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X-ray micro-tomography systems often suffer from high levels of noise. In

particular, severe ring artifacts are common in reconstructed images, caused by

defects in the detector, calibration errors, and fluctuations producing streak

noise in the raw sinogram data. Furthermore, the projections commonly contain

high levels of Poissonian noise arising from the photon-counting detector. This

work presents a 3-D multiscale framework for streak attenuation through a

purposely designed collaborative filtering of correlated noise in volumetric data.

A distinct multiscale denoising step for attenuation of the Poissonian noise is

further proposed. By utilizing the volumetric structure of the projection data,

the proposed fully automatic procedure offers improved feature preservation

compared with 2-D denoising and avoids artifacts which arise from individual

filtering of sinograms.

1. Introduction

Computed tomography is commonly affected by streak noise

in measured raw sinogram data (Jha et al., 2013; Artul, 2013;

Boas & Fleischmann, 2012), which can be caused by mis-

calibration of detector linear response, beam fluctuations,

beam hardening, or dusty or damaged scintillator screens

(Haibel, 2008; Vidal et al., 2005; Anas et al., 2010). Streak noise

in projections causes ring artifacts in reconstructed volumes,

which present as centered circles or half-circles (Croton et al.,

2019). As the sinogram data are obtained through a photon-

counting detector, the statistics of the measured raw data can

be further modeled through a Poisson distribution, which

may result in high levels of Poissonian noise, commonly

attenuated within the reconstruction process through iterative

approaches (Mohan et al., 2014; Venkatakrishnan et al., 2013).

Although ring artifacts can be reduced by scanning proto-

cols (Pelt & Parkinson, 2018), high-quality scintillator screens

and detectors, it is difficult to completely avoid them and

therefore achieve highest-quality reconstruction solely by

experimental measures, requiring algorithmic processing of

the acquisitions.

Popular methods to reduce ring artifacts include wavelet-

FFT filters (Münch et al., 2009), combinations of polynomial

smoothing filters and careful calibration of the detector

response function (Vo et al., 2018; Croton et al., 2019),

smoothing filters with segmentation in the tomogram domain

(Massimi et al., 2018), ring removal in the tomogram domain

upon polar coordinates transformation (Sijbers & Postnov,

2004; Li et al., 2021), and iterative algorithms (Paleo &

Mirone, 2015) that combine regularized reconstruction with

denoising. Recently, in Mäkinen et al. (2021), we proposed
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effective ring artifact attenuation through sinogram-domain

collaborative filtering, presenting a multiscale architecture

with a Block-matching and 3-D filtering (BM3D) image

denoiser for correlated noise (Dabov et al., 2008; Mäkinen

et al., 2020) at the core of the process. To the best of our

knowledge, Mäkinen et al. (2021) offers state-of-the-art results

in ring attenuation. In particular, it does not cause new arti-

facts around strong signal features, common to other popular

ring removal algorithms. However, being based on a filter

for 2-D data1, applied to individual sinograms, it may cause

discontinuities across the third dimension.

In this work, we address both streak reduction and Pois-

sonian noise removal from volumetric stacks of projections.

The contribution of this work is threefold: (1) We propose a

multiscale streak denoising framework for denoising of volu-

metric data. In particular, this framework can be seen as an

extension of Mäkinen et al. (2021) for filtering of 3-D volumes.

(2) After streak noise removal, and before reconstruction, we

embed a distinct multiscale denoising step to attenuate the

Poissonian noise component of the projections. This allows to

apply the reconstruction process using milder regularization

and improve the tradeoff between noise reduction and artifact

suppression. (3) As a general-purpose algorithmic contribu-

tion, the filter used at the core of the multiscale denoising

process is an improved version of the BM4D (Maggioni et

al., 2012) volumetric denoising algorithm. The included

enhancements, discussed in Appendix A, allow the long-range

noise correlation which characterizes the streaks to be

dealt with.

The proposed filtering procedure for both streaks and

Poissonian noise is fully automatic and includes self-calibra-

tion of the filtering strength. We demonstrate the denoising

performance of the proposed approach on real data from the

table-top Prisma XRM microCT at Sigray, and from the

synchrotron-based microCT at the Advanced Photon Source

(APS) in Argonne, available through Tomobank (De Carlo et

al., 2018).

2. Bright-field normalization

The following normalization of the raw projections and the

streak model upon a logarithmic transformation follow that of

Mäkinen et al. (2021).

The optical attenuation through the sample is determined

experimentally via bright-field corrections through two sepa-

rate acquisitions, the bright-field and the dark-field (Seibert et

al., 1998). The bright-field is obtained by the imaging proce-

dure with no sample, and the dark-field is obtained with no

beam; both are 2-D arrays the size of effective pixels of the

detector. The Beer–Lambert law further relates the X-ray

transform through the sample to the optical attenuation by a

logarithmic transformation (Swinehart, 1962).

Hence, the raw projections Praw are first normalized as

Pnorm ¼
Praw � ID

IB � ID

; ð1Þ

where ID is the dark-field and IB is the bright-field2, and then

log-transformed as

Z ¼ ln Pnormð Þ: ð2Þ

2.1. Noise model for normalized projections

Apart from possible completely defective detectors3 we

treat the variation in detector response as normally distrib-

uted; as such, the streak noise will follow a normal distribu-

tion. Furthermore, we model the streak noise as locally

stationary, meaning that the variance is presumed constant

within the support of the denoising filter. Note that this does

not mean that the noise is i.i.d. or white, as it is instead

characterized by very long range correlation presenting as

streaks.

As the data are obtained through a photon-counting

detector, the statistics of the measured raw data can be further

modeled through a Poisson distribution with nonstationary

parameters after the bright-fielding.

Given the premises of normally distributed streak noise and

Poissonian noise, noise in projections normalized by (1) can be

formally written as

Pnorm ¼ A 1þ �
P

� �
þ � ¼ Aþ A�

P
þ �; ð3Þ

where A are the underlying noise-free projections, �
P

is the

normally distributed streak noise component, and � is Pois-

sonian noise which we model as white and zero-mean; all

components of (3) are considered as 3-D arrays and multi-

plications are elementwise.

The natural logarithm of (2) acts as a variance-stabilizing

transformation (VST) for the multiplicative noise component

ð1þ �
P
Þ. Hence, we have

Z ¼ ln Pnormð Þ � ln Aþ
�

1þ �
P

 !
þ �

P
; ð4Þ

where the approximation comes from lnð1þ �
P
Þ � �

P
.

3. Correlated noise

The denoising is conducted in two steps. First, we aim to

estimate the ‘streak-free’ projections

Y ¼ ln Aþ
�

1þ �
P

 !
; ð5Þ

which are corrupted by white Poissonian noise. Then, as a

separate denoising step, we consider the attenuation of the

remaining noise originating from �.
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1 Despite its name, BM3D is a filter for 2-D images, where the third dimension
originates from the nonlocal prior leveraged by the algorithm.

2 As Praw is a 3-D array, the pixels of IB and ID are replicated through the angle
dimension for the operations in (1).
3 Extreme streak noise arising from defective detectors is addressed separately
in Section 4.2.



Throughout this work, we will represent the volume to be

filtered according to the correlated noise model presented in

the following subsection. This model will assume different

meaning at different parts of the algorithm. First, applying

locally to the streaks as a type of long-range correlated noise;

second, to the noise arising from the Poissonian component �.

3.1. Correlated noise model

We consider the noisy input z :X!R to be a combination

of underlying data y and additive stationary spatially corre-

lated noise � to be filtered,

zðxÞ ¼ yðxÞ þ �ðxÞ; x 2 X; ð6Þ

where x2X�Z3 is the coordinate in the finite three-dimen-

sional volumetric domain X and

� ¼ ��� g; � �ð Þ 	 N 0; 1ð Þ; ð7Þ

� being zero-mean i.i.d. Gaussian noise with unit variance, and

�� denoting 3-D convolution with the kernel g. The kernel g

defines the spatial correlation of the noise as well as the noise

strength, with kgk2 = stdf�g. An equivalent way of repre-

senting correlated noise is by its power spectral density

(PSD) �,

� ¼ E F �½ 

�� ��2n o

¼ var F �½ 

� �

¼ Xj j F g½ 

�� ��2; ð8Þ

with F being the 3-D Fourier transform, and |X | denoting the

cardinality (i.e. number of elements) of X. Equivalently, a

kernel g satisfying (7)–(8) can be defined from � as

g ¼ jXj�1=2
F
�1 std F �½ 


� �� �
¼ jXj�1=2

F
�1

ffiffiffiffi
�
ph i

: ð9Þ

3.2. Estimation of noise standard deviation

When applying the above model to noisy data, it is essential

to have knowledge of either the kernel g or, equivalently, the

PSD �, as they fully characterize the noise. Assuming g in (7)

is known modulo a scaling factor & from a known kernel gs ,

the noise estimation can be simplified to estimating &. In

particular, in order to model the streak and Poissonian noise

components arising from the particular composition of noise

given in (3), the kernels gs should induce either very long

range correlation or near white noise across each dimension d.

The estimation procedure can be built as a direct extension of

the one adopted by Mäkinen et al. (2021) to 3-D. To reduce the

signal-to-noise ratio (SNR) to acquire a better noise estimate,

we convolve z with a 3-D anisotropic kernel gd that provides

either low-pass or high-pass filtering along different dimen-

sions; gd is designed based on the noise statistics so that it

preserves the noise component of interest while attenuating

signal contrast. Specific instances are given in Section 4.1.1 and

Section 5.3. One can then compute an estimate of the standard

deviation of ��� gd via its median absolute deviation (Hampel,

1974),dstd ��� gd

� �
std ��� gd

� �
¼ 1:4826 smed

X

��z�� gd � smed
X

z�� gdð Þ
��h i
; ð10Þ

where smed denotes the sample median and the factor 1.4826

calibrates the estimate with respect to a normal distribution of

the noise. As stdf��� gdg = k&gs�� gdk2, an estimate &̂& of & can

be obtained through

&̂& ¼ kgs�� gdk
�1
2

dstd ��� gd

� �
std ��� gd

� �
: ð11Þ

4. Multiscale streak filtering

In the following, we treat the first dimension of the stack of

projections as the angular dimension, and the second and third

as the horizontal and vertical displacement dimensions.

Because the streaks are inherently low-frequency with

respect to the angle, they are filtered entirely at a coarse

angular scale; for this task, we extend the multiscale procedure

of Mäkinen et al. (2021). The main changes in the proposed

procedure arise from replacing the one-dimensional binning

operations along the displacement dimension with corre-

sponding 2-D binning operators B2D and B�1
2D executed across

both displacement dimensions. Furthermore, instead of using

a direct 3-D extension of the 2-D streak PSD, we adjust the

streak model to account for possible long correlation also

along the displacement dimensions.

In detail, the multiscale streak attenuation procedure

proceeds as follows. We begin by an angular binning B�. The

result of the angular binning Z0 = B�ðZÞ is binned K times

through B2D to obtain ZK = BK
2DðZ0Þ. The size of each binned

volume is a quarter of the input size. Then, we process each

scale in a coarse-to-fine fashion, where progressively for

each k = K;K � 1; . . . ; 2; 1; 0, we obtain an estimate ŶYk of

B
k
2D Y0ð Þ = B k

2D½B� Yð Þ
. We start by taking as noisy input Z �K of

BM4D the smallest binned volume ZK ; in this way, we obtain

from Z �K = ZK the coarsest estimate ŶYK, which is taken as

initialization for the following recursive steps executed for

each scale k = K�1; . . . ; 0:

(1) Replace the coarser-scale components of Zk by those of

the estimate ŶYkþ1:

Z �k ¼ Zk � B
�1
2D

�
B2DðZkÞ

�
þ B

�1
2D ðŶYkþ1Þ

¼ Zk � B
�1
2D Zkþ1 � ŶYkþ1

� �
:

(2) Denoise Z �k with BM4D to produce the estimate ŶYk .

Finally, we replace the coarse angular components of the full-

size stack Z with those from the finest scale estimate ŶY0,

ŶY ¼ Z � B�1
�

�
B�ðZÞ

�
þ B

�1
� ðŶY0Þ: ð12Þ

4.1. Multiscale noise model

For BM4D denoising, we regard Z �k of each scale k as z of

the model (6), as

Z �k ¼ B
k
2DðY0Þ þ �

�
k ; ð13Þ

where
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� �k ¼
�K; k ¼ K;
�k � B

�1
2D

�
B2D �kð Þ

�
; k<K;



ð14Þ

and �k = B k
2Dð�0Þ = B k

2D½B�ð�PÞ
.

This definition for � �k , k<K, follows from considering

the coarser-scale estimate ŶYkþ1 as perfectly denoised. Similar

to (8), � �k is treated as correlated noise with PSD,

� �k ¼ var F � �k
� �� �

¼ jXkj F g �k
� ��� ��2; K � k � 0 ; ð15Þ

where g �k is a correlation kernel and |Xk| is the pixel size of Zk.

As per (9), the kernel g �k can be defined as

g �k ¼ jXkj
�1=2
F
�1 std F � �k

� �� �� �
: ð16Þ

4.1.1. Adaptive parametric model of � �k . We note that, in

addition to the approximately white streak noise, the sino-

grams may contain streaks with very long range correlation

across the displacement dimensions. As this correlation is

aligned along the detector axis, it is not clearly observable in

individual sinograms, but may create significant noise struc-

ture in the full volume. Hence, we approximate the streak

noise �0 through three angularly constant streak noise

components distinct in the displacement,

�0 ¼ �0;w þ �0;u þ �0;v; ð17Þ

where �0, w is streak noise white across both displacement

dimensions, �0, u is streak noise constant across horizontal

displacement, and �0, v is streak noise constant across vertical

displacement.

Let us denote by �0;p2f�0;w; �0;u; �0;vg a noise component of

�0. For each �0, p, we can define a respective scaled correlation

kernel

&0;pg0;p ¼ jXj
�1=2
F
�1 std F �0;p

� �� �� �
; ð18Þ

where &0;p = stdf�0;pg, and kg0;pk2 = 1. Example realizations,

kernels, and PSDs for each of these components as well as �k

are shown in Fig. 1 (top).

We note that each �k;p = B k
2Dð�0;pÞ is characterized by a

kernel &k;pgk;p = 2k&0;pg0;p. In particular, this property arises

from the noise structure of the corresponding components: as

B2D operates through summation and elimination of adjacent

pixels, the operation preserves both noise whiteness and

constant noise. The ratio 2k follows from the summation along

two dimensions, meaning that the variance of the coarser scale

is four times that of the finer scale.

Disregarding the specific support size of their actual finite

realizations, we can identify the stationary random fields as

�k;p ¼ 2k stdf�0;pg �G;p ð19Þ

where �G, p is noise characterized by gk, p, and hence varf�G;pg =

1. We can then express the residuals of any of the components

�0, p as

� �k;p ¼
2K stdf�0;pg �G;p; k¼K;

2k stdf�0;pg �G;p � B
�1
2D B2Dð�G;pÞ
� �� �

; k<K:



ð20Þ

Then,

� �k ¼ �
�
k;w þ �

�
k;v þ �

�
k;u; ð21Þ

where the noise correlation kernel corresponding to a

component � �k;p2f�
�
k;w; �

�
k;v; �

�
k;ug can be written with &k;p =

2k&0;p as

g �k;p ¼
&k;p gk;p; k ¼ K;
&k;p gB2D

�� gk;p; k<K;



ð22Þ

where gB2D
is a 2-D kernel across the displacement dimensions

characterizing the residual from 2-D binning of white noise.

Specifically,

gB2D
¼ jXGj

�1=2
F
�1 std F �G;2D � B

�1
2D ½B2Dð�G;2DÞ


� �� �� �
;

where �G, 2D is a two-dimensional white random field. The field

size |XG| is included only for the normalization of the Fourier

transform, and the formula holds for an arbitrary size.
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Figure 1
Top: example noise �0, p, the corresponding kernels g0, p and the root PSD
jF ½g0;p
j for each noise component in (17) with &0;w = 6, &0;u = 5, and &0;v =
8, as well as example noise, kernel, and root PSD corresponding to the
compound noise �k . Bottom: example noise, the corresponding kernels,
and root PSD of the corresponding binning residuals � �k;p. For all
visualizations, the angular dimension of the data is the vertical dimension
in the figure. The DC corner of the Fourier spectra is marked by a circle.
Note that all root PSDs are nonzero only on the angular DC plane, and
the kernels and the noise consist of repeated planes across the angle.



Then, the PSD of � �k , K�k�0, can be written as

� �k ¼ var F � �k;w
� �� �

þ var F � �k;u
� �� �

þ var F � �k;v
� �� �

¼ jXkj F g �k;w
� ��� ��2þ F g �k;u

� ��� ��2þ F g �k;v
� ��� ��2� �

: ð23Þ

As any � �k is constant in angle, � �k is non-zero only across the

DC plane with respect to the angular dimension. Example

realizations, kernels, and PSDs for the residual components

are shown in Fig. 1 (bottom).

Although (23) allows for modeling of very long range

correlation, the streak noise is likely to contain minor corre-

lation along the displacement not accounted for by this model.

To adapt to such deviations, we allow the scaling parameters

&k;p � 0 for each noise component to vary with each scale k

by estimating them individually at each scale, effectively

accounting for mild local correlation in the noise.

Estimation of &k, w , &k, u , and &k, v . Based on (22) and (23),

the PSD is completely determined by the values assumed

by the three parameters &k, w , &k, u , and &k, v and the known

kernels gk, p and gB2D
�� gk;p. To adaptively obtain the para-

meters, we begin by obtaining three noise variance estimates

�̂�2
k;w, �̂�2

k;u, and �̂�2
k;v. For each estimate, we define a corre-

sponding filtering kernel g
ðpÞ
d such that �̂� 2

k;w estimates the

variance of high-frequency streaks, �̂� 2
k;u estimates the variance

of horizontally low-frequency streaks, and �̂� 2
k;v of vertically

low-frequency streaks. For this purpose, we define �d as a 1-D

Gaussian function along dimension d, and  d as a 1-D high-

pass kernel with Daubechies wavelet ‘db3’ of length 6 along d.

Hence, convolution with �d realizes low-pass filtering, and  d

realizes a high-pass filter. Then, g
ðpÞ
d is realized as a tensor

product of three one-dimensional kernels across the dimen-

sions d chosen based on the noise statistics through that

dimension,

g
ðwÞ
d ¼ �0 �  1 �  2;

g
ðuÞ
d ¼ �0 � �1 �  2;

g
ðvÞ
d ¼ �0 �  1 � �2:

Specifically, with m0, m1, m2 as the pixel sizes of the three

dimensions of Z �k , �0 is a 1-D Gaussian function along the

angular dimension with standard deviation m0 /8, and �1 and

�2 are 1-D Gaussian functions along the two displacement

dimensions with standard deviations of m1/12 and m2 /12,

respectively. Through these kernels, we obtain estimates of the

three coefficients �̂�k;p as described in (10) and (11) with gs as

either gk, p (k ¼ K) or gB2D
�� gk;p (k<K).

We note that these three components do not directly

correspond to &k, w, &k, u, and &k, v, as the frequencies of the

white streak component � �k;w partly overlap with those of � �k;u
and � �k;v, i.e. � �k;w includes also some low-frequency streak

components. In particular, we have �̂� 2
k;u � &

2
k;u þ &

2
k;w=m1 and

�̂� 2
k;v � &

2
k;v þ &

2
k;w=m 2. To this end, we can formulate a simple

non-negative least-squares optimization as

argmin
&̂& 2

k;w
;&̂& 2

k;u
;&̂& 2

k;v

&̂& 2
k;w � �̂�

2
k;w

� �2
þ &̂& 2

k;u þ
&̂& 2

k;w

m1

� �̂� 2
k;u


 �2

þ &̂& 2
k;v þ

&̂& 2
k;w

m2

� �̂� 2
k;v


 �2

:

Finally, we construct the PSD through (22) and (23) with

&k;p = &̂&k;p.

4.1.2. Nonstationarity of �
P
. Variance of the streak noise

may differ across the sinogram due to changes in photon flux

or noise in the bright-field. Thus, it may not be possible to

denoise Z �k assuming an equal � �k for all spatial positions

without either oversmoothing or leaving noise artifacts in

some areas. To adapt to nonstationarity, we further relax the

streak model allowing the PSD to vary within each scale k.

In particular, before noise estimation and denoising, we split

Z �k into overlapping, volumetric segments. We apply BM4D

separately on each segment of Z �k , using a PSD scaled by

parameters estimated from the same segment, i.e. we consider

each segment as a separate noisy volume z with a corre-

sponding �. After denoising, the segment estimates produced

by BM4D are recombined with a windowing function to form

the full estimate ŶYk .

4.2. Attenuation of extreme streaks

We note that the projections often include several streaks

caused by defects in the scintillator. These streaks can be far

stronger than that reasonably produced by the distribution of

�
P

and therefore require a specific pre-processing. To this end,

after the bright-fielding and log-transform and before the

multiscale denoising procedure, we apply the simple extreme

streak attenuation procedure as described by Mäkinen et al.

(2021), which applies median filtering on extreme streak

values detected through local polynomial fit of angular

medians.

5. Poisson denoising

A filter for additive noise is not immediately applicable to the

approximately white noise of ŶY originating from the Poisson-

ian component �. Firstly, the bright-fielding (1) introduces

substantial spatial variability in the Poisson model. As a

result, for a given optical attenuation, noise in bright-fielded

projections can be stronger or weaker in different parts of the

detector, for example around edges in cone-beam acquisition.

Secondly, while the logarithm (2) effectively makes the streak

noise additive, it also changes the typical affine-variance

model of the Poissonian noise to a nonlinear one where the

variance is not constant, but asymptotically inversely propor-

tional to the mean. In order to model the noise in ŶY through

(6), we take care of these two issues as follows.

5.1. Reducing nonstationarity induced by bright-fielding

The Poissonian noise component � originates from a

counting process which takes place before bright-fielding (1),

and specifically before the division by IB�ID, which intro-
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duces a spatially variant scaling of the variances. To undo this

scaling, we consider

S ¼ ŶY þ ln ILð Þ; ð24Þ

where IL = IB � ID. Then, S can be treated as the log-scale

version of a homogeneous Poissonian process; S is thus subject

to signal-dependent noise where the variance of the noise

can be expressed as a smooth nonnegative function of the

underlying signal,

varfSg ¼ F EfSgð Þ ; ð25Þ

where the same F applies to each pixel. In particular, it can be

shown that asymptotically for large flux

F EfSgð Þ /
EfSg!1

1

EfSg
:

5.2. Stabilization of variance

To turn a model like (25) into (6) we again resort to the

use of a VST. As large-flux asymptotics are irrelevant for

denoising problems characterized by low signal-to-noise ratio,

and to pragmatically accommodate for model uncertainties,

we model F as a polynomial with arbitrary data-driven coef-

ficients. The method (Foi, 2009; Azzari & Foi, 2014) simulta-

neously identifies the coefficients for an arbitrary signal-

dependent noise model where the variance is a positive power

of an unknown polynomial, and returns the associated

variance stabilizing transformation f as well as the corre-

sponding exact-unbiased inverse VST f �1
EUI. An example of

an estimated standard deviation function ðF̂FÞ1=2 and the

corresponding VST f are illustrated in Fig. 2, where the

effectiveness of the stabilization can be deduced by the esti-

mates of dstdf f ðSÞgstdf f ðSÞg being scattered around 1.

5.3. Multiscale denoising of the stabilized Poisson noise

To avoid introducing structured artifacts that are present in

the bright-field and dark-field images,

we further consider a smoothed version

I smooth
L of the field component,

I smooth
L ¼ gI�� medfiltðILÞ; ð26Þ

where gI is a 2-D Gaussian kernel, and

medfilt denotes a 2-D median filter. The

median filter is adopted in order to

remove extreme outliers (e.g. from

broken pixels), and the convolution

with the Gaussian ensures a smooth

result. Then, I smooth
L can be used for

approximate correction for the bright-

field induced nonstationarity with

ŶY þ lnðI smooth
L Þ.

The stabilized noisy stack can then be

written as

~ZZ ¼ f ½ŶY þ lnðI smooth
L Þ
 � ~YY þ ~��; ð27Þ

where ~�� corresponds to the stabilized noise and ~YY to the signal

upon stabilization.

We consider � white, and assume the streak denoising

procedure to remove all streak noise frequencies, including

those of �. Hence, we treat ~�� as missing the streak frequencies,

i.e. with a PSD,

� ~ZZ ¼
0; on angular DC plane ;
c; elsewhere ;



ð28Þ

where c is a constant such that varf ~��g = cjXj�1
ðm0 � 1Þm�1

0 .

For multiscale denoising of the Poisson component, we

define three-dimensional binning and debinning functions as

B3D = B2D 
 B� and B�1
3D = B�1

� 
 B
�1
2D , and obtain KPoi scales of

binned noisy volumes as ~ZZk = B3Dð
~ZZÞ, k2f0; . . . ;KPoig. Then,

unlike the progressive denoising of the streaks, we begin by

BM4D denoising of ~ZZk of each scale k; at each scale, we model

the noise through a PSD of the form (28). This way, we obtain

an initial estimate ~̂YY~YYk of the corresponding noise-free volume
~YYk at each scale. Then, starting from k ¼ K � 1, we combine

only the denoised volumes of each scale by recursively

replacing the low-scale components of ~̂YY~YYk, k ¼ fK � 1; . . . ; 0g,

by those of the lower scale,

~̂YY~YY
�

k ¼
~̂YY~YYk � gG B

�1
3D

�
B3Dð

~̂YY~YYkÞ �
~̂YY~YYkþ1

�
; ð29Þ

where gG denotes a 3-D Gaussian kernel. Although the low

frequencies are obviously denoised more effectively in the

coarser scale, the higher frequencies of the coarser scale are

commonly estimated worse than the respective estimate of the

finer scale (Facciolo et al., 2017). As such, gG realizes a low-

pass filtering which selects only low frequencies of the coarser

estimate to be used in the full estimate.

To account for possible remaining nonstationarity and slight

correlation of the noise, we perform the denoising in segments

similar to as described in Section 4.1.2 for streak noise, and

estimate a separate scaling parameter & 2
~ZZ

in construction of

the PSD at each scale. In particular, we estimate & 2
~ZZ

as

described in Section 3.2 with gd =  0 �  1 �  2 and gs =
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Figure 2
Illustration of the variance stabilization of Fly. Left: scatterplot of the sample standard deviation of
S (red) as well as the square root of a polynomial approximation F̂F of F (black), computed on S
scaled to the range [0, 1] as a function of its expectation using a fifth-degree polynomial variance
model. Middle: the variance stabilizing transformation f for this F̂F. Right: sample standard deviation
of f (S) as a function of its expectation. The standard deviations and f are both computed using Foi
(2009) and Azzari & Foi (2014). Every point of the red scatterplot corresponds to the sample mean
and sample standard deviation of a narrow segment of the image; the dispersion of the scatterplot is
due to the finite sample size of each segment.



F
�1
½ð� ~ZZ=k� ~ZZkÞ

1=2

 defining the unscaled noise correlation

kernel, and finally construct the PSD through (28) with c =

m0ðm0 � 1Þ�1& 2
~ZZ
.

The final estimate of the underlying stack of projections can

be obtained by applying f �1
EUI to the finest scale estimate ~̂YY~YY

�

0

and then removing the field I smooth
L ,

dlnðAÞlnðAÞ ¼ f �1
EUI

~̂YY~YY
�

0

� �
� ln I smooth

L

� �
: ð30Þ

As (30) negates the field correction, we note that had we used

the non-smooth field IL in (27) [and respectively in (30)], any

noise or spurious structures present in IL could be introduced

into dlnðAÞlnðAÞ, as they might have been denoised by BM4D and

hence not preserved in ~̂YY~YY
�

0 .

Upon variance stabilization, Poissonian data become

asymptotically normal (Curtiss, 1943). Due to the additional

Gaussianization induced by the binning and by the linear

transformations operated by the filter, the assumption of

normality in (7) can be adopted for denoising of the Poisson-

ian component in this work even for low-count data.

The full denoising process is shown in Fig. 3.

6. Experiments

We test our pipeline on synthetic data as well as two real

acquisitions displaying ring artifacts and Poisson noise.

As a comparison, we show results for Mäkinen et al. (2021)

available on PyPI as bm3d-streak-removal, the proposed

algorithm embedding the conventional BM4D denoiser

(Maggioni et al., 2012), as well as two leading streak-removal

procedures from the tomopy Python library (Gürsoy et al.,

2014): Münch et al. (2009) and Vo et al. (2018). In particular,

for the latter we combine ‘Algorithm 3’, ‘Algorithm 5’, and

‘Algorithm 6’, which is demonstrated by Vo et al. (2018) to

attenuate a variety of different streaks. These streak denoising

algorithms are run with the default parameters provided by

the software library. To evaluate the benefit of the proposed

Poisson denoising procedure with reconstruction which

includes further regularization of the data, we include exper-

ments with the iterative Total Variation (TV) reconstruction

(Goldstein & Osher, 2009) of Marchesini et al. (2020).

For the synthetic experiments, we replicate the noise

generation setup of Mäkinen et al. (2021) on a stack of

projections (238�181�238 pixels) obtained from a 3-D

BrainWeb phantom (Cocosco et al., 1997) obtained through a

padding and Radon transform upon a sign change and an

exponential transformation. Specifically, we regard this stack

as the underlying projections A and generate noise according

to (3) with g as a constant of size m0�1�1 (equal to g0, w of

Fig. 1). To obtain streak noise of different strengths, the streak

noise component ð1þ�
P
Þ is generated with stdf�

P
g = 0.005,

0.01, 0.02, 0.05. Next, to generate noisy measurements with

different SNR levels for the Poisson component, we separately

scale A to the ranges [2560, 5120] (higher SNR), [1280, 2560],

and [640, 1280] (lower SNR) and generate a Poisson variate

with mean and variance Að1þ�
P
Þ, thus defining the Poissonian

noise � as the difference between this Poisson variate and

Að1þ�
P
Þ. Furthermore, we include experiments with � = 0

(infinite SNR), thus resulting in a total of 16 combinations

of Poisson and streak noise strengths. We do not simulate

extreme streaks or the bright-fielding (IB = 1 and ID = 0). For

the streak removal, we consider ln½Aþ �=ð1þ�
P
Þ
 as the

streak-free yet noisy stack Y.

The results of the phantom experiments4 for streak

attenuation are collected in Table 1, and, for full denoising,

evaluating the reconstructed volumes, in Table 2 using itera-

tive regularized TV reconstruction with optimized regular-

ization parameter strength r. The experiments for both streak

and Poisson denoising are illustrated in Figs. 4 and 5. All

reconstructions are performed upon a sign change.

The Fly dataset consists of 180 projections with 50 s expo-

sure (detector pixel size 27 mm, demagnified to 15.7 mm by

cone-beam geometry) collected using a Sigray Prisma X-ray

micro-tomography instrument at 34 kV; the detector size is

512�512 pixels. The denoising results for two different sino-

grams, as well as a corresponding tomogram after streak
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Figure 3
The full denoising process, requiring as inputs the noisy projections Praw and the bright- and dark-fields IB, ID, (1) and producing as the output an
estimate dlnðAÞlnðAÞ (30) of the underlying stack of projections ln(A) (3). As an intermediate output, an estimate ŶY (12) of the streak-free yet noisy stack of
projections Y (5) is also produced.

4 For the purpose of visualization and objective SNR comparison, we have
corrected the intensity response of every estimate through a cubic polynomial
such that it matches the ground truth. This is done particularly to improve the
results of those methods such as Münch et al. (2009) whose intensity response
significantly deviates from the ground truth.



attenuation, are shown in Fig. 6. A comparison of denoising on

a vertical slice of the stack of tomograms is shown in Fig. 7,

and a comparison for fully denoised reconstructions is shown

in Fig. 8.

We also test the algorithm on a soft tissue sample 00072

displaying severe ring artifacts freely available in TomoBank

(De Carlo et al., 2018). The data contain 1500 projections with

1.43 mm pixels, obtained at the Advanced Photon Source,

2-BM beamline; other experimental parameters are X-ray

energy of 20 keV, 10 mm LuAG scintillator, and sample-

to-detector distance of 15 mm. The detector size is

2160�2560 pixels. Included are ten samples for bright- and

dark-fields, which are averaged to obtain a single bright-field

and dark-field. A sinogram and a corresponding tomogram

from the denoising results for streak removal are shown in

Fig. 9, and slices of the stack of tomograms are compared in

Fig. 10. Reconstructions of fully denoised projections are

further compared in Fig. 11.
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Table 2
Average SNR for the reconstructed volumes of the BrainWeb phantom for the set of experiments shown in Table 1.

Each reconstruction is performed with TV, either on the estimate ŶY of the streak-free projections Y (5), or the estimate dlnðAÞlnðAÞ of the underlying stack of projections
ln(A) (4). Left-to-right: reconstructed volumes of estimates produced by the proposed full procedure with improved BM4D, proposed streak removal with
improved BM4D, proposed full procedure with old BM4D, Mäkinen et al. (2021), Münch et al. (2009), and Vo et al. (2018). Each regularization parameter r of TV is
optimized individually for best SNR for each realization and method. The SNR values are each computed against the ground-truth noise-free phantom.

Proposed
(new BM4D)

Proposed
(new BM4D)

Proposed
(old BM4D)

Mäkinen et al.
(2021)

Munch et al.
(2008)

Vo et al.
(2018)

Peak std{�P} TV dlnðAÞlnðAÞ TV ðŶYÞ TV dlnðAÞlnðAÞ TV ðŶYÞ TV ðŶYÞ TV ðŶYÞ

1 (� = 0) 0.005 23.15 23.15 19.59 20.26 8.32 15.89
0.01 21.05 21.05 17.09 18.01 8.25 15.39
0.02 18.38 18.56 13.73 15.23 8.27 14.39
0.05 14.23 14.75 11.29 11.05 8.04 12.11

5120 0.005 18.02 16.37 16.75 15.99 8.11 14.80
0.01 17.45 16.00 15.70 15.41 8.10 14.49
0.02 16.47 15.28 13.95 14.10 8.08 13.78
0.05 14.03 13.41 11.02 10.82 7.92 11.87

2560 0.005 17.15 15.30 16.14 14.97 7.99 14.12
0.01 16.75 15.03 15.21 14.53 7.99 13.82
0.02 15.92 14.46 13.82 13.45 7.97 13.23
0.05 13.76 12.85 10.94 10.67 7.87 11.67

1280 0.005 16.24 14.32 15.23 14.01 7.90 13.62
0.01 15.95 14.13 14.71 13.71 7.90 13.40
0.02 15.28 13.70 13.59 12.90 7.88 12.90
0.05 13.41 12.43 10.87 10.50 7.77 11.43

Table 1
Average signal-to-noise ratio for attenuation of streaks in the BrainWeb phantom subject to mixed streak and Poissonian noise as in (3), with different
combinations of stdf�

P
g and peak values of A, with ‘peak’ =1 being the limiting case for which � = 0.

Left-to-right: noisy stack of projections Z (4), and estimates ŶY of the stacks of projections Y (5) denoised by the proposed procedure (12) (‘new BM4D’), proposed
procedure embedding BM4D of Maggioni et al. (2012) (‘old BM4D’), Mäkinen et al. (2021), Münch et al. (2009), and Vo et al. (2018). As the table compares only
streak removal, the SNR values are calculated with respect to the streak-free yet noisy projections Y = ln½Aþ �=ð1þ�

P
Þ
 as SNRðŶYÞ =

10 log10fsvarX fYg= smeanX ½ðŶY�YÞ2
g, where svar and smean denote sample variance and sample mean, respectively. Each value of the table is the average
SNR over 10 different noise realizations.

Peak std{�P} Z
Proposed
(new BM4D)

Proposed
(old BM4D)

Mäkinen et al.
(2021)

Munch et al.
(2008)

Vo et al.
(2018)

1 (� = 0) 0.005 27.80 35.10 32.53 33.70 11.28 26.30
0.01 21.85 32.60 28.97 29.66 11.26 25.33
0.02 16.06 29.40 23.40 24.96 11.17 23.10
0.05 8.82 24.44 14.64 18.22 10.61 18.53

5120 0.005 27.87 32.88 28.80 32.19 11.11 26.65
0.01 21.91 31.00 26.91 29.00 11.09 25.49
0.02 16.09 28.38 22.87 24.74 11.00 23.16
0.05 8.83 24.04 14.64 18.25 10.47 18.55

2560 0.005 27.93 31.63 27.23 31.06 10.96 26.58
0.01 21.97 30.03 25.55 28.38 10.94 25.36
0.02 16.13 27.71 22.40 24.49 10.86 23.07
0.05 8.85 23.69 14.63 18.23 10.34 18.54

1280 0.005 28.07 30.04 25.66 29.52 10.71 26.21
0.01 22.09 28.72 23.79 27.44 10.69 25.03
0.02 16.22 26.77 21.57 24.09 10.62 22.85
0.05 8.90 23.16 14.61 18.21 10.15 18.49



The proposed method achieves superior SNR values in

streak removal in all simulated noise experiments. Although

the difference to the 2-D implementation of Mäkinen et al.

(2021) is not immediately visually obvious from individual

sinograms or tomograms, the displayed vertical slices of the

reconstructed objects show clear improvement in both signal

preservation and avoiding discontinuity between different

tomograms. Compared with Münch et al. (2009) and Vo et al.

(2018), the proposed method avoids creation of shadow arti-

facts around strong signal features. Furthermore, performing

the Poisson denoising through the proposed framework allows

application of standard filtered back-projection reconstruction

to data originally corrupted by Poisson noise, but can also

improve quality of iterative TV reconstruction.

6.1. Parameters

For streak attenuation, we calculate K following the

formula of horizontal binning from Mäkinen et al. (2021),

using as the base the size of the smallest displacement

dimension. As a result, we use K = 5 for 00072, K = 3 for Fly,

and K = 2 for the phantom. These values were found to offer

a reasonable compromise between denoising wide streaks

versus preserving low-frequency signal components. Other

processing parameters are adjusted for the smaller block size

and processing neighborhood of BM4D. For angular binning,

we use m� = dm=dm=32ee � 32 pixels, where m is the original

angular size and m� the output size; the resulting size is

half of that used by Mäkinen et al. (2021). For segmentation

of the streak denoising, we use a window of size

dm�=2e�19�19 pixels. For the Poisson denoising, we use

K = 1 and m�19�19 segments. For variance stabilization,

we use the implementation ClipPoisGaus (Azzari & Foi, 2015)

of Foi (2009) and Azzari & Foi (2014), and use a quadratic

polynomial for the variance model F.

7. Discussion and conclusions

We have presented a framework for three-dimensional

attenuation of streak noise extending the 2-D framework of

Mäkinen et al. (2021), as well as a BM4D denoiser utilizing the

algorithmic improvements of Mäkinen et al. (2020). Further-

more, we have included a denoising step for Poisson noise

in the sinogram domain through BM4D and the adaptive

variance stabilization of Foi (2009) and Azzari & Foi (2014).

We test the algorithm on both synthetic and real data,

demonstrating superior SNR compared with other popular

streak removal algorithms, and showing improvements in

streak attenuation over Mäkinen et al. (2020). Furthermore,

we compare the results with those which use the conventional

BM4D for correlated noise, demonstrating that the included

improvements in BM4D for correlated noise are essential for

successful streak attenuation. The included Poisson denoising

allows for full sinogram-domain denoising within the frame-

work. By operating fully in the 3-D stack of projections, the

3-D structure of the data can be leveraged for more accurate

noise removal. The proposed procedure is fully automatic and

does not require extra input parameters.

To compare different methods under their own ideal

conditions, we have specifically selected the TV regularization

parameter values that provide the best reconstruction quality.

However, in real-world applications, these values cannot

be identified precisely, and too small or too large parameter

values may lead to residual noise or excess smoothing of the

reconstructions. Inclusion of the proposed Poisson denoising

step allows for weaker regularization, but notably also reduces

the effects of relative shifts in the parameter values, meaning

that the reconstruction can be safely deployed even when the

regularization cannot be precisely tuned.

To consider the computational cost, we note that both

denoising steps of Fly (181�512�512 pixels) run single-
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Figure 4
Denoising of the 3-D BrainWeb phantom with noise as in (3) with stdf�

P
g = 0.02 and signal peak 2560, displaying a single sinogram extracted from the

stack. Left: a sinogram of ln(A) (3) and the corresponding streak-free but noisy sinogram of Y (5). Right: on top, noisy sinogram Z (4) and the
comparison of estimates: ŶY for Münch et al. (2009), Vo et al. (2018), Mäkinen et al. (2021), the proposed framework using old BM4D and using improved
BM4D, and dlnðAÞlnðAÞ with the proposed framework and new BM4D. Below, corresponding estimation errors. Note that the errors jŶY � Yj show only the
effectiveness of streak removal, as the compared algorithms are designed for streak attenuation, whereas jdlnðAÞlnðAÞ � lnðAÞj shows the complete denoising
error, scaled separately. Notably, the proposed algorithm offers superior performance, but only when embedded with the improved BM4D.



threaded on an AMD Ryzen 7 1700 processor each take about

one hour. The computational cost is mostly due to the BM4D

denoising in CPU. Although the adopted implementation is

single-threaded, the algorithm is embarrassingly parallel, and

thus a highly parallel GPU-based implementation is expected

to reduce the total run time to the scale of seconds (Davy &

Ehret, 2020).

The Poissonian noise attenuation can also be performed

without the preceding ring reduction step on data which do

not display ring artifacts. In such case, � ~ZZ should be replaced

by a flat PSD, as the Poissonian noise is approximately white

research papers
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Figure 5
Comparison of reconstructions of the 3-D BrainWeb phantom corrupted
with streak and Poisson noise as in (3), corresponding to the sinograms
shown in Fig. 4. Top: ground truth volume, and reconstructions of
ln(A) (3) and Z (4) obtained through filtered back-projection. Bottom:
comparison of TV reconstruction of estimates with various regularization
strengths r, where the percentage implies a multiplier to the regulariza-
tion optimized to maximize SNR, i.e. 100% means ‘SNR-optimal’
regularization. Top-to-bottom: proposed full estimate ln(A), proposed
streak-free estimate ŶY, and streak-free estimate of ŶY (Vo et al., 2018),
each with 100%, 50%, and 150% relative regularization strengths.
Proposed estimates are computed embedding the improved BM4D.
Notably, the full filtering offers improved reconstruction quality, and is
also less sensitive to variations in the regularization parameters.

Figure 6
Denoising of the stack of projections of Fly, showing two sinograms of the
noisy stack of projections Z (4) and the corresponding estimates dlnðAÞlnðAÞ of
the underlying stack of projections ln(A) (3) obtained with the proposed
framework (top), and the tomograms of the second sinogram (bottom),
obtained with filtered back-projection using cone-beam geometry
(Feldkamp et al., 1984), for both the noisy data Z and the proposed
estimate ŶY of the streak-free projections Y (5). The tomogram fordlnðAÞlnðAÞ is shown in Fig. 8. The first sinogram shows significant model
nonstationarity in both streaks and the Poissonian component due to the
bright-fielding.
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Figure 7
Comparison of resulting stack of tomograms after different denoising
procedures on Fly, each obtained with filtered back-projection, where
individual tomograms are horizontal lines. Displayed are slices of
tomograms, reconstructed from, top-to-bottom: noisy projections Z (4),
estimates ŶY of the streak-free projections Y (5) denoised with Mäkinen et
al. (2021), ŶY from the proposed streak denoising, and the result of the
proposed full denoising dlnðAÞlnðAÞ. Note the horizontal ‘streaks’ in the
estimate produced by Mäkinen et al. (2021), which arise from differences
in estimates for consecutive slices; the proposed method is not prone to
such artifacts, as it considers the full stack of projections in the denoising.

Figure 8
Comparison of fully denoised tomograms of Fly. Top-to-bottom:
tomogram reconstructed from a noisy sinogram of the stack of
projections Z (4), from the estimate of stack of underlying projectionsdlnðAÞlnðAÞ with proposed procedure with FBP reconstruction, and tomograms
of the estimates for streak-free stacks ŶY of Münch et al. (2009) with TV
reconstruction, and ŶY of Vo et al. (2018) with TV reconstruction. TV
regularization was tuned visually, balancing residual noise and smoothing
of signal. Compared with the reference methods, the proposed procedure
manages to remove most noise without creating shadowlike artifacts
common to Münch et al. (2009) and Vo et al. (2018).



prior to streak attenuation, whereas (28) considers the streak

noise frequencies removed. Running the full denoising

procedure in the absence of either streak or Poisson noise will

lead to very small estimates for the corresponding noise

components, meaning that no significant denoising will be

performed for that noise.

We note that although we have focused on the full denoising

of the projections, typical reconstruction pipelines, such as

the iterative TV, provide further noise attentuation. For best

results in combining the proposed denoising procedure with
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Figure 9
Denoising of the stack of projections of 00072. Top-to-bottom: display of
a single sinogram of the noisy stack of projections Z (4), the
corresponding estimate of the underlying projections dlnðAÞlnðAÞ from the
proposed procedure, and the corresponding tomograms of Z and the
estimates ŶY of streak-free stacks Y (5), respectively, obtained with filtered
back-projection. The tomogram for dlnðAÞlnðAÞ is shown in Fig. 11. Although
the data present challenges through inconsistent noise intensities across
the angular dimension, most streak noise and Poissonian noise is
attenuated without notable loss of signal.

Figure 10
Comparison of central slices of resulting tomograms after different
denoising procedures on 00072, where individual tomograms are
horizontal lines each obtained with filtered back-projection. Displayed
are slices of tomograms, reconstructed from, top-to-bottom: noisy
projections Z (4), estimates ŶY of the streak-free projections Y (5)
denoised with Mäkinen et al. (2021), ŶY from the proposed streak
denoising, and the result of the proposed full denoising dlnðAÞlnðAÞ. Note
the loss of signal near the central part of the Mäkinen et al. (2021)
estimate, not observed in the proposed results.



such pipelines, it may be necessary to adjust the filter strength

for the denoising of Poissonian noise, e.g. for reduced

attenuation of high-frequency noise, as it is further attenuated

within the reconstruction. Likewise, integration of the

proposed procedure within an iterative alternating recon-

struction is left for future study.

APPENDIX A
Collaborative filtering and the BM4D denoising
algorithm

A1. Collaborative filtering

The rationale of transform-domain filtering is to work with

a representation of the signal where most of the signal is

compacted to only a few coefficients, whereas the remaining

coefficients mostly comprise noise. Hence, by attenuating the

coefficients with a non-linear shrinkage operator, it is possible

to attenuate noise while keeping most of the signal intact.

Nonlocal collaborative filters utilize this property in the

context of collective transform coefficients of groups of similar

patches extracted from the input. One of the most popular

collaborative filters is the Block-Matching and 3-D filtering

(BM3D) (Dabov et al., 2007) denoising algorithm, which

performs denoising on groups of blocks extracted from a 2-D

image. In the BM4D volumetric denoiser (Maggioni et al.,

2012), the patches are 3-D volumes extracted from the volu-

metric data.

All operations of collaborative filters are made with regard

to a reference patch moving through the volume. For each

position of the reference patch, the following steps are

executed:

(1) Collect similar patches into a group through patch-

matching.

(2) Obtain a group transform spectrum by collectively

transforming the group of patches.

(3) Perform shrinkage.

(4) Transform the shrunk spectra back to patch estimates

and aggregate them to the original locations from which they

were collected.

For details about the algorithm in arbitrary dimensionality,

we refer the reader to Mäkinen et al. (2020). In the following

section, we describe special considerations for the imple-

mentation of the algorithmic improvements in Mäkinen et al.

(2020) for volumetric denoising.

A2. Improved BM4D for correlated noise

Most of the improvements described by Mäkinen et al.

(2020) are directly applicable to the 3-D denoiser. In this

section, we consider extensions which are not immediate from

the inclusion of an extra dimension.

A2.1. Shrinkage parameters. For the selection of shrinkage

parameters � and 	2, we embed the parameter selection

subroutine of Mäkinen et al. (2020), which is based on the 2-D

input PSD; for simplicity, we adopt directly also the pre-

computed features and parameters computed for a set of 2-D

PSDs. To utilize this system with a 3-D PSD, we include a
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Figure 11
Comparison of fully denoised tomograms of 00072, corresponding to the
sinogram in Fig. 9. Top-to-bottom: tomogram reconstructed from a noisy
sinogram of the stack of projections Z (4), of the estimate of stack of
underlying projections dlnðAÞlnðAÞ with the proposed procedure with FBP
reconstruction, and tomograms of the estimates for streak-free stacks ŶY
of Münch et al. (2009) with TV reconstruction, and ŶY of Vo et al. (2018)
with TV reconstruction. TV regularization was tuned visually, balancing
residual noise and smoothing of signal. Compared with the reference
methods, the proposed procedure manages to remove most streaks
without significant loss of detail, as well as most Poissonian noise without
excess smoothing of the signal.



simple procedure which obtains a 2-D projection of the 3-D

PSD by preserving the two largest principal components,

aiming to preserve the characterizing features of the PSD

shape. This projection is then used to compute features as

described for a 2-D PSD by Mäkinen et al. (2020) for the

estimation of suitable � and 	2.

A2.2. Fast implementation. We consider the fast imple-

mentation as suggested by Mäkinen et al. (2020). In particular,

we perform all operations on a downscaled PSD of size

Nf�Nf�Nf and compute exactly only the Kf first volumes

of the 4-D spectrum and approximate the rest using the

conventional variances. Furthermore, Fourier symmetries and

sparsity of the transformed arrays can be exploited to reduce

computational cost similar to the 2-D case.

A2.3. Refiltering. As noted by Mäkinen et al. (2020), even

with exact modeling of the collaborative transform-domain

noise spectrum, the accuracy of collaborative filtering is

limited by the systemic factors arising from the used trans-

forms, both in size and possible symmetries of the transform

spectrum which may limit the modeling of the global PSD. As

a result, the denoising may attenuate excess signal, leading to

oversmoothing in some frequencies; Mäkinen et al. (2020)

proposes the mitigation of these systemic issues through an

extra filtering step performed on the denoising residual. The

three-dimensional spectra are not exempt from these limita-

tions, and as such we adopt the global Fourier thresholding

and refiltering procedure through a 3-D FFT.
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