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Nano-resolution full-field transmission X-ray microscopy has been successfully

applied to a wide range of research fields thanks to its capability of non-

destructively reconstructing the 3D structure with high resolution. Due to

constraints in the practical implementations, the nano-tomography data is

often associated with a random image jitter, resulting from imperfections in

the hardware setup. Without a proper image registration process prior to the

reconstruction, the quality of the result will be compromised. Here a deep-

learning-based image jitter correction method is presented, which registers the

projective images with high efficiency and accuracy, facilitating a high-quality

tomographic reconstruction. This development is demonstrated and validated

using synthetic and experimental datasets. The method is effective and readily

applicable to a broad range of applications. Together with this paper, the source

code is published and adoptions and improvements from our colleagues in this

field are welcomed.

1. Introduction

X-ray microscopy is a powerful tool for research and industry

(Jiang et al., 2020; Lee et al., 2021; Mu et al., 2018). It comes in

many different modalities and offers a wide range of resolving

power. Compared with visible light and electron beams,

X-rays feature a short wavelength and a large penetration

depth. X-rays interact with materials in different ways,

providing a number of different contrast mechanisms that are

sensitive to different material properties. Examples of X-ray

imaging with different modalities include, but are not limited

to, absorption, fluorescence, valence state, spin, scattering and

phase shift (Donoghue et al., 2006; Cagno et al., 2017; Tian et

al., 2018; Liu et al., 2013; Gonzalez-Jimenez et al., 2012). One

of the most significant advancements in X-ray imaging is

tomography, which reconstructs the 3D structure noninva-

sively. In this work, we tackle the image jittering problem, a

technical challenge facing tomography at high resolution.

Specifically, we focus on the nano-resolution full-field

transmission X-ray microscopy (TXM) (Andrews et al., 2009),

which utilizes a Fresnel zone plate as the objective lens for

magnifying the X-ray image and, thus, operates at an effective

spatial resolution of �15–30 nm (Chao et al., 2005; Liu et al.,

2011). Compositional and chemical sensitivities have been

demonstrated by conducting X-ray microscopy measurements

with varying X-ray energy (Liu et al., 2012; Nazaretski et al.,

2018). Nano-resolution tomography and, in particular, nano-

resolution spectro-tomography are regarded as a powerful
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modality of TXM with successful case studies spanning energy

materials, environmental science, geoscience, etc. With the

ongoing efforts in the developments of X-ray optics (Chang &

Sakdinawat, 2014) and the next-generation X-ray facilities

(Aljdaimi et al., 2018; Dong et al., 2019; Schneider, 1998;

Zaman et al., 2019), further improvements in spatial, temporal

resolution, and chemical sensitivity can be anticipated.

When conducting nano-resolution tomography with a TXM

setup, the sample is physically rotated and imaged in different

viewing angles. Although the mechanical stability and accu-

racy have been greatly improved in state-of-the-art rotation

stages, the image misalignment, involving a systematic error

component and a random error component, can still jeopar-

dize the quality of the reconstruction. For example, for the

nano-resolution full-field transmission X-ray microscope at

the 4W1A beamline of BSRF (Yuan et al., 2012), the effective

image pixel size is about 15 nm � 15 nm. To achieve a 30 nm-

resolution reconstruction, the amount of random image jitter

should be smaller than 3 pixels (with the horizontal and the

vertical jitter, �X and �Y, combined). This is a rather strin-

gent requirement and often cannot be satisfied in practice.

To address this technical challenge, efforts have been

devoted to developing experimental and computational

approaches for correction of the undesired image jitter, which

is key to achieving a high-resolution and high-fidelity recon-

struction. Various methods have been demonstrated to be

effective for alignment of projections in X-ray and electron

tomography, but each of them works to a certain degree. A

more comprehensive review of recent works can be found in

the literature (Odstrčil et al., 2019). Here we discuss three

typical approaches as examples. The first method is to use

fiducial markers or recognizable features of the sample for

registration (Cheng et al., 2014; Fung et al., 1996; Han et al.,

2015; Mastronarde & Held, 2017; Olins et al., 1983; Ress et al.,

1999). For example, gold particles with a micrometre-level

diameter are often used as fiducial markers and a manual or

semi-auto correction process can be used to trace the marker

positions in different viewing angles. This approach is rather

tedious and is not always applicable because such a marker or

a recognizable sample feature is not always available. The

second method utilizes capacitance sensors or laser inter-

ferometers to experimentally measure the runout of the

rotation stage and uses the measured values to offset the

projective images (Xu et al., 2014). For this experimental

approach, the implementation can be expensive, and the

measurement accuracy can be affected by the temperature and

humidity, decreasing the robustness of the system. The third

method is the projective images registration correction

method (Gürsoy et al., 2017; Odstrčil et al., 2019; Yu et al.,

2018) based on the concept of ‘tomographic consistency’

(Gürsoy et al., 2014). This method first conducts the recon-

struction disregarding the sample jitter to obtain a low-reso-

lution 3D volume, then numerically calculates the projective

images in the corresponding viewing angles through a

‘reprojection’ process. The sample jitter is then corrected by

registering the image pairs, each containing an experimental

image and its corresponding calculated projective image in the

same angle. This process is often carried out iteratively for

better results. Our group has implemented this method for

the beamline production at SSRL and BSRF. Although the

performance of this method is fairly good, the efficiency is far

from satisfactory. In addition to the above discussed approa-

ches, we acknowledge that efforts have been put into dealing

with more complicated scenarios that involve non-rigid

sample transformations (De Andrade et al., 2021; Nikitin et al.,

2021). This is a very interesting research direction and is

beyond the scope of this paper.

Herein, we present a deep-learning-based method for

correcting the undesired image jitters for nano-resolution

X-ray tomography. Our method can quickly and precisely

calculate the amount of image offsets and correct such image

random jitters through a trained residual neural network.

We demonstrate that, through our approach, the fidelity and

resolution of the tomographic reconstruction can be signifi-

cantly improved. Compared with the traditional methods, our

approach is simple, fast, accurate, and robust. With the source

code of our development freely available on our GitHub

repository, our method is readily available for deployment and

further improvement.

2. Method

2.1. Deep-learning-based image jitter correction

A schematic diagram of our deep-learning-based image

jitter correction method for nano-resolution X-ray tomo-

graphy is shown in Fig. 1. First, the raw projective images (P1)

of the sample were reconstructed using the maximum-like-

lihood expectation maximization algorithm (MLEM) (Gürsoy

et al., 2014; Dempster et al., 1977), resulting in a low-resolution

3D representation of the sample (I1, see step A). Second, the

numerical reprojection process was applied to I1 in order to

obtain the reprojection images (P2, see step B). Third, P1 and

P2 are assembled into a two-channel picture and fed into a

residual neural network (He et al., 2016). The residual neural

network performs feature extraction and matches the image

pairs, with the amount of image offsets, �X 0 and �Y 0,

quantified and recorded (see step C). Fourth, the recorded

image jitter, �X 0 and �Y 0, were applied to translate P1,

resulting in the corrected projective images (P3, see step D).

Finally, P3 is fed into the tomographic reconstruction routine

and the final result (I2) can be generated using conventional

algorithms, e.g. filtered back-projection (FBP) (step E).

Conceptually, this process is similar to the ‘tomographic

consistency’ approach. The major development reported

herein is the application of a specifically designed residual

neural network for the projection image registration without

going through an iterative, computationally expensive, and

time-consuming process. We will elaborate on our network

design in the next section.

2.2. Design of the residual neural network

While the fundamental concept of our approach is similar

to ‘tomographic consistency’, the goal of our development
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is to accomplish the projective image registration without

performing many iterations. This is a nontrivial task as the

images generated by reprojection are quite different from the

raw experimental images. This is the root cause for the need

of multiple iterations in the conventional approach, which

improves the quality of the 3D volume progressively. In this

work, we demonstrate that, with a properly trained machine

learning model, the projective image registration can be

achieved without multiple iterations. Our deep-learning-based

method does not require iterations because it is not trying to

register the images by matching features one-to-one. The

network first learns how the features in the raw projection

image transform into the characteristics (including nonlocal

artifacts) in the reprojection. Therefore, when it is properly

trained, this model demonstrates significant improvements

over the conventional approach.

Deep neural networks, especially convolutional neural

networks, have been a very popular approach to perform

feature extraction and subsequently for image registration

(Simonyan & Zisserman, 2015; Ronneberger et al., 2015;

Balakrishnan et al., 2018; Hoopes et al., 2021). With the

increase of network layers, more complex features can be

learned progressively (Krizhevsky et al., 2017; LeCun et al.,

1989) but the networks are more difficult to train. The residual

neural network architecture is used to solve this issue (Sandler

et al., 2018; Balduzzi et al., 2017), resulting in the establishment

of the high-precision deep network.

We illustrate in Fig. 2 the structure of the residual neural

network, which consists of 13 convolutional layers, two

pooling layers, and a fully connected layer. In the 13 convo-

lution layers, there is one 7 � 7 convolution kernel and twelve

3 � 3 convolution kernels, and these twelve 3 � 3 convolution

kernels constitute three jump connected residual blocks. In the

above-mentioned network layer, the layer with a strides factor

of 2 can down-sample the image to increase the calculation

speed. Besides, the ReLU activation function (Xu et al., 2015)

and layer normalization (Ioffe & Szegedy, 2015) are used to

connect the convolutional layers, which help to speed up the

convergence and improve the final results’ accuracy in the

tests. The residual neural network takes the image pairs – each

has one raw projective image and its corresponding repro-

jection image – as input and evaluates the amount of image

jitter.

A training process is required before the residual neural

network can be utilized in real-world applications. Due to the

lack of ground truth in the experimental data, we construct

synthetic datasets with artificially induced image offsets for

the training purpose. In our work, the training procedure

involves the forward and backward propagations as illustrated

in Fig. 2. For the forward propagation (black arrow in Fig. 2),

the jitter value and loss value are output by using the image

pair with known image jitter as the input of forwarding

propagation. For the backward propagation (orange arrow in

Fig. 2), the loss value acquired by forward propagation is used

as input, and the parameter of the network is calculated and

updated by using the Adam optimization algorithm (Kingma

& Ba, 2015) for minimizing the loss function. The backward

propagation updates the network and suppresses the loss
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Figure 2
The structure of the residual neural network. The black arrow process
represents the forward propagation of the network, and the orange arrow
process represents the backward propagation of the network.

Figure 1
The workflow of the deep-learning-based image jitter correction method
for synchrotron nano-resolution tomographic. Step A is the reconstruc-
tion of the raw projective images. Step B is reprojection of the sample
from different perspectives. Step C acquires image jitter by the residual
neural network. Step D corrects the projective images. Step E is to
reconstruct the 3D image after correction.



value, which ultimately improves the quality of the network

for our application.

In the above-described training process for the residual

neural network, a carefully defined loss function is essential.

For the forward propagation, the loss function determines the

functionality of the model. And for the backward propagation,

the loss function guides optimization of the network. In this

paper, the mean square error (MSE) of the known image

offsets and the corresponding values calculated by the residual

neural network is chosen as the loss function, which can be

expressed as

MSE ¼
1

n

X

n

�Xn ��X 0nð Þ
2
þ �Yn ��Y 0nð Þ

2
; ð1Þ

where �Xn, �Yn, �X 0n, �Y 0n represent the horizontal and

vertical image jitters in the nth projective viewing angle,

respectively.

When the MSE value reaches the minimum, the residual

neural network training will be stopped. The trained residual

neural network is ready for being applied to correcting the

image jitter in real-world tomographic data and only the

forward propagation of the residual neural network will

be processed.

3. Experiments and discussion

3.1. Evaluation of the deep-learning-based image registration
using data with synthetic jitters

To verify the effectiveness of our deep-learning-based

image jitter correction approach, we first conduct nano-

tomography on an isolated gold particle as our test sample.

This experiment was carried out at the 4W1A beamline of

BSRF. A total of 181 projective images were recorded over an

angular range of 0� to 180�. In our experimental configuration,

the effective pixel size is 15 nm. As described above, a ground

truth is needed for the training process. Therefore, we

conducted an iterative image registration process (Yu et al.,

2018) to get this dataset aligned and used this result as our

ground truth. We then purposely induced image offsets by a

random amount (from �20 pixels to +20 pixels) in both

horizontal and vertical directions to mimic the random image

jittering. With known offset values, this dataset was fed into

our model for the training process.

We show in Fig. 3 a comparison of the results of the gold

particles. Figs. 3(a)–3(d) are the ground-truth slice, the slice

with synthetic random jitters, the slice with manual alignment,

and the slice with our model-based registration, respectively.

Although the manual alignment process can effectively

supress the blurred particle edge, the lack of recognizable

features in the sample makes it very difficult to precisely

register the projection images in different angles, resulting in

visible artifacts near the edge of the particle. On the other

hand, our deep-learning model successfully reconstructed the

tomographic data and the presented central slice faithfully

restored the features of the ground-truth image. To present

the effectiveness of the image alignment from a different

perspective, we show the sinograms in Figs. 3(e) to 3(h). The

image jittering is clearly visible on the edges of the sinogram,

which is clearly supressed after our model is applied for

correction. We quantify the residual error by calculating the

mean square error [MSE, as shown in equation (1)] between

the model-estimated amount of offset and the ground truth.

This calculation yields a value at 0.87 pixels, indicating a rather

successful correction using our model. The absolute amounts

of image offset and the residual errors in different angles are

plotted in Figs. 3(i) and 3( j). Although both the manual

correction and the deep-learning correction could follow the

trend of the artificially induced random jitter, the residual

errors are significantly suppressed in the deep-learning-

corrected dataset to a single-pixel level.

We point out that the synthetic data are originated from

the experimentally measured images, which already contain

experimental noise associated with the actual synchrotron

measurements. Nevertheless, to further evaluate the robust-

ness of our method, we conduct a testing with purposely

induced salt-and-pepper noise (Zhang et al., 2021) at different

levels [ranging from 0% to 60%, shown in Figs. 4(a) to 4(d)].

The salt-and-pepper noise can be represented as randomly

occurring white and black pixels in the image. The presence

of this noise not only makes the structural details contained

in the images submerged, but also introduces a lot of inter-

ference information, which will harm the reconstruction

quality of the conventional registration methods due to their

limited adaptability to noise (Yüksel & Baştürk, 2003; Singh et

al., 2018). We plot the MSE values of the projection alignment
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Figure 3
The reconstructed slice images and sinogram images of the gold particle
sample. Reconstruction slice images results of projective images data with
ground truth (a), without correction (b), with manual correction method
(c), and with deep-learning-based correction method (d). (e)–(h)
Sinogram images corresponding to the slice images (a)–(b). (i) Radar
chart of images jitter distribution. ( j) Radar chart of sample residual
errors distribution.



result of the conventional phase correlation algorithm and

that of the deep-learning-based method against the levels of

noise in Fig. 4(e). In general, the features of the gold particle

in the projection images are overwhelmed and, therefore,

the registration accuracy is gradually reduced as the salt-and-

pepper noise level increases. When the noise level reaches

above 40%, the conventional method failed while the herein

developed model can still lead to an MSE value below 4, which

means that the residual jitter errors are smaller than 2 pixels.

The corresponding reconstructed slices [insets in Fig. 4(e)]

demonstrate a reasonable quality. This shows that the

proposed method can robustly correct the undesired image

jitters for nano-resolution X-ray tomography, even with high

noise conditions.

3.2. Application of the deep-learning-model to realistic nano-
tomographic data on a battery cathode particle

Nano-tomographic data on battery cathode particles

(LiNi0.6Mn0.2Co0.2O2) with complicated internal structure are

used to further test the developed deep-learning-based image

jitter correction approach. In a typical dataset, a total of 180

projective images are recorded over an angular range of 1� to

180� (Xia et al., 2018). Similarly, the training data were needed

for training the network. Generally, it is well appreciated that

the performance of supervised deep neural network relies

heavily on the size and properties of the training data.

However, in many cases, it is difficult to create training data-

sets that are large enough. To solve this problem, we train the

network with different types of the synthetic datasets with

artificially induced jitters and evaluate their performance on

the test set. The results show that, if the training data and the

test data have a high shape similarity, the well trained network

can also be obtained even with a fairly small training set. On

the contrary, the proposed method may work poorly for other

types of data and a retraining process will be necessary. In this

paper, as a demonstration example, we have trained our model

on external datasets (Andrews et al., 2008; and data from

BSRF), which has similar object shape with the battery

cathode particle. The results demonstrate its effective jitter

correction performance. Importantly, our framework is very

flexible, and the open-sourced simulation and training codes

allow the proposed approach to be quickly adapted to new

datasets with different properties. In addition, the proposed

method can also serve as the initial step within the popular re-

projection framework (Yu et al., 2018) to significantly accel-

erate the convergence of the iterative process.

We display the reconstructed 3D volume and selected slices

of the imaged battery particle in Fig. 5. Figures 5(a) and 5(b)

show the results with and without the image registration using

our model. The presented deep-learning-based correction

significantly enhances the image quality and contrast, which is

clear to a visual assessment of the images shown in Figs. 5(a)

and 5(b). The grayscale histogram plot in Fig. 5(c) also shows a

better separation of the two peaks that are associated with the

background/crack/void phase and the solid phase, respectively.
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Figure 5
The reconstruction 3D volume and slice images result of projective
images with deep-learning-based correction method (a), and without
correction (b). The right-had images show enlargement views of the
interested regions marked as red squares in the respective slice image. (c)
Intensity histogram plot of the tomographic reconstruction. (d) Intensity
over the lines highlighted (crack) in (a)–(b).

Figure 4
(a)–(d) The original projection image of the gold particle and its noise
corrupted images at various levels of salt-and-pepper noise: (a) noise
ratio at 0%; (b) noise ratio at 10%; (c) noise ratio at 20%; (d) noise ratio
at 40%. (e) The MSE values of the conventional and the proposed
methods (red and blue, respectively) are plotted with respect to the noise
ratio. The reconstructed image slices are shown in the inset.



In Figs. 5(d) and 5(e), we compare the intensity profiles over

the highlighted lines in Figs. 5(a) and 5(b), respectively. The

enhanced contrast is supported by the clearly visible intensity

drops at the crack positions. Accurate visualization and

quantification of the spatial arrangement of the cracks and

pores is important to understanding the chemomechanical

processes in battery cathodes (Yang et al., 2019), which largely

determines the battery performance and lifespan. The herein

presented development is clearly valuable to researching

battery materials using TXM.

3.3. Runtime of the proposed method

The herein reported deep-learning-based image jitter

correction method is developed using PyTorch (Paszke et al.,

2019), which is a deep-learning framework for GPU-acceler-

ated tensor calculation. Our package was operated on

NVIDIA Quadro P6000, a 25 GB memory graphics card. The

pre-trained model can quickly correct a set of nano-resolution

projective data composed of 181 sequential images in less than

one second.

4. Conclusion

In this paper, a deep-learning-based image jitter correction

method for synchrotron nano-resolution tomographic recon-

struction is presented. Compared with the traditional correc-

tion methods, our approach is efficient, effective, and does

not require any expensive experimental developments. After

correction, the residual jitter errors are at a level of 0–2 pixels,

which greatly improves the quality of the 3D reconstruction.

In addition, our method demonstrates a significantly improved

computing speed. The robustness of our approach is also

reflected in the fact that our model can be easily retrained for

applications for different samples and for different beamlines.

We publish our source code and welcome adoptions and

improvements from our colleagues in this field.

5. Data availability

The data supporting the findings of the study is available

at the GitHub repository: https://github.com/SSRL-LiuGroup/

corresnet.

Acknowledgements

We acknowledge the 4W1A beamline of the Beijing

Synchrotron Radiation Source and the 6-2c beamline of the

Stanford Synchrotron Radiation Light Source for the experi-

mental data and facilities provided. The engineering support

from D. Van Campen, D. Day and V. Borzenets for the TXM

experiment at beamline 6-2c of Stanford Synchrotron Radia-

tion Lightsource is gratefully acknowledged. Use of Stanford

Synchrotron Radiation Lightsource (SSRL) at SLAC National

Accelerator Laboratory is supported by the US Department

of Energy (DOE), Office of Science, Office of Basic Energy

Sciences under contract number DE-AC02-76SF00515.

Funding information

The following funding is acknowledged: National Key

Research and Development Program of China (award No.

2016YFA0400900); National Natural Science Foundation of

China (award No. U2032107; award No. U1632110).

References

Aljdaimi, A., Devlin, H., Dickinson, M., Burnett, T. & Slater, T. J. A.
(2018). Clin. Oral Invest. 23, 2279–2285.

Andrews, J. C., Brennan, S., Liu, Y., Pianetta, P., Almeida, E. A. C.,
Meulen, M. C. H. V. D., Wu, Z., Mester, Z., Ouerdane, L., Gelb, J.,
Feser, M., Rudati, J., Tkachuk, A. & Yun, W. (2009). J. Phys. Conf.
Ser. 186, 012081.

Andrews, J. C., Brennan, S., Patty, C., Luening, K., Pianetta, P.,
Almeida, E., van der Meule, M. C. H., Feser, M., Gelb, J. & Rudati,
J. (2008). Synchrotron Radiat. News, 21(3), 17–26.

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. & Dalca, A. V.
(2018). Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 18–23 June 2018, Salt
Lake City, UT, USA.

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Wan-Duo Ma, K. &
McWilliams, B. (2017). arXiv:1702.08591.

Cagno, S., Brede, D. A., Nuyts, G., Vanmeert, F., Pacureanu, A.,
Tucoulou, R., Cloetens, P., Falkenberg, G., Janssens, K., Salbu, B. &
Lind, O. C. (2017). Anal. Chem. 89, 11435–11442.

Chang, C. & Sakdinawat, A. (2014). Nat. Commun. 5, 4243.
Chao, W. L., Harteneck, B. D., Liddle, J. A., Anderson, E. H. &

Attwood, D. T. (2005). Nature, 435, 1210–1213.
Cheng, C., Chien, C., Chen, H., Hwu, Y. & Ching, Y. (2014). PLoS

One, 9, e84675.
De Andrade, V., Nikitin, V., Wojcik, M., Deriy, A., Bean, S., Shu, D.,

Mooney, T., Peterson, K., Kc, P., Li, K., Ali, S., Fezzaa, K., Gürsoy,
D., Arico, C., Ouendi, S., Troadec, D., Simon, P., De Carlo, F. &
Lethien, C. (2021). Adv. Mater. 33, 2008653.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). J. R. Stat. Soc. 39,
1–38.

Dong, K., Osenberg, M., Sun, F., Markötter, H., Jafta, C. J., Hilger, A.,
Arlt, T., Banhart, J. & Manke, I. (2019). Nano Energy, 62, 11–19.

Donoghue, P. C. J., Bengtson, S., Dong, X. P., Gostling, N. J.,
Huldtgren, T., Cunningham, J. A., Yin, C., Yue, Z., Peng, F. &
Stampanoni, M. (2006). Nature, 442, 680–683.

Fung, J. C., Liu, W. P., de Ruijter, W. J., Chen, H., Abbey, C. K., Sedat,
J. W. & Agard, D. A. (1996). J. Struct. Biol. 116, 181–189.

Gonzalez-Jimenez, I. D., Cats, K., Davidian, T., Ruitenbeek, M.,
Meirer, F., Liu, Y., Nelson, J., Andrews, J. C., Pianetta, P., de Groot,
F. M. F. & Weckhuysen, B. M. (2012). Angew. Chem. Int. Ed. 51,
11986–11990.

Gürsoy, D., De Carlo, F., Xiao, X. & Jacobsen, C. (2014). J.
Synchrotron Rad. 21, 1188–1193.

Gürsoy, D., Hong, Y. P., He, K., Hujsak, K., Yoo, S., Chen, S., Li, Y.,
Ge, M. Y., Miller, L. M., Chu, Y. S., De Andrade, V., He, K.,
Cossairt, O., Katsaggelos, A. K. & Jacobsen, C. (2017). Sci. Rep. 7,
11818.

Han, R. M., Wang, L. S., Liu, Z. Y., Sun, F. & Zhang, F. (2015). J.
Struct. Biol. 192, 403–417.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 27–30 June 2016, Las Vegas, NV, USA.

Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J. & Dalca, A. V.
(2021). arXiv:2101.01035.

Ioffe, S. & Szegedy, C. (2015). arXiv:1502.03167.
Jiang, Z., Li, J., Yang, Y., Mu, L., Wei, C., Yu, X., Pianetta, P., Zhao,

K., Cloetens, P., Lin, F. & Liu, Y. (2020). Nat. Commun. 11, 2310.
Kingma, D. P. & Ba, J. L. (2015). Proceedings of the 3rd International

Conference on Learning Representations (ICLR 2015), 7–9 May
2015, San Diego, CA, USA.

research papers

1914 Tianyu Fu et al. � Deep-learning-based image registration J. Synchrotron Rad. (2021). 28, 1909–1915

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5245&bbid=BB24


Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2017). Commun. ACM,
60, 84–90.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W. & Jackel, L. D. (1989). Neural Comput. 1, 541–551.

Lee, H. R., Liao, L., Xiao, W., Vailionis, A., Ricco, A. J., White, R.,
Nishi, Y., Chiu, W., Chu, S. & Cui, Y. (2021). Nano Lett. 21, 651–657.

Liu, Y., Andrews, J. C., Meirer, F., Mehta, A., Gil, S. C., Sciau, P.,
Mester, Z. & Pianetta, P. (2011). AIP Conf. Proc. 1365, 357–360.

Liu, Y., Meirer, F., Wang, J., Requena, G., Williams, P., Nelson, J.,
Mehta, A., Andrews, J. C. & Pianetta, P. (2012). Anal. Bioanal.
Chem. 404, 1297–1301.

Liu, Y., Nelson, J., Holzner, C., Andrews, J. C. & Pianetta, P. (2013). J.
Phys. D Appl. Phys. 46, 4001.

Mastronarde, D. N. & Held, S. R. (2017). J. Struct. Biol. 197, 102–113.
Mu, L. Q., Lin, R. L., Xu, R., Han, L. L., Xia, S. H., Sokaras, D.,

Steiner, J. D., Weng, T. C., Nordlund, D., Doeff, M. M., Liu, Y. J.,
Zhao, K. J., Xin, H. L. L. & Lin, F. (2018). Nano Lett. 18, 3241–3249.

Nazaretski, E., Xu, W., Yan, H., Huang, X., Coburn, D. S., Ge, M.,
Lee, W. K., Gao, Y., Xu, W. & Fuchs, M. R. (2018). Synchrotron
Radiat. News, 31(5), 3–8.

Nikitin, V., De Andrade, V., Slyamov, A., Gould, B. J., Zhang, Y.,
Sampathkumar, V., Kasthuri, N., Gursoy, D. & De Carlo, F. (2021).
IEEE Trans. Comput. Imaging, 7, 272–287.
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