosse-
Kunstleve, R. W., Latimer, M. J., Fry, A. R., Messerschmidt, M. M.,
Miahnahri, A., Seibert, M. M., Zwart, P. H., White, W. E., Adams,
P. D., Bogan, M. J., Boutet, S., Williams, G. J., Zouni, A., Messinger,
J., Glatzel, P., Sauter, N. K., Yachandra, V. K., Yano, J. & Bergmann,
U. (2012). Proc. Natl Acad. Sci. USA, 109, 19103–19107.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

Becker, D. & Streit, A. (2014). Proceedings of the 2014 IEEE Fourth
International Conference on Big Data and Cloud Computing,
Sydney, Australia, 3–5 December 2014, pp. 71–76.

Berntson, A., Stojanoff, V. & Takai, H. (2003). J. Synchrotron Rad.
10, 445–449.

Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D.,
Haller, G., Hart, P., Hasi, J., Herbst, R., Herrmann, S., Kenney, C.,

668 Tsung-Wei Ke et al. � Convolutional neural network-based screening tool J. Synchrotron Rad. (2018). 25, 655–670

research papers

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5080&bbid=BB4


Markovic, B., Nishimura, K., Osier, S., Pines, J., Reese, B., Segal, J.,
Tomada, A. & Weaver, M. (2015). J. Synchrotron Rad. 22, 577–583.

Boutet, S., Cohen, A. E. & Wakatsuki, S. (2016). Synchrotron Radiat.
News, 29, 23–28.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Li, F.-F. (2009).
Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR09), pp. 248–255. IEEE.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy,
R., Andreopoulos, A., Berg, D. J., McKinstry, J. L., Melano, T.,
Barch, D. R., di Nolfo, C., Datta, P., Amir, A., Taba, B., Flickner,
M. D. & Modha, D. S. (2016). Proc. Natl Acad. Sci. USA, 113,
11441–11446.

Fritsch, J., Scheerer, P., Frielingsdorf, S., Kroschinsky, S., Friedrich, B.,
Lenz, O. & Spahn, C. M. (2011). Nature (London), 479, 249–252.

Fuller, F. D., Gul, S., Chatterjee, R., Burgie, E. S., Young, I. D.,
Lebrette, H., Srinivas, V., Brewster, A. S., Michels-Clark, T.,
Clinger, J. A., Andi, B., Ibrahim, M., Pastor, E., de Lichtenberg, C.,
Hussein, R., Pollock, C. J., Zhang, M., Stan, C. A., Kroll, T.,
Fransson, T., Weninger, C., Kubin, M., Aller, P., Lassalle, L., Bräuer,
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