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Grazing-incidence small-angle X-ray scattering (GISAXS) patterns have

multiple superimposed contributions from the shape of the nanoscale structure,

the coupling between the particles, the partial pair correlation, and the layer

geometry. Therefore, it is not easy to identify the model manually from the huge

amounts of combinations. The convolutional neural network (CNN), which is

one of the artificial neural networks, can find regularities to classify patterns

from large amounts of combinations. CNN was applied to classify GISAXS

patterns, focusing on the shape of the nanoparticles. The network found

regularities from the GISAXS patterns and showed a success rate of about 90%

for the classification. This method can efficiently classify a large amount of

experimental GISAXS patterns according to a set of model shapes and their

combinations.

1. Introduction

Grazing-incidence small-angle X-ray scattering (GISAXS) is a

valuable tool for characterizing the nanostructure of materials,

particularly at surfaces and interfaces (Hexemer & Müller-

Buschbaum, 2015; Rauscher et al., 1995, 2005; Renaud et al.,

2003, 2009). GISAXS analysis requires two processes; the first

step is the classification of the model, and the second is fitting

the intensity data with least-squares curve fitting. The classi-

fication of GISAXS patterns in relation to the shape and

morphology of nanodots is the essential point in GISAXS

analysis. The models are composed from a combination of the

shape of the nanoscale structure, the coupling between the

particles, the partial pair correlation, and the layer geometry.

It is impossible for researchers by themselves to survey all

feasible model results because the number of possible

combinations is huge.

Convolutional neural networks (CNN) have been applied in

a wide variety of fields, such as image recognition (Hu et al.,

2018), computer vision (Kendall & Yarin, 2017), medical

image analysis (Poplin et al., 2018), and material inspections

(Park et al., 2016). They have also been used for the analysis of

X-ray experiments, such as GISAXS (Liu et al., 2019) and

X-ray absorption near-edge structure (Timoshenko et al., 2017;

Zheng et al., 2018). The open-source TensorFlow machine-

learning library (Abadi et al., 2015), which is adaptable to the

field of deep learning (Goodfellow et al., 2016), is available for

free. In addition, CNN architectures, such as AlexNet (Kriz-

hevsky et al., 2012) and VGG-16 (Simonyan & Zisserman,

2014), are also free to use.
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CNNs have particular advantages for the classification of

images, and are trained with a lot of data. Therefore, they may

be excellent for the classification of GISAXS patterns. A CNN

system was applied to classify the orientation of nanoparticles

in thin films (Liu et al., 2019). In this paper we describe how

the CNN system is also useful to obtain models, such as the

shape of the nanoparticles, from GISAXS patterns. The CNN

systems meet the demands of the times, when the growth of

nanoparticles is observed in real-time by GISAXS (Renaud

et al., 2003) and fully automated high-throughput systems

produce huge amount of GISAXS data (Jimenez et al., 2013).

We show the efficiency of the CNN for GISAXS analysis.

After training the network with simulated data, we used the

trained CNN system to classify real experimental data.

2. Methods and experiment

We applied the CNN to classify GISAXS patterns corre-

sponding to the shapes of nanoparticles for two reasons. The

first reason is that the GISAXS patterns strongly depend on

the shape of the nanoscale structure among the classes of the

model (Renaud et al., 2003; Leroy et al., 2005). The second

reason is that we give priority to the validation of the CNN

against shape analysis of the samples based on image recog-

nition of the GISAXS patterns at the first stage.

We constructed a very simple CNN system using Tensor-

Flow (Abadi et al., 2015). Table 1 shows details of the struc-

ture. The CNN structure is composed of two convolutions, two

max-poolings, and two fully connected layers, which are

common components (Goodfellow et al., 2016). Its simplicity

makes it convenient to check the CNN analysis process. While

the results of the classification are obtained at the output

layer, the probabilities against all classes are obtained at

Layer 6, the layer just before the output layer, for investiga-

tion of misclassifications. In general, if tuning is excessively

performed on training data, high performance may not be

ensured with test data, which is called overfitting. Therefore,

early stopping is applied to avoid the overfitting issue. In this

study, early stopping was applied when the loss function value

of the test data did not improve three times consecutively.

For the training data, we calculated GISAXS intensities

using the FitGISAXS code (Babonneau, 2010). The GISAXS

patterns for training and testing the CNN network were

generated from the values of a common logarithm for inten-

sity. The total number of pixels of the image was restricted to

90 � 70 = 6300 due to the required computational time, which

still gave sufficient information on the outer shape of the

particles.

We simulated the GISAXS patterns of tellurium nano-

particles on a Si substrate [the real part of the refraction index

(�) is 7.6733� 10�6 for the X-ray wavelength of 1.5 Å] with an

incident angle of 0.2�. The models were defined as follows: the

layer geometry is the supported islands, the in-plane structure

factor is described by the Percus–Yevick approximation, and

the size distribution model is the decoupling approximation

with moderate volume fraction of 0.2. The shape model for

nanoparticles contains eight classes: capsule, spheroid, ellip-

soid, truncated spheroid, hemispheroid, prism based on an

equilateral triangle (prism3), prism based on a regular

hexagon (prism6), and cylinder. For all classes except ellipsoid

and truncated spheroid, the parameters were the values of the

diameter, aspect ratio in the vertical plane, and size dispersion.

For ellipsoid and truncated spheroid, parameters specific to

the characteristics of the shapes were added, that is, ratio of

vertical diameter to height for the truncated spheroid and

aspect ratio in the horizontal plane for the ellipsoid. Every

class contained 336 simulated images whose parameters are

listed in Fig. 1. Eighty-four randomly selected images and all

the residual images were used as test and training data for

each class, respectively. The computation time required for the

training was about 3 h (Intel Core i7, 2.0 GHz, without a

graphical processing unit).

Experimental GISAXS patterns were also evaluated by

CNN trained by the simulated data. The GISAXS patterns

were obtained experimentally for tellurium nanoparticles

(n-Te) made by the deposition of Te on Si(100) substrates.

GISAXS experiments were performed under vacuum with the

small-angle scattering setup of the BL6A and 10C beamlines

of the Photon Factory in the High Energy Accelerator

Research Organization (KEK), Tsukuba, Japan. The incident

angle was 0.2�, the X-ray wavelength was 1.5 Å, and the

distance between the sample and the detector was about 2 m,

which was calibrated using the diffraction ring of silver

docosanoate. The detectors were Pilatus 1M or 2M.

3. Results and discussion

We trained and tested the CNN on the simulated GISAXS

patterns. Figure 2 shows the success rate as a function of

learning. The success rates for training and test data reach up

to about 90%. There are some options for improving the

success rate, such as Bayesian optimization to select more

optimal hyperparameters, increasing the resolution of the

GISAXS patterns, and increasing the amount of training data.

Table 2 shows the confusion matrix for the CNN, which

shows the performance of a classifier by comparing the actual

and predicted classes. All classifications except ellipsoid and

spheroid were sufficiently accurate. About one-third of the

spheroids were classified as ellipsoid. Conversely, a quarter of

the ellipsoids were classified as spheroids. The confusion is

understandable, and the classification is technically not wrong,

considering the relationship between ellipsoids and spheroids.
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Table 1
Network structure of the proposed convolutional neural network.

Layer
Layer
name

Kernel
size

No. of
filters Strides

Output
shape Regularization

0 Input – – – 90 � 70 � 1 –
1 Convolution 4 � 4 32 1 90 � 70 � 32 –
2 Max-pooling 4 � 4 32 4 23 � 18 � 32 –
3 Convolution 4 � 4 64 1 23 � 18 � 64 –
4 Max-pooling 4 � 4 64 4 6 � 5 � 64 –
5 Dense – – – 512 Dropout(0.2)
6 Dense – – – 8 Dropout(0.2)



The set of ellipsoids contains spheroids; spheroids are ellip-

soids whose aspect ratio in the horizontal plane is unity. The

probability of every class can be checked at Layer 6. In the

misclassified cases, the probabilities of the actual classes are

the ‘second-place’ values. This means that the prediction

values containing the first and second alternatives are nearly

perfect. The CNN is very useful for screening the model of the

particles’ shape if we consider the secondary results.

To compare the performance of the CNN with other

methods, the similarity of images was calculated as an index.

The image similarity can represent similar images numerically,

and is widely used in the field of image processing including

image search. It is considered that the similarity simulates the

ability of the human eye in a simple way. Using the same test

data set for the CNN, a confusion matrix was also created for

the method using the index of similar images. Table 3 shows a

confusion matrix for the index of similarity of images. Here,

the class having the highest similarity is determined as the

classification result. From the results of Tables 2 and 3, the

average success rates by CNN and the image similarity method

were 91.7% and 59.8%, respectively. Therefore, the advantage

of the CNN is clear.

We studied the verification of the potential of the CNN

system for the classification of the experimental data. We

selected 37 GISAXS images from our experiments, and each

image has more than two peaks in the pattern. The system

classified 30 of 37 images as a truncated spheroid, 5 as a

ellipsoid, and 2 as a hemispheroid, as shown in Fig. 3.

It is reasonable to assume that all n-Te shapes are the same.

Therefore, the classification of the experimental data by CNN
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Figure 1
Parameters for nanoparticle shapes. Dx, Dy: diameters in the horizontal plane; Dz: diameter in the vertical plane; H: height; FWHM: full width at half-
maximum of Dy. The distribution function of Dy is log-normal.

Figure 2
Transition of success rate during training.



may be valuable for the analysis of GISAXS. Further analysis

should be required to study the influence of the angle of

incidence, volume fraction, in-plane orientation, etc. on the

successful classification of the nanoparticle shape.

4. Conclusion

We constructed a simple CNN structure to classify GISAXS

patterns. The network was trained and tested with simulated

GISAXS patterns. The proposed CNN obtains about a 90%

success rate on the test data. Regarding the second candidate

class, the CNN has a sufficient classification success rate to be

the preliminary selection model for least-squares fitting during

GISAXS analysis. It is also useful for classifying real experi-

mental GISAXS patterns.
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Table 2
Normalized confusion matrix for the CNN.

Actual class

Predicted class
Capsule Spheroid Ellipsoid

Truncated
spheroid

Hemispheroid Prism Prism6 Cylinder

Capsule 100 0 0 0 0 0 0 0
Spheroid 0 65.5 28.6 0 0 0 0 0
Ellipsoid 0 34.5 71.4 0 0 0 0 0
Truncated spheroid 0 0 0 100 0 0 0 0
Hemispheroid 0 0 0 0 100 0 0 0
Prism 0 0 0 0 0 100 0 0
Prism6 0 0 0 0 0 0 98.8 2.4
Cylinder 0 0 0 0 0 0 1.2 97.6

Sum 100 100 100 100 100 100 100 100

Table 3
Normalized confusion matrix for the similarity.

Actual class

Predicted class
Capsule Spheroid Ellipsoid

Truncated
spheroid

Hemispheroid Prism Prism6 Cylinder

Capsule 86.9 7.1 4.8 8.3 0 0 0 1.2
Spheroid 9.5 38.1 28.6 7.1 3.6 0 0 0
Ellipsoid 2.4 35.7 61.9 4.8 1.2 0 1.2 1.2
Truncated spheroid 0 8.3 0 45.2 17.9 1.2 7.1 1.2
Hemispheroid 0 8.3 3.6 21.4 70.2 6.0 4.8 8.3
Prism 0 0 0 2.4 3.6 50.0 15.5 9.5
Prism6 0 0 0 1.2 1.2 11.9 51.2 3.6
Cylinder 1.2 2.4 1.2 9.5 2.4 31.0 20.2 75.0

Sum 100 100 100 100 100 100 100 100

Figure 3
Actual experimental GISAXS pattern for Te nanoparticles (average
thickness 2.7 nm), which was classified as the truncated spheroid. The
probability of the top two classes at Layer 6 was 95% to truncated
spheroid and 2% to ellipsoid. The components of the scattering vector are
defined as follows. qy = ð2�=�Þ cos�f sin �, qz = ð2�=�Þðsin�i þ sin�fÞ,
where � is the X-ray wavelength, �i is the incident angle onto the sample’s
surface, �f and � are the exit angles perpendicular and parallel to the
surface, respectively. The total number of pixels of the GISAXS images
was reduced to 90� 70 = 6300, which was matched with the training data.
The intensity of the images was converted to a logarithmic scale, and
the magnitude was expressed in the gradation of 256 steps shown in the
gray scale.
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