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In beamline design, there are many floating parameters that need to be tuned;

manual optimization is time-consuming and laborious work, and it is also

difficult to obtain well optimized results. Moreover, there are always several

objectives that need to be considered and optimized at the same time, making

the problem more complicated. For example, asking for both the flux and energy

to be as large as possible is a usual requirement, but the changing trends of these

two variables are often contradictory. In this study, a novel optimization method

based on a multi-objective genetic algorithm is introduced, the first attempt to

optimize a beamline with multiple objectives. In order to verify this method,

beamline ID17 of the European Synchrotron Radiation Facility (ESRF) is taken

as an example for simulation, with energy and dose rate as objectives. The result

shows that this method can be effective for beamline optimization, and an

optimal solution set can be obtained within 30 generations. For the solutions

whose objectives are both improved compared with those of ESRF beamline

ID17, the maximums of energy and dose rate increase by around 7% and 20%,

respectively.

1. Introduction

Synchrotron radiation X-rays (Lewis, 1997; Balerna &

Mobilio, 2015) have the advantages of high flux, high bril-

liance, high collimation and a wide energy spectrum (Winick

& Doniach, 1980). Compared with the spectrum of common

X-rays currently used in clinical practice, synchrotron radia-

tion has a broad and continuous energy spectrum with tens of

thousands of times higher flux, which could be of great benefit

to some areas of medicine. Leveraging synchrotron radiation

facilities on medical applications (computed tomography or

radiotherapy) has been extensively proposed by researchers

all over the world (Chicilo et al., 2020; Livingstone et al., 2018;

Cornelius et al., 2014).

Generally, the energy and dose rate of the photon beam has

an important influence on the effects of treatment in radiation

therapy. On one hand, the beam energy determines the posi-

tion of the depth of treatment, with higher photon energy

beams reaching deeper tumors (Gazda & Coia, 2001). On the

other hand, radiation damage to normal tissue is less severe

than that to tumors when irradiated by beams with high dose

rates (normally more than 40 Gy s�1), which is known as the

Flash effect (Durante et al., 2017; Montay-Gruel et al., 2018).

Therefore, for beamline designers aiming at radiotherapy

applications, the problem lies in how to design and arrange the

beamline elements to make these two objectives, i.e. energy

and dose rate, as large as possible.

In general, it is difficult to design beamline element para-

meters in a manual way, which often involves heavy hand-

crafted engineering and requires beamline operators to have
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extensive experience. Moreover, trial-and-error procedures

would also introduce individual preference or expectation,

which usually makes the final solutions not optimal but

empirical ones. Therefore, how to find the elements that meet

the experimental requirements quickly and automatically, and

obtain a photon beam with highest quality, is a problem worth

discussing.

Genetic algorithms (Holland, 1992) are global optimization

algorithms that can simultaneously deal with multiple indivi-

duals in a population, reducing the risk of falling into a local

optimal solution, which may effectively optimize the element

parameters of the beamline. Single-objective optimization

problems, such as only optimizing the beam flux, have been

solved successfully by using genetic algorithms (Xi et al.,

2015). When facing multi-objective optimization problems, a

non-dominated sorting method used to select optimal solu-

tions can be introduced. Geant4 is a Monte Carlo simulation

software which can describe well the passage of a photon

beam from the source to the target (Agostinelli et al., 2003).

Therefore, a genetic algorithm has been applied to ESRF

beamline ID17, built using Geant4, for simulation in order to

explore the feasibility of this approach.

This paper is organized as follows. Related methods

including the genetic algorithm, non-dominated sorting,

Geant4 and SHADOW are introduced in Section 2. The whole

optimization process is introduced in Section 3, while Section 4

shows the results of the simulation. Finally, a discussion and

conclusion are given in Section 5.

2. Methodology

2.1. Genetic algorithms

Genetic algorithms, stochastic search algorithms drawing on

natural selection and natural genetic mechanisms in the

biological community, were first proposed by John H. Holland

in 1975 (Holland, 1975). Genetic algorithms simulate the

reproduction, crossover and genetic mutation in natural

selection and the natural genetic process. They obtain a set

of candidate solutions in each generation. Superior individuals

from the solutions are selected

according to some index to combine

into a new generation of candidate

solutions by using some genetic opera-

tors such as selection, crossover and

mutation. In general, each generation

has the same number of individuals.

Genetic algorithms have a number of

encoding rules (Kumar, 2013), and the

binary encoding rule is one of the most

popular. As shown in Fig. 1(a), the value

of each parameter is converted to

binary code, and treated as a gene. In

addition, each bit of binary code is

considered as a base. All the genes

make up one chromosome that repre-

sents an individual.

There are three genetic operators of an evolution cycle

including selection, crossover and mutation. The selection

operator is applied to the population, of which the purpose is

to pass optimized individuals directly or to pass new indivi-

duals through crossover and mutation to the next generation.

Selection is based on the fitness of individuals in the popula-

tion. The crossover operator is where the chromosomes of two

individuals exchange parts of their genes or bases with each

other to form two new individuals, which is shown in

Fig. 1(b). It is the main method of generating new individuals,

which determines the global search capability of a genetic

algorithm, thus playing a key role in the genetic algorithm.

The mutation operator shown in Fig. 1(c) is where the genes or

bases of the chromosome are replaced by other genes or bases

in order to generate a new individual, which is an auxiliary

method for forming new individuals determining the local

search capability of the genetic algorithm. The mutation

operator cooperating with the crossover operator can effec-

tively complete the optimization process of the genetic

algorithm.

For the whole optimization process of genetic algorithms,

initialization is the first step, which means that a certain

number of individuals are generated randomly. Then,

according to fitness, the better individuals will be selected to

generate the next population using the crossover and mutation

operator. The cycle is continued until the population number

reaches a preset value. Comparing the value of fitness of each

individual is not feasible when there is more than one objec-

tive that should be optimized and where one objective

improves while the other one deteriorates. Therefore, a

method for selecting better individuals needs to be used, such

as non-dominated sorting.

2.2. Non-dominated sorting

Non-dominated sorting (Deb et al., 2002) is a method that

uses the Pareto optimal concept (Hochman & Rodgers, 1969;

Ngatchou et al., 2005; Arnold, 2015). If the objectives need

to be maximum, a multi-object optimization problem can be

formulated as
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Figure 1
Binary encoding and genetic operators. (a) Parameters are converted to binary code. (b) The
crossover operator. (c) The mutation operator with probability Pm .



max f 1 xð Þ; f 2 xð Þ; . . . ; f n xð Þ
� �

: ð1Þ

For two given feasible solutions, one of them xa is said to

Pareto dominate the other xb if

8 i 2 1; 2; . . . ; n; fi xað Þ � fi xbð Þ;

9 i 2 1; 2; . . . ; n; fi xað Þ > fi xbð Þ:
ð2Þ

A solution xi is called Pareto optimal if there is not another

solution that can dominate it. The set of Pareto optimal

outcomes is often called the Pareto front. In a set of solutions,

the Pareto level of the Pareto optimal is defined as 1. If they

are deleted from the set of solutions, the Pareto level of the

Pareto optimal in the remaining solutions is defined as 2, and

so on, and the Pareto level of all the solutions can be obtained.

In order to sort the solutions of the same Pareto level,

crowding distance is introduced, which makes the solutions

more uniform in the objective space. The crowding distance is

equal to the sum of the distance between the former solution

and the latter solution in the direction of each objective

function.

The specific process of non-dominated sorting is shown in

Fig. 2. A parent population Pg generates an offspring popu-

lation Qg and a combined population Tg is obtained. The

population size is more than the total number of individuals

whose Pareto level is 1 or 2 but less than the total number of

individuals whose Pareto level is 1 or 2 or 3. In this case,

crowding distance sorting can help to reject some individuals

to obtain a new parent population Pg+1.

2.3. Photon transport simulation with Geant4

The fitness is calculated by simulating radiation transport.

It is implemented through Geant4 which is a freely available

software used to perform Monte Carlo simulations of the

interactions of energetic particles in matter. The reason for

choosing Geant4 is that it can calculate the energy deposition

points inside the patient and collect information about the

particles, as well as being flexible for users, such as being able

to use Python3.7 to start the Geant4 project.

The main function of Geant4 is to simulate the transmission

process of photons and calculate their deposited energy in the

target volume. In order to avoid infrared divergence in the

simulation, it is essential to set the cut range. In this study, the

value of the cut range is set to 1 mm. The version of Geant4

used was 10.2.

2.4. Photon generation with SHADOW

Geant4 has its own way of generating a photon source, but it

is difficult to simulate a synchrotron radiation source, espe-

cially to build a wiggler source that is identical to beamline

ID17. In this case, SHADOW is used to accomplish this task.

SHADOW (Lai et al., 1988; Sanchez del Rio et al., 2011) is a

powerful X-ray optics ray-tracing coding developed in the

early 1980s, which has been used extensively for simulations in

synchrotron radiation beamline optics. Electrons emit photons

in the direction of their trajectories while moving in the

wiggler. Using the parameters of ID17, SHADOW generates

a set of photons that sample the source distribution of the

wiggler (the brightness function). Meanwhile, much relevant

information for each photon can be obtained such as the

spatial coordinates, direction, energy and so on. The para-

meters of ID17 (http://www.esrf.eu/) are given in Table 1 and

include: electron energy, current, electron beam spot-size,

horizontal and vertical divergence; and magnetic field period,

number of periods, maximum magnetic field and deflection

parameter K of the wiggler. The spectrum of the photon

output from the wiggler is shown in Fig. 3.

3. Optimization process

The aim of beamline optimization is to maximize the energy

and dose rate of the photon beam. The objective functions are
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Figure 2
The non-dominated sorting genetic algorithm.

Table 1
ESRF electron beam parameters and ID17 wiggler parameters.

Electron beam parameters Wiggler parameters

Electron energy 6.04 GeV Magnetic field period 15 cm
Current 0.2 A Number of periods 11
Horizontal beam size 0.057 mm Maximum magnetic field 1.592 T
Vertical beam size 0.0103 mm Deflection parameter K 22.30
Horizontal divergence 3.9 nm
Vertical divergence 0.039 nm

Figure 3
Spectrum of the photon output from the wiggler.



Fe ¼ f 1 x1; x2; . . . ; x10ð Þ;

Fd ¼ f 2 x1; x2; . . . ; x10ð Þ:
ð3Þ

The constraints are

Li � xi � Ui ði ¼ 1; 2; . . . ; 10Þ; ð4Þ

where xi represents the parameter value of the beamline

element, and Li and Ui represent the lower and upper limit

of the search space, respectively. The value of xi of the initial

generation population is generated randomly; then the

offspring populations are generated by a genetic algorithm

code written in Python. The values of the fitness, Fe and Fd, are

calculated through simulation after the value of xi is put into

Geant4.

The beamline optimization of the whole process is given

in Fig. 4:

(1) Initialize the genetic algorithm parameters, including

the search space of xi, the maximum of population number

(Gen), population size (N), crossover probability (Pc) and

mutation probability (Pm).

(2) Repeat the process for which an individual is repre-

sented by a certain length binary code generated randomly, to

form the first parent population until the number of indivi-

duals reaches the population size.

(3) Generate an offspring population from the parent

population through crossover and mutation.

(4) Combine the parent and offspring population and

calculate the values of fitness of each individual using Geant4.

(5) Evaluate the fitness for individuals in the combined

population. Use a non-dominated sorting method to sort the

individuals and give each an individual Pareto level.

(6) Check the end of the process. It will be terminated when

the population number reaches the maximum number of

iterations set at the beginning of the process. Then output the

Pareto front and optimal solutions whose Pareto level is 1.

Otherwise, according to the Pareto level and sorting of indi-

viduals in the combined population, a new parent population

is formed and iterations continue.

4. Results of beamline optimization

To verity the feasibility of beamline optimization using a

genetic algorithm, the structure of ESRF beamline ID17

was chosen to test the simulation optimization; the layout

of beamline ID17 can be seen in Fig. 5.

All the elements, including diaphragm, gas filter (Requardt

et al., 2013), primary slits, solid filters, ionization chamber,

Be and Al foils, are constructed using Geant4. Meanwhile,

diaphragm, primary slits and patient made of water, which can

determine the cross-section size of the photon beam, are fixed

at 21.6 m, 29.3 m and 40.5 m, respectively. The other elements

influence the optimization objectives – energy and dose rate.

Besides the position of the gas filter, solid filters, ionization

chamber and Be and Al foils, there are some other parameters

to be optimized, such as the length of the gas filter, the type

and pressure of the gas inside, and the thickness of C, Al and

Cu. All parameters and their ranges are shown in Table 2.

In this study, a genetic algorithm code is run using Python

with the parameters N = 180, Gen = 200, Pc = 0.8 and Pm = 0.2,

in order to find a reasonable optimal solution with the best

combination of beamline elements, and to verify the effec-

tiveness of the whole optimization process. After testing, these

parameters were found to be suitable for the simulation

results.

In the optimization model, two objectives are considered –

maximizing the energy and maximizing the dose rate simul-

taneously. Thus, making use of non-dominated sorting to find

the Pareto front is applied to the model. The Pareto fronts

of some generations are given in Fig. 6. The X-coordinate is

named the normalized energy, because the energy of each

individual is divided by the average energy of ESRF beamline

ID17 through a five times simulation, and similarly for the Y-

coordinate. Although the output is the dose rather than the

dose rate, the same light source and the same number of

photons make the dose rate equivalent to the dose.

A convergence check is used to judge whether the genetic

algorithm is terminated. In Fig. 6(a), the solutions of the initial

generation are randomly generated so the distribution is

homogeneous. With the generation number growing, the

solutions in the Pareto front gradually move in the direction of

high energy and high dose. As can be seen in Figs. 6(a) and

6(b), the Pareto front achieves a stable convergence at a

generation whose number is approximately between 20 and

30. It does not change much up to the generation of 200.

The solutions that are better than that of the ESRF are

selected from the optimal solutions of the last generation,

which are located at the upper right of the black squares in

Fig. 6(a). In other words, the solutions whose normalized

research papers

54 Zhang, Qi and Wang � Multi-objective genetic algorithm J. Synchrotron Rad. (2023). 30, 51–56

Figure 4
Flow chart of the genetic algorithm.



energy and normalized dose are both greater than 1 will be

satisfactory. As shown in Fig. 6(c), there are 23 optimal solu-

tions obtained, among which the maximum of energy reaches

1.066, a 6.6% improvement relative to ESRF, and the

maximum of dose reaches 1.21, a 21% improvement relative

to that of the ESRF. Besides, other optimal solutions in the

Pareto front which are not shown in Fig. 6(c) also have varying

degrees of optimization in a single aspect of energy or dose.

This means that, although their dose (or energy) is lower, their

energy (or dose) is higher than that of the ESRF.

5. Discussion and conclusion

A genetic algorithm is a global optimization algorithm that can

simultaneously deal with multiple individuals in a population,

reducing the risk of falling into a local optimal solution. When

the problem involves multi-objective optimization, there are

still ways to use a genetic algorithm, such as by non-dominated

sorting. In this work, a simulation for beamline optimization

based on a genetic algorithm is accomplished to verify the

effectiveness and feasibility of the genetic algorithm. The

results show that the Pareto front can achieve a stable

convergence at a generation whose number is approximately

between 20 and 30. There are 23 optimal solutions better than

that of the ESRF for a generation number of 200, among

which the maximum of energy increases by 6.6% and the

maximum of dose increases by 21%. Many optimal solutions

can be obtained through this multi-objective genetic algo-

rithm. In the absence of more information, it is impossible to

determine which solution is better. In general, various related

constraints are added to the genetic algorithm according to

the requirements of the experiment and beamline design.

Then the appropriate solution is selected after a set of optimal
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Figure 6
The results of the optimization simulation. (a) The solutions for ESRF are represented by the black squares and the initial populations are represented
by purple circles as well as the Pareto front of the population with the generation number of 0, 10, 20, 30, 40 and 50. (b) The Pareto front of the
population with the generation number of 50, 100, 150, 200. (c) The solutions of the last generation that are better than that of the ESRF.

Table 2
Parameters needed to be optimized and their ranges.

Length of gas filter 0.50–2.50 m
Position of gas filter 23.40–27.65 m
Pressure of gas 0.030–0.300 bar
Type of gas Ar, Kr, Xe
Thickness of C 0.10–4.00 mm
Thickness of Al 0.10–4.00 mm
Thickness of Cu 0.10–4.00 mm
Position of solid filters 29.70–32.00 m
Position of ionization chamber 32.10–36.00 m
Position of Be and Al foils 36.20–40.20 m

Figure 5
Beamline elements for the optimization simulation.



solutions is obtained. For example, this method can be used to

design Flash therapy beamlines, since Flash therapy requires a

high dose rate and as much energy as possible for the treat-

ment. Moreover, other kinds of beamline besides medical

beamlines can also be optimized by this method due to the

characteristics of the genetic algorithm.

References

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H.,
Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F.,
Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt,
H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo,
G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D.,
Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G.,
Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R.,
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