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High-resolution X-ray nanotomography is a quantitative tool for investigating

specimens from a wide range of research areas. However, the quality of the

reconstructed tomogram is often obscured by noise and therefore not suitable

for automatic segmentation. Filtering methods are often required for a detailed

quantitative analysis. However, most filters induce blurring in the reconstructed

tomograms. Here, machine learning (ML) techniques offer a powerful

alternative to conventional filtering methods. In this article, we verify that a

self-supervised denoising ML technique can be used in a very efficient way

for eliminating noise from nanotomography data. The technique presented is

applied to high-resolution nanotomography data and compared to conventional

filters, such as a median filter and a nonlocal means filter, optimized for

tomographic data sets. The ML approach proves to be a very powerful tool that

outperforms conventional filters by eliminating noise without blurring relevant

structural features, thus enabling efficient quantitative analysis in different

scientific fields.

1. Introduction

Hard X-ray nanotomography is a commonly used tool in many

research areas, such as materials science, biology and medi-

cine. Transmission X-ray microscopes (TXM) are often

equipped with diffractive optics [beam-shaping condenser

(Jefimovs et al., 2008) and Fresnel zone plates (FZP)], where,

in particular at higher X-ray energies, the efficiency is very

low, resulting in a low signal-to-noise ratio (SNR) at the

detector plane. Capillary optics provide higher flux but are

more difficult to combine with phase contrast methods such as

Zernike phase contrast (Zernike, 1942; Schmahl et al., 1994)

as they lack sensitivity. Recent developments have led to a

significant increase in time resolution, in particular at

synchrotron-based nanotomography setups. Full-field TXM

setups have reached scan times in the minute regime (Ge et al.,

2018) and even scan times of down to 6 s have been reported

recently (Flenner et al., 2020). This allows not only a push for

in situ nanotomography experiments at high temporal reso-

lution but also the chance to reduce the dose for radiation-

sensitive samples such as biological or medical specimens.

While nanotomography offers high spatial resolution, there

is one key challenge: even small sample movements at the

nanoscale become visible and reduce the image quality. In

addition, the dose on the sample is generally not negligible,

due to the focusing of the beam by the beam shaper onto the

sample and the resulting increased flux density. In particular
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for biological samples, this can lead to structural changes

during measurement (e.g. shrinking or bubbling), resulting

in severe artifacts in the tomographic reconstruction. One

strategy to minimize the impact of the dose on the sample is to

minimize the scan time as much as possible. In situ experi-

ments are another example where fast scan times are crucial:

the scan time has to be significantly shorter than the dynamic

process observed to prevent movement artifacts in the

tomograms. For both examples, however, there is always a

trade-off between short scan times and a significant increase

in the signal-to-noise ratio. Moreover, at a certain point, the

spatial resolution is also affected (Flenner et al., 2020; Waske et

al., 2010). In order to analyze these data sets quantitatively,

reconstructions usually require capable filtering techniques

for the segmentation of structural features and subsequent

analysis.

In recent years, numerous powerful filtering techniques

have been developed, making it possible to reduce the noise

[e.g. nonlocal means (NLM) filtering (Liu et al., 2010; Buades

et al., 2005; Diwakar & Kumar, 2018)]. However, these filters

are not usually free of signal loss, leading to a reduction in

spatial resolution and therefore hindering detailed segmen-

tation (Schlüter et al., 2014). In particular, for very fine

features at the limit of the spatial resolution of a wide range of

nanotomography setups (�100 nm), conventional filters often

reach their limits. In addition, most of these filters are opti-

mized to reduce random noise. After tomographic recon-

struction, the noise has been projected from Radon space to

Euclidian space and is no longer randomly distributed

(Diwakar & Kumar, 2018).

One approach for handling tomographic noise by Bruns et

al. (2017) uses an iterative NLM filter. The iterative NLM

filter is optimized to handle noise in microtomographic

reconstructions retrieved from homogeneously illuminated

projection images of the samples. For nanotomography,

however, the illumination of the sample is often not homo-

geneous since illumination optics are used (e.g. beam-shaping

condenser or capillary optics). In addition, a misaligned phase

ring can contribute to contrast changes over the illuminated

field of view. Altogether, this can lead to a very inhomoge-

neous distribution of noise in the reconstructed nano-

tomographic data. The iterative NLM filter, for example, has

some issues with the changing noise profile in the plane

perpendicular to the tomographic rotation axis (xy direction).

Several approaches have been made using machine learning

(ML) for denoising tomographic data. Yang et al. (2018) and

Pelt & Sethian (2018) showed that ML can be used to perform

fast tomography scans and reduce the noise afterwards. While

Pelt & Sethian used a high-quality scan for training, Yang et al.

trained a single high-quality projection of the specimen to

denoise the tomographic scan. These approaches, however,

require a certain scanning protocol and cannot be used on

data acquired without a high-quality reference. In addition,

several ML approaches aim for automated segmentation

(Furat et al., 2019; Ali et al., 2021) or the reconstruction of

limited angle tomography data (Pelt et al., 2018; Würfl et al.,

2018; Huang et al., 2020).

In this article, we present an approach based on ML applied

to standard synchrotron nanotomography data. The projec-

tions of a TXM scan are split into two independent stacks

which are reconstructed separately. The resulting two recon-

structed stacks are from the same measurement and contain

identical information about the sample, but the noise in the

two different reconstructions is uncorrelated. This concept

(Noise2Inverse) has very recently been proven mathemati-

cally by Hendriksen et al. (2020), where artificial noise was

added to microtomographic data. Real experimental data,

however, often suffer from additional artifacts (e.g. ring arti-

facts or movement artifacts), which can be potentially

enhanced by the ML algorithm. Here, we prove that the

Noise2Inverse concept can be applied to nanotomographic

scans and can improve the reconstruction quality significantly,

enabling image segmentation. In order to show the potential

of the presented approach, three different types of biological

samples were tested in this study: (i) a very low absorbing

specimen, with distinct small and regular features (butterfly

scale), (ii) a structurally heterogeneous and more absorbing

material with irregular features (bone specimen), and (iii) a

highly disordered and structurally complex specimen (mouse

kidney) as a region of interest (ROI) scan. These structurally

very different types of samples were chosen to demonstrate

the performance and efficiency of the presented ML approach

in comparison with other filtering methods.

2. Materials and methods

2.1. Setup

All tomograms were recorded on the X-ray nanotomo-

graphy setup at the imaging beamline P05 at PETRA III,

DESY, operated by Helmholtz-Zentrum Hereon (Ogurreck et

al., 2013; Greving et al., 2018; Flenner et al., 2018). The setup

offers high flexibility and high-speed nanotomography down

to 6 s, which is suitable for in situ experiments (Flenner et al.,

2020). Both absorption and Zernike phase contrast can be

performed at a spatial resolution below 100 nm in 3D. All

scans were performed at an X-ray energy of 11 keV.

As shown in the schematic of the setup in Fig. 1, the

incoming X-ray beam is focused using beam-shaping

condenser optics (Vogt et al., 2006; Jefimovs et al., 2008).

Depending on the desired field-of-view (FOV), different sizes

of subfields can be chosen. Here, subfield sizes of 50 mm �

50 mm and 100 mm � 100 mm are used. The order sorting

apertures block the higher diffraction orders of the beam

shaper. A Fresnel zone plate (FZP) produces the image on

the detector. The size of the FZP was chosen depending on the

desired magnification. A phase ring can be inserted in the

back-focal plane to utilize Zernike phase contrast. Note that

Zernike phase contrast images are non-quantitative. For all

experiments, a positive phase contrast is used, i.e. the

absorption contrast is enhanced and not inverted as in the case

of negative Zernike phase contrast. Bright regions therefore

represent areas of high electron density and dark areas are

characterized by low electron density.
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To obtain a reconstruction with high spatial resolution, a

sufficient number of projections at equally distributed angles

over at least 180� need to be acquired. The amount depends

on the sample and also on the setup itself (e.g. detector size).

Since the stack of projections needs to be divided in order to

apply the ML filter approach presented here, the number of

projections needs to be doubled. In total, 1760 projections are

acquired during a standard tomographic scan of 15 min. The

ideal scan time for this setup has been estimated previously

(Flenner et al., 2020).

2.2. Samples

The presented types of specimen were chosen to verify the

versatility of the presented method: more specifically, the

butterfly scales are composed of the biopolymer chitin and the

3D structure gives the scale the bright distinct colour (struc-

tural colour). The studied scale is from an Emerald Patched

Cattleheart butterfly (Parides sesostris) (Starkey & Vukusic,

2013). Scanning electron microscopy (SEM) images of a

similar sample can be found in the supporting information.

This sample was measured at an FOV of 50 mm � 50 mm, with

a 150 mm diameter FZP and an effective pixel size of 22.2 nm.

Femoral bone was prepared in line with previously

published protocols (Stockhausen et al., 2021). Briefly, femoral

cross sections from the mid-diaphysis

were cut using a diamond saw and fixed

in 3.7% formaldehyde. Thereafter, the

sample was embedded undecalcified

in glycol methacrylate (Technovit 7200,

Heraeus Kulzer GmbH, Wehrheim,

Germany) and ground to a thickness of

100 mm using an automatic grinding

machine. Images from other high-reso-

lution imaging techniques can be found

in Stockhausen et al. (2021). Cylinders

of 25 mm diameter were extracted by

focused ion beam (FIB) milling and

measured at an FOV of 40 mm � 40 mm,

with a 130 mm diameter FZP and an

effective pixel size of 18.7 nm.

The mouse kidney sample was

obtained in the framework of an

experiment which was approved by

local and national ethics committees,

following the European guidelines for

the use of animals (APAFIS #8782-

201732813328550 v1) (Longo et al.,

2020). The kidney was collected, dehy-

drated in ethanol and embedded in

paraffin for long-term storage. Milli-

metre-sized samples of the kidney were

then cut and glued on the top of pins to

perform the X-ray imaging. Histology

images of a similar sample are available

in the supporting information (Fig. S2).

This sample was measured at an FOV of

72 mm � 72 mm, with a 250 mm diameter FZP and an effective

pixel size of 35.9 nm.

3. The machine learning (ML) denoising approach

Deep learning algorithms are particularly useful for per-

forming nonlinear regression. In tomographic denoising tasks,

this can be exploited in a variety of ways. One is the Noise2-

Inverse approach (Hendriksen et al., 2020), where the image

data are split into two independent sets of projection data. A

convolutional neural network (CNN) is then trained to project

one data set onto the other in the reconstruction domain. As

the noise component in the Radon domain is still uncorre-

lated, only signal information present in both data sets is

regressed. In this study, we focus on the practicalities of

implementing the Noise2Inverse algorithm for TXM nano-

tomography. For further details on the mathematics of the

presented method, the reader is referred to Hendriksen et

al. (2020).

The workflow depicted in Fig. 2 describes how Noise2-

Inverse is used to denoise the nanotomographic scans pre-

sented in this article. The workflow is based on an

implementation in Python using the mixed-scale dense

network architecture (MSDNet, https://dmpelt.github.io/

msdnet/) (Pelt & Sethian, 2018; Pelt et al., 2018). As a first step,

research papers

232 Silja Flenner et al. � Machine learning denoising of high-resolution data J. Synchrotron Rad. (2022). 29, 230–238

Figure 2
Workflow of the ML denoising approach. The acquired projections are divided into two stacks and
reconstructed separately. While one reconstruction is used as an input, the other reconstruction is
used as a target. The resulting model can be applied to each of the two reconstructions.

Figure 1
Schematic of a typical transmission X-ray microscopy setup used at P05, PETRA III (DESY,
Germany) (adapted from Flenner et al., 2020).



the stack of projections is divided into two stacks, each

containing every second projection. Each stack of projections

is then reconstructed individually. Here we used the GridRec

algorithm (Dowd et al., 1999) with a Shepp–Logan filter

implemented in TomoPy (Gürsoy et al., 2014). The resulting

reconstructions are used as an input for the ML algorithm, one

as the regressor (or input) and the other as the regressand (or

target). The training was performed on a Tesla V100 GPU on a

stack of 400 neighbouring slices (1024 � 1024 pixels) of the

reconstructed stacks. The network was validated and tested on

a different stack of 50 slices from the same scan. Training and

testing data are not directly neighbouring slices and can

therefore differ slightly, making the network more robust and

applicable to different samples with a similar structure.

Choosing random slices for training and testing instead of

neighbouring slices did not show any improvement in

performance (see Fig. S3 in the supporting information).

Training the network on individual slices (xy direction) leads

to artifacts in the other direction (z direction). Therefore, for

each slice, the five closest adjacent slices were used as addi-

tional input channels; this eliminates the artifacts and

improves the image quality in all directions. The MSDNet

model is trained to be applied to a reconstruction of equal

noise level, i.e. reconstructions with the same number of

projections and acquired under the same experimental

conditions as the split reconstructions used for training. That

means that the trained model only needs to be applied to one

of the two reconstructions for obtaining a denoised result,

while the other is needed for training only.

When applying the algorithm to TXM data acquired at the

synchrotron radiation beamline P05 at DESY, we observed

that the number of epochs required for training largely

depended on the complexity of the sample. As a rule of thumb,

the network has to be trained longer when smaller features

have to be resolved. While 60 epochs were sufficient for the

bone sample to resolve all relevant features (approximately

2 h for 400 slices, 1024 � 1024 pixel), the butterfly scale

needed around 190 epochs (>6 h) to resolve the very fine

structures (Fig. 3). As an example, Figs. 3(b) and 3(c) show the

improvement of the network from 5 epochs [Fig. 3(b)] to 190

epochs [Fig. 3(c)]. Here, the mean-squared error between the

output image and the target images is shown as an indicator

for the improvement of the ML network. The increasing error

value of the ROI kidney data set points towards overfitting of

the network. This is very likely due to the nature of the ROI

scans, where features outside the FOV are rotating in and out.

Artifacts caused by these features are correlated in both

training data sets, but are not necessarily equally distributed in

the sample, e.g. by changing thickness or composition.

Therefore, training of the network was terminated when the

error in the validation data set became minimal.

4. Results

4.1. A high-resolution data set: single butterfly scale

Besides classical neighbourhood filters, such as rank filters

like the median filter or convolutional filters like Gaussian and

mean filters, there has been much progress in advanced filter

techniques that find their application in tomographic denois-

ing tasks, including anisotropic diffusion, mean shift and

nonlocal means (NLM). The ML-based approach is compared

with two 3D filters: a novel variation of the NLM filter, spe-

cifically designed for microtomography applications (Bruns et

al., 2017), and a standard 3D median filter with a radius of

2 voxels which was applied after the reconstruction on the

3D stack. For a comparison of performance, the full stack of

projections was also reconstructed. The contrast-to-noise ratio

(CNR) was calculated for all four options using the following

formula (Muhogora et al., 2008):
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Figure 3
(a) The error of the validation set as training progressed. The network applied after (b) 5 epochs and (c) after 190 epochs. The scale bar is 5 mm.



CNR ¼
Imat � Iairffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 ð�

2
mat þ �

2
airÞ

p ; ð1Þ

where Imat and Iair are the mean gray values in the material

and air, and �mat and �air are the standard deviations for these

materials.

A butterfly scale is a very low absorbing specimen with

distinct small and regular features. Therefore, it is the ideal

test sample for a high-resolution data set and was measured

with a voxel size of 22 nm. Fig. 3 shows slices and close ups on

the tomographic reconstructions in different parts of a single

butterfly scale with different denoising filters applied. The

noise is dominant with a low CNR (Table 1) and the nano-

structured periodic optical structure is hardly visible in the

unfiltered image. It is apparent that straightforward segmen-

tation of this raw data set is likely to fail without any further

image processing steps. The median filter reduced the noise

and the CNR increases significantly, but also the fine struc-

tures are eliminated to a large extent. In particular, the very

fine optical nanostructures (e.g. the zoomed region in Fig. 4,

2nd row) close to the resolution limit of the setup often cannot

be resolved using conventional filters. Covering only a few

pixels in size and therefore comparable to noise in terms of

intensity and spatial frequency, the denoising of a butterfly

scale is not straightforward. In the ML-filtered images, the

periodic structure is clearly visible without any noise (Fig. 4,

4th column) and the CNR is the highest of all the filters. Since

the noise of both stacks is not correlated, the network can

learn to distinguish between noise and real structure. This

enables the analysis of these very fine-structured biological

materials. SEM images of the butterfly scales show the same

structural features as observed in the denoised tomography

data (see Fig. S1 in the supporting information), proving that

the ML data are close to the correct ground truth. The noise

reduction in the central part of the NLM-filtered image is

comparable to the ML approach, with only a slightly lower

CNR (Table 1). Note that the CNR is limited by the natural

variation of gray values inside the material, as well as by the

background variations, e.g. caused by the halo effect (Lovric et
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Table 1
Calculated contrast-to-noise ratio (CNR) for a region of interest (3rd row
in Fig. 4) in a butterfly scale.

Filter CNR

Unfiltered 2.6
Median 3D filter 3.1
Iterative NLM filter 3.3
ML filter 3.4

Figure 4
Comparison of the original data set (left) and three filtered data sets of the butterfly scale in an xy view and two different yz views. The filtered data sets
are median 3D filtered (2nd column), iterative nonlocal means (NLM) filtered (3rd column) and ML-based filtered (4th column). The scale bars are 2 mm.



al., 2013). However, the smallest pores are less well resolved

than with the ML approach. In the xy view, the changing noise

profile of the nanotomographic setup is visible: the noise level

increases slightly towards the edges of the illumination, which

may cause problems with the noise profiles considered in the

iterative NLM implementation (Bruns et al., 2017). While a z-

adaptive noise profile (along the rotation axis of the scan) for

ROI scans of irregular shaped samples may be considered, the

NLM filter cannot handle a spatially varying noise profile in

the xy plane correctly (as highlighted by the red arrows in

Fig. 4).

The line profiles depicted in Fig. 5 show that the noise is

clearly reduced for both filters. The fitting of a Gaussian

profile to the peaks of each curve reveals that the ML filter

introduces no significant blurring to the data. We found a full

width at half-maximum (FWHM) of 200 � 60 nm for the

original data set and the ML filter yields the smallest loss in

effective spatial resolution, with an FWHM of 240 � 30 nm. In

comparison, the peaks in the NLM filter suggest a broader

FWHM of 310 � 80 nm. Looking at the line profile of the

median filter, one can recognize that the periodic oscillation

does not follow that observed for the raw data and the other

two filters, but introduces a phase shift. In this case, the

median 3D filter is not well suited for denoising the data as the

structures are no longer resolved.

In order to visualize the performance of the different

filtering methods in a more quantitative way, the 1D power

spectrum density (PSD) was calculated via Fourier transfor-

mation (Fig. 6) from the fine periodic hole structure in Fig. 4

(2nd row). The periodic hole structure results in the three

main peaks around the spatial frequency of 0.04 nm�1

(250 nm) and is well pronounced in the original as well as in

the three filtered data sets. The PSD reveals which frequencies

are suppressed by the different filters: the NLM and the

median 3D filter operate in a local neighbourhood and thus

only filter high-frequency noise by design, as shown by the

suppression of the higher frequencies in the PSD (Fig. 6).

Lower frequencies remain virtually untouched by both the

median and the ML filter. On the contrary, the ML filter is

based on a convolutional neural network and thus allows

lower frequencies to be addressed as well. The visual

improvements for the ML filter seen in Fig. 4 that accentuate

the details of the butterfly scale are thus explained by an

additional removal of low-frequency haze from the image. In

contrast to the NML and 3D median filter, the peak height of

the ML-filtered data is not drastically reduced compared to

the original data set, impacting the signal-to-noise ratio, as

already indicated by the line profiles (Fig. 5) and CNR values

(Table 1).

Systematic artifacts, such as motion artifacts, streaking,

ringing or halo, are not addressed by the ML filter because

they are present in both the input and the target reconstruc-

tion. Consequently, artifacts in the filtered reconstruction may

become more pronounced, as indicated by red arrows (Fig. 4,

ML filtered, xy view). Here the ‘ghosting’ stripes likely result

from the well known halo effect caused by the Zernike phase

contrast. Nevertheless, we conclude that the ML approach

outperforms the NLM filter in detail preservation, as indicated

by the green arrows in Fig. 4.

4.2. Region of interest scans: mouse kidney tissue

ROI scans are of particular interest for biological or

medical specimens. For the preparation of tissue samples,

biopsy punches are often used. Ideally, these cylindrical-

shaped specimens are not cut any further in order to avoid

preparation artifacts and are therefore much larger than the

typical FOV of an X-ray microscope (maximum 80 mm �

80 mm) (Longo et al., 2020). ROI scans, however, imply that

more projections are needed, since the size of the entire object

has to be considered for the calculation of the number of
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Figure 5
Line profiles along the dashed lines highlighted in the yz views found in
the 2nd row in Fig. 4. The filtered profiles were shifted on the ordinate
axis for better visibility of the periodic fine structure of the butterfly wing.
While the median filter introduces a phase shift to the profile, the NLM
filter and ML filter maintain the phase. The amplitude of the signal is best
preserved with the ML filter.

Figure 6
1D power spectral density (PSD) graph of the region of interest in Fig. 4
(2nd row). The periodic structure of the sample gives rise to frequencies
around 0.004 nm�1.



projections needed, and not only the FOV (Silva et al., 2018).

Otherwise, aliasing artifacts can arise due to structures outside

the FOV that are rotating in and out during the scan,

disturbing the high frequencies and reducing the resolution.

To reduce such aliasing effects, the ROI scan of the millimetre-

sized mouse kidney specimen presented in Fig. 7 was recorded

with an increased number of projections, i.e. 5000.

The ROI reconstruction of a mouse kidney sample was

filtered using the same methods as described above (Fig. 7).

The unfiltered reconstructed slice in Fig. 7 is dominated by

noise, which increases towards the edges of the image, as

indicated by the red arrows. In all reconstructions, a kidney

tubular structure [blue outline in Fig. 7(d)] and a nucleus can

be identified. As shown by Longo and co-workers, these

structures can be found in both nanotomography slices and

histology images (Longo et al., 2020). The ML-filtered slice

[Fig. 7(d)] reveals that the smallest features of the nucleus,

shown in the inset image, are much better resolved in com-

parison to the median filter [Fig. 7(b)] and the NLM filter

[Fig. 7(c)]. Although the median filtering reduces the noise

significantly and the structures of the nucleus become clearly

visible, there is still a high level of noise, which obstructs

further automated analysis. Filtering the projections via a

median filter instead of the reconstruction reduces the noise

more efficiently, but also blurs the fine structures (see Fig. S6

in the supporting information). Again, the NLM filter removes

the noise very reliably, but it has its difficulties at the edges of

the sample due to the altered noise profile. Very fine features,

however, are no longer detectable, as seen in the inset of

Fig. 7(c). Here, we see one of the biggest advantages of the

ML-based denoising approach in practical applications: it is

inherently self-adapting to a changing and/or spatially varying

noise profile.

4.3. Applicability: bone

A bone sample is displayed in Fig. 8. Bone is a hierarchically

organized and structurally heterogeneous material with char-

acteristic features at each level of hierarchy (Zimmermann

et al., 2011, 2019). Its matrix is composed of collagen and

primarily hydroxyapatite as an inorganic component. The

latter defines the absorption properties of the sample, which

are much higher than for the butterfly and kidney samples

presented above.

The noise level in the unfiltered data [Fig. 8(a)], but also in

the median filtered data [Fig. 8(b)], prohibits straightforward

intensity-based segmentation and limits the evaluation of any

quantitative measure. The iterative NLM filter [Fig. 8(c)]

suppresses the noise reliably and reveals all the relevant

features, as well as the ML filter, but since the filter is not
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Figure 7
ROI tomography of a mouse kidney in a yz view for (a) the unfiltered
reconstruction, (b) the median 3D filter, (c) the NLM filter and (d) ML
applied. The insets show the magnified nucleus of a cell. The blue outline
shows a kidney tubular structure. Noise increases at the edges of the
image, as indicated by the red arrows. The scale bars are 5 mm.

Figure 8
Denoising of a bone sample, showing (a) a slice of the unfiltered
reconstruction, (b) a slice filtered with the median 3D filter and (c) the
NLM filter. (d) The denoised slice performed using a network trained on
a different structurally similar sample. (e) Difference image of the
unfiltered image (a) and the ML denoised image (d). ( f ) Volume
rendering of the bone, achieved by thresholding the ML-denoised
tomogram. Red arrows point to the lamellae and yellow arrows indicate
the positions of the canaliculi. The scale bars are 5 mm.



optimized for the changing noise profile in the xy direction,

the parameters have to be adapted to filter the relevant area.

This can lead to an overestimation of the noise in the centre

and may also blur fine features.

Once the network is trained, it is not limited to the data set

on which the training was performed, but it can also be used

on samples of the same kind with similar inner structures,

measured using the same experimental setup and with a

comparable noise profile. Compared to the time needed for

training a network, the application of the trained network to a

similar data set requires only a few minutes of computational

time. When the trained network is applied to another scan

with similar scan settings, this scan needs to be divided into

two stacks in order to match the noise level of the recon-

struction on which the network was trained. This basically

means that the ML approach presented makes it possible to

reduce the scan time for a set of similar specimens by 50%,

while at the same time keeping the data high quality. Also, for

in situ experiments with gradually changing structures, this

approach appears highly promising.

The effectiveness of the ML denoising in reducing scan

times is outlined in Fig. 8(d). Here a network trained on a

30 min scan of one sample was applied to a reconstruction of a

15 min scan of a structurally similar sample. Taking a differ-

ence image of the filtered and the unfiltered image, one can

recognize which features have been removed by the filter

[Fig. 8(e)]. Ideally, this should only be random noise, otherwise

it cannot be excluded that structures are ‘invented’ by the ML

filter. In the difference image of the ML-filtered and the

nonfiltered images, the noise profile of both scans seems to be

slightly different, but no structural features can be recognized

[Fig. 8( f)], verifying that the ML filter does not invent any

structures. A comparison of the results for two differently

trained networks (self-trained and trained on a similar

sample) can be found in the supporting information (Fig. S6).

Using nanotomography, structural variations at the nano-

scale can be visualized. The ML-filtered reconstruction was

used to enable segmentation and render the bone sample in

3D [Fig. 8( f)]. The nanotomographic scans thereby helped

in revealing nanometre-thick tunnels (canaliculi, yellow

arrows) that connect mechanosensitive cells within the bone

matrix and play a key role in maintaining bone health

(Milovanovic et al., 2013). Moreover, lamellar structures with

alternating collagen fiber orientation (red arrows) between

neighbouring lamellae are visualized (Stockhausen et al.,

2021). These structures can also be identified in SEM images

(Stockhausen et al., 2021), which can be used in a comple-

mentary manner to the shown 3D volumes, opening doors for

correlative imaging.

5. Discussion and conclusion

In this article, the application of a novel machine-learning-

based denoising method was demonstrated on experimental

high-resolution nanotomography data. The ML filter was

compared to a standard 3D median filter and an iterative non-

local-means (NLM) filter optimized for synchrotron radiation

microtomography data. Both the ML and the iterative NLM

filters are able to remove the noise to an imperceptible level.

The 3D median filter does not provide acceptable noise

removal but smears out the structural features more visibly.

Alternatively, using a median filter on the projections prior to

reconstruction minimizes this effect, but the quality of the

other two filtering methods is still not reached. The perfor-

mance of the ML-filtering technique is better or equal to the

optimized iterative NLM filter in all the cases presented. The

ML filter is the only filter that is able to resolve the fine

periodic nanostructures in the butterfly scale. Fine structures

down to only very few pixels can be resolved and importantly

no blurring is introduced. The advantage of the ML-based

filter technique is clearly that the denoising is independent of

the noise profiles of the data, e.g. noise caused by a misaligned

phase ring or suboptimal illumination. On the contrary, the

NLM filter estimates the noise profile for each sample auto-

matically and is z-adaptive (or can be manually adjusted), but

cannot deal with a changing noise profile in the xy direction.

The ML approach can also be used to further reduce the

sample scan time, since only half of the projections are needed

for applying the trained network. A trained network can also

be used to denoise a range of similar specimens imaged with

the same noise profile. At beamline P05, ultra-fast scans below

3 min are currently only limited by the camera readout time

(33 Hz), which hinders the acquisition of a sufficient number

of projections to be divided into two data sets.

Artifacts, like rings, caused by defects in the scintillator, or

halo-effects appearing in Zernike phase contrast, are also

enhanced by the ML denoising. Therefore, it is essential to

have a clean reconstruction, i.e. ring artifacts have to be

removed before training. Considering the long computation

time (approximately 2–6 h training on a GPU), it is advisable

to use the ML approach only on data with a low signal-to-

noise ratio at the resolution limit. For data with less noise, high

contrast and more coarse structures, the NLM filter is a good

alternative, as the required computation time is considerably

lower (in the range of a few minutes), while the ML approach

is the best possible for fine structures near the resolution limit.

The specific advantage of this self-supervised ‘Noise2-

Inverse’ approach compared to other ML denoising approa-

ches is that it does not need specific reference data (e.g. a high-

quality reference scan or high-quality projections). This means

that the filter can also be applied retrospectively on previously

recorded data where a sufficient number of projections were

acquired.

We chose TXM data sets for this study as Zernike phase

contrast is more challenging for filtering approaches than, for

example, standard absorption TXM, due to the non-uniform

illumination induced by the phase rings, as well as the well-

known halo effect often observed in these scans. Of course,

the filtering method also works on TXM absorption images

and also for nonbiological specimens. In summary, the ML

approach proves to be a very powerful tool that outperforms

conventional filters by eliminating noise without blurring of

relevant structural features, thus enabling efficient quantita-

tive analysis.
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