
short communications

J. Synchrotron Rad. (2023). 30, 227–234 https://doi.org/10.1107/S1600577522010268 227

Received 23 June 2022

Accepted 24 October 2022

Edited by M. Yamamoto, RIKEN SPring-8

Center, Japan

Keywords: X-ray detectors; macromolecular

crystallography; X-ray image acquisition;

data acquisition; field-programmable gate

arrays (FPGAs).

Jungfraujoch: hardware-accelerated data-
acquisition system for kilohertz pixel-array
X-ray detectors

Filip Leonarski,a* Martin Brückner,a Carlos Lopez-Cuenca,a Aldo Mozzanica,a

Hans-Christian Stadler,b Zdeněk Matěj,c Alexandre Castellane,d Bruno Mesnet,d

Justyna Aleksandra Wojdyla,a Bernd Schmitta and Meitian Wanga

aPhoton Science Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland, bScientific

Computing, Theory and Data Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland,
cMAX IV Laboratory, Lund University, Fotongatan 2, 221 00 Lund, Sweden, and dIBM France, 21 av Simone Veil,

06206 Nice, France. *Correspondence e-mail: filip.leonarski@psi.ch

The JUNGFRAU 4-megapixel (4M) charge-integrating pixel-array detector,

when operated at a full 2 kHz frame rate, streams data at a rate of 17 GB s�1.

To operate this detector for macromolecular crystallography beamlines, a data-

acquisition system called Jungfraujoch was developed. The system, running on a

single server with field-programmable gate arrays and general-purpose graphics

processing units, is capable of handling data produced by the JUNGFRAU 4M

detector, including conversion of raw pixel readout to photon counts,

compression and on-the-fly spot finding. It was also demonstrated that

30 GB s�1 can be handled in performance tests, indicating that the operation

of even larger and faster detectors will be achievable in the future. The source

code is available from a public repository.

1. Introduction

The development of X-ray detectors has assisted ground-

breaking science at synchrotron macromolecular crystal-

lography beamlines. Readout noise, dynamic range, energy

coverage and frame rate have been continuously improved

with each new generation of detectors. This was experienced

at the Paul Scherrer Institute (PSI) with PILATUS (12.5 Hz)

and EIGER 16M (133 Hz), introduced in 2007 and 2015,

respectively (Broennimann et al., 2006; Dinapoli et al., 2011),

which resulted in increasing diffraction resolution with fine

slicing (Mueller et al., 2012; Casanas et al., 2016; Förster et al.,

2019), enabling experimental phasing with native elements

(Basu et al., 2019) and fast data collection for fragment-based

screening (Thomas et al., 2019; Kaminski et al., 2022) and serial

crystallography (Diederichs & Wang, 2017). The upgrades

of third-generation synchrotron radiation facilities toward

diffraction-limited storage rings like the upcoming Swiss Light

Source (SLS) 2.0 will increase source brilliance further, calling

for continuous development of detectors and readout systems

operated at kilohertz and higher frame rates. For example, the

JUNGFRAU integrating detector (Mozzanica et al., 2018),

which is not count-rate limited and can operate at 2 kHz frame

rate (Leonarski et al., 2018), has been recently commissioned

at the SLS.

Since the advent of the PILATUS detector in 2007, data

rates have increased exponentially over time, doubling every

two years. This trend will continue (see Fig. 1) with next-

generation detectors and next-generation synchrotrons

(Denes & Schmitt, 2014). With a limited natural increase in

ISSN 1600-5775

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577522010268&domain=pdf&date_stamp=2023-01-01


computing hardware performance (Hennessy & Patterson,

2019), it is unrealistic to expect that existing software-based

acquisition applications will catch up with faster detector data

rates. There exist two possible solutions to tackle this issue:

either massive parallelization or a change of paradigm from

mainstream central processing units (CPUs) to task-specific

architectures, such as general-purpose graphics processing

units (GPGPUs) or field-programmable gate arrays (FPGAs).

The former approach may seem easier to realize, but

increasing the number of servers to match exponential growth

is unsustainable in the long term. It can be safely expected that

task-specific architectures will advance rapidly in the future,

mainly thanks to their higher power efficiency and their

growing popularity within the machine-learning community.

We therefore believe that embracing such task-specific archi-

tectures is an attractive, sustainable and forward-looking

approach.

In this article, we provide an example that adopting

advanced tools, like coherent OpenCAPI (Stuecheli et al.,

2018; Hoozemans et al., 2021) interconnect and high-level

synthesis, simplifies FPGA development within the synchro-

tron context. We also present Jungfraujoch, a detector readout

system that can handle a continuous data stream of 17 GB s�1

from a 2 kHz JUNGFRAU 4-megapixel (4M) detector within

a single two-rack-unit server box, facilitating high data-rate

scientific applications.

2. Jungfraujoch architecture

The key element of Jungfraujoch is an IBM IC922 server

equipped with FPGAs and inference-grade GPGPUs, which

receives, sorts, reduces and buffers data from the JUNG-

FRAU detector. The task is achieved with a combination of

FPGA design and software algorithms, with a minor part

accelerated on a GPGPU. The IBM architecture was chosen

for its superior memory bandwidth and the coherent Open-

CAPI interconnect, which significantly reduces the complexity

of integrating FPGA design with the software.

While memory-bandwidth-demanding tasks of Jung-

fraujoch are handled on the IBM server (see Fig. 2), the

system is designed with auxiliary services, like writer and

broker, which can run either on the IBM server or on another

machine connected via a fast network. For example, to ensure

the compatibility of servers constituting a high-performance

file-system cluster, file writing can be performed on an

external node from the facility’s preferred vendor. The control

of a distributed architecture, spanning (potentially) multiple

machines, is realized with Google Remote Procedure Call

(gRPC) along with Google Protocol Buffer (Protobuf) seri-

alization layer. The gRPC and ProtoBuf enable seamless

integration of code written in multiple programming

languages. The core of Jungfraujoch is written in C++ and

short communications

228 Filip Leonarski et al. � Jungfraujoch J. Synchrotron Rad. (2023). 30, 227–234

Figure 2
The Jungfraujoch data flow from the JUNGFRAU detector, via the FPGA card to the CPU buffer for compression and spot finding.

Figure 1
Data rates at the SLS MX beamlines from the introduction of PSI
PILATUS in 2006 to post-SLS 2.0 upgrade prediction – the trend is
showing an exponential increase in data rates over the years. The x axis
displays the year of introduction of the detector to the beamline, while
the y axis shows raw data rates.



interacts with beamline control applications, which are usually

written in Python and JavaScript web front-end applications.

Technical details are given in Appendix A.

2.1. FPGA smart network card

The critical part of data acquisition is the first step, where a

large amount of data is received from the detector. Any delay

in processing can result in lost packets, as the detector is not

able to re-transmit missed data (fire and forget mode). Real-

time performance is guaranteed with the FPGA’s determi-

nistic throughput. Another advantage of FPGAs is embedded

input/output capability, primarily via 100 Gbit s�1 ethernet, so

that the network traffic does not have to travel via CPU

memory to be ingested into the FPGA fabric.

The FPGA design for Jungfraujoch consists of three major

parts (see Fig. 2), which are described below.

2.1.1. Network stack. The physical network layer is handled

by a 100 Gbit s�1 media-access-control hard (built-in) core

embedded in a Virtex Ultrascale+ FPGA. Next, the data

stream passes through an ethernet data link, internet protocol,

user datagram protocol (UDP) and JUNGFRAU PSI detector

header handlers, which are based on an open-source design

(Sutter et al., 2018; Ruiz et al., 2019). Only the receiving part of

the protocol stack is implemented. The network stack ends

with a finite-state machine, which makes it possible to switch

between the idle state, when packets are discarded, and the

receiving state, when packets are forwarded through the

pipeline.

As testing the FPGA pipeline with an X-ray detector at

a source of high-intensity X-rays is not always convenient,

Jungfraujoch has built-in functionality to internally create a

flow of packets. The core has 1 MB of memory that can be

preloaded from host memory, at the beginning of the opera-

tion, with data for a single detector module (512 � 1024

pixels).

2.1.2. Conversion from raw readout to photon counts. As

the JUNGFRAU is an adaptive gain detector it is necessary to

transform raw readout values into photon counts, or accu-

mulated energy, before data analysis. This procedure has

been described in prior publications (Redford et al., 2018a;

Leonarski et al., 2020). It includes subtraction of dark current

(pedestal), multiplication by gain factor and multiplication by

1/X-ray photon energy.

All calculations are expressed in fixed-point arithmetic,

which reduces both FPGA logic utilization and bit width of

operands. All coefficients and photon-count results are 16-bit

integers (Leonarski et al., 2020). Within the standard energy

range of 4–20 keV for macromolecular crystallography appli-

cation, this procedure gives differences of less than 0.30

photons between fixed point and ideal floating point, while

0.25 photons are expected for truncation of the floating-point

result to 16-bit integer. The impact of this procedure on data

quality for macromolecular crystallography is expected to be

negligible, as discussed previously (Leonarski et al., 2020).

For each pixel, i.e. for 16 bits of raw data, six correction

constants (three gain factors and three pedestals) have to be

loaded from memory, requiring memory bandwidth to be at

least six times the incoming stream. Handling such challenging

throughput requires high bandwidth memory (HBM)

equipped FPGAs (Wang et al., 2020), available with up to

460 GB s�1 memory bandwidth at the date of this publication.

To help in downstream compression, we implemented an

optional pre-compression bitshuffle filter (Masui et al., 2015)

on the FPGA. It has a fixed block size of 4096 pixels� 16 bits,

corresponding to a single detector packet. Applying the filter

on the FPGA precludes further transformations and analysis

on CPUs unless the filter effect is reverted in software. Thus

the FPGA bitshuffle filter is generally disabled by the software

pipeline.

2.1.3. FPGA to host CPU communication. The main

communication channel is a large host (CPU) memory buffer,

where images are written by the FPGA card and are read by a

software service for further analysis. The buffer is divided into

locations, each accommodating one detector module (512 �

1024 pixels � 16 bits).

The way to communicate the status of the buffer between

the FPGA and software is similar to remote-direct-memory-

access adapters with work request (WR) and work completion

(WC) queues. In this mechanism, the software informs the

FPGA about free buffer locations by posting a WR with a

location number and a 64-bit memory address. When the

FPGA encounters a new frame number for a module, it reads

the WR queue and starts transferring packets to the given

memory location. When frame measurement is finished (the

actual condition is arrival of the N + 2 frame or end of

the acquisition; this is to allow for some degree of packet

reordering), the FPGA posts a WC to the queue. This WC

includes location number, indication if all packets were

received, and metadata, e.g. frame number, module number

and timestamp from the detector header. The software polls

the WC queue to know when to start processing the images.

This design guarantees exclusive access to the buffer for

either FPGA cards or software. It also allows for flow control

in case the software side of Jungfraujoch is not able to cope

with incoming data from detector modules – the WR queue

becomes empty and FPGA design pauses (stalls) until the

software is ready to receive new packets. Incoming packets are

then buffered within the FPGA, roughly up to 4 MB in size.

If this capacity is exceeded, further packets are dropped,

resulting in missed frames, until congestion is resolved.

The advantage of our solution is a significant reduction of

control overheads. For Jungfraujoch, the CPU and FPGA

exchange control information per one complete detector

module, i.e. 1 MB. On the other hand, a standard network card

has to signal the CPU for every received ethernet packet. In

the JUNGFRAU detector case, this one packet size is 8 kB, so

it is 128 times higher frequency of control messages.

2.1.4. FPGA design tools. FPGA development has benefited

from two important technologies: high-level synthesis and

OpenCAPI.

The smart-network-card FPGA design is written primarily

in C++, which is different from standard practice in hardware

design. Naturally, digital circuits are designed with hardware

short communications

J. Synchrotron Rad. (2023). 30, 227–234 Filip Leonarski et al. � Jungfraujoch 229



description languages (HDLs), like Verilog or VHDL, which

make it possible to describe the inherent parallelism of

hardware. While HDLs allow one to obtain the most optimal

design, they are time consuming in development and require a

set of skills uncommon for software developers. Therefore,

FPGA vendors provide high-level synthesis tools that trans-

compile C++ code, with some additional directives (pragmas),

into HDL. One of the advantages of high-level synthesis is to

guarantee that the behavior of C++ code and resulting HDL

is close enough – therefore initial testing can be performed

directly on C++ code.

OpenCAPI (Stuecheli et al., 2018; Hoozemans et al., 2021) is

a new-generation interconnect (see Fig. 3), currently only

available in IBM Power architecture servers. The OpenCAPI

features full memory coherence, i.e. the connected device sees

memory the same way as a program running on the host CPU,

making it possible to benefit from virtual addressing present

in modern CPUs. The OpenCAPI relieves developers from

taking care of the low-level details of memory hierarchy on the

operating system level and allows them to focus on high-level

productivity. A key feature of OpenCAPI is the possibility of

running design simulations with both FPGA design and the

actual software component via the OpenCAPI Simulation

Engine. The OpenCAPI nominal throughput is 25 GB s�1,

corresponding to 2 � 100 Gbit s�1 ethernet links. This is more

throughput than PCI Express, currently the most commonly

used peripheral bus, which has a nominal bandwidth of

16 GB s�1 (Gen3x16 present in Xilinx Ultrascale+) and has a

lower actual performance due to communication overheads

(Nakamura et al., 2017; Durante et al., 2015).

2.2. Jungfraujoch software service

The FPGA card is integrated with the beamline software

stack via a Jungfraujoch software service. The software service

is a multi-threaded application that handles data from the

detector via FPGAs and composes full images from detector

modules with optional summation. Images are then

compressed and forwarded via a ZeroMQ PUSH socket to the

HDF5 writer. To improve performance, it is also possible to

send images over multiple PUSH sockets on a round-robin

basis.

The Jungfraujoch software service provides a subset of

compression options to the user. Bitshuffle filter (Masui et al.,

2015) is always applied, however in the later stage it can be

combined with the default LZ4 or an alternative Zstandard

(Facebook) compressor. The latter can provide a better

compression ratio for X-ray diffraction images at the cost of

lower performance (Leonarski et al., 2020). As a third choice,

a custom experimental compressor was developed for Jung-

fraujoch, which limits itself to a run-length encoding of two

characters, 0 and 255 (all 0 bits or all 1 bits), producing

Zstandard compliant format (Collet & Kucherawy, 2021)

output. This is based on properties of X-ray diffraction images,

which after bitshuffle filtering show long sequences of zeros.

To provide quick feedback, the Jungfraujoch software

service also performs the following three additional opera-

tions on a subset of images:

(a) Uncompressed images are published at a default rate of

one image per second via a ZeroMQ PUB socket for display

on a beamline console providing visual live feedback.

(b) Basic image statistics, like mean count and radial inte-

gration profile within a resolution range, are calculated at a

default rate of 100 images per second. Results are saved and

can be enquired via gRPC, for example to show plots on a

web page. This feature can be useful as diagnostics and fast

experimental feedback, e.g. to analyze and visualize changes in

scattering background of the diffraction image.

(c) Spot-finding analysis is performed to estimate the

number of diffraction peaks in the image, thus enabling

assessment of the overall quality of diffraction – the default is

to run this analysis at a rate of 100 images per second. We

implemented the COLSPOT algorithm (Kabsch, 2010) for its

relative simplicity and robustness. The part of the algorithm

that is most compute-intensive, i.e. selection of strong pixels,

was accelerated on a GPGPU. This way, spot finding is not

competing for CPU cycles with compression, reducing the

likelihood of lost frames. Results of the spot finding, i.e. the

list of reciprocal-space points corresponding to spots, are

published via a ZeroMQ PUB socket for an external

indexing routine.

The Jungfraujoch software service also calculates dark

current (pedestal) values and root mean square deviation of

the pedestal, according to a previously described procedure

(Redford et al., 2018a; Leonarski et al., 2020). Pedestal

calculation is accelerated with a GPGPU.

2.3. Example integration applications

Jungfraujoch is designed to be part of a beamline software

infrastructure; therefore it has to be easily integrable into

larger frameworks, such as LIMA (Petitdemange et al., 2018)

short communications

230 Filip Leonarski et al. � Jungfraujoch J. Synchrotron Rad. (2023). 30, 227–234

Figure 3
A photograph of the IC922 server (IBM). The OpenCAPI interface over
a dedicated cable allows the FPGA to coherently access the memory of
the host CPU.



for image processing, MXCube (Oscarsson et al., 2019), GDA

(Gibbons et al., 2011), DA+ (Wojdyla et al., 2018), BLISS

(Michel et al., 2019), Karabo (Hauf et al., 2019) and Bluesky

(Allan et al., 2019) for control and synchronization. Below we

provide a list of example applications that allow its standalone

operation. Because of the modular nature of the design, these

applications can be easily replaced with alternatives in

accordance with synchrotron facility preferences.

(i) ‘gRPC broker’ is a state machine that controls the

behavior of the whole environment. It presents the user with

options to start, stop and cancel measurements, as well as to

display the current status of services.

(ii) ‘HDF5 writer’ receives image chunks via ZeroMQ

and writes them into a data file. Given that the Jungfraujoch

service already compresses the chunks, the HDF5 writer

requires very little resources. The system allows multiple

writers to operate in parallel, assuming that they manipulate

different files. The HDF5 writer is also responsible for writing

a metadata ‘master’ file according to the NXmx Gold Standard

(Bernstein et al., 2020).

(iii) ‘Indexer application’ is a wrapper over XGANDALF

(Gevorkov et al., 2019) or other indexing algorithms, which

processes diffraction spot positions received via ZeroMQ.

(iv) ‘Detector application’ is a wrapper over the SLS

Detector Package, allowing configuration of the JUNGFRAU

detector.

(v) ‘Preview application’ is a Python script that receives

images by subscribing to a ZeroMQ publisher and displays

them in the DECTRIS Albula diffraction viewer.

3. Performance results

3.1. Nominal Jungfraujoch FPGA performance

One of the advantages of the FPGA is that performance can

be inferred from the design itself. The FPGA is designed to

work with a 250 MHz clock. Single transfer size in the pipeline

is 64 byte (512 bit), determined by an output of 100 Gbit s�1

ethernet core. Each component is devised to accept one

packet per clock cycle (initiation interval), therefore nominal

throughput of the in-FPGA processing is 64 byte � 250 MHz

= 16 GB s�1.

The maximal throughput of data ingest via a single

100 Gbit s�1 ethernet port is 12.5 GB s�1, and maximal data

transfer to the host system via a single OpenCAPI link is

25 GB s�1. As total performance is determined by the slowest

element of the pipeline, for an FPGA card with only a single

100 Gbit s�1 port enabled, the performance is ultimately

limited to 12.5 GB s�1 for a network-connected system. For

testing purposes, a higher rate of 16 GB s�1 is possible, where

images are internally generated within the FPGA.

3.2. Measured Jungfraujoch performance

To verify the performance of the system, we prepared a

routine that runs both FPGA and Jungfraujoch software

routines, with data provided by the in-FPGA internal packet

generator. In this way, all internal steps of the pipeline are

tested, specifically the throughput of the FPGA itself, the

throughput of the OpenCAPI interconnect, geometry trans-

formation, compression and spot finding. As a sanity check,

the last image is compared with the expected values. Naturally

such a test excludes external communication, i.e. the FPGA

receiving UDP packets from the detector and the efficiency of

the HDF5 writer.

The test was executed on an IBM IC922 server equipped

with two 20-core POWER9 CPUs, two Alpha Data 9H3

FPGA boards and two Nvidia T4 GPUs. Eighty compression

threads were conducted in parallel, while spot finding and

radial integration analyzed every 20th frame. Data-collection

size was set to one million frames, ensuring that local buffering

does not affect results. To ensure realistic compression factors,

we loaded a typical lysozyme diffraction image to FPGA

memory and simulated each card receiving data from four

detector modules with the internal packet generator.

Assuming that the pipeline (both FPGA and software) is

paused when downstream processing is unable to match the

performance speed, the frame rate will equilibrate at the rate

of the slowest component.

Results of the measurement are presented in Table 1 and

show that the system has a significant margin over the target

of 4M at 2 kHz performance, reaching above a 3 kHz frame

rate. This demonstrates that the Jungfraujoch server has the

potential to support even larger detector systems in the future.

Moreover, our results illustrate that handling the highest data

rates requires custom compression developments, as the

Jungfraujoch Zstandard implementation outperformed the

standard LZ4 compressor.

During this test, we monitored environmental sensors

within the server. The total server power consumption during

the test was �680–690 W, compared with 330 W when idle.

FPGA board power consumption was in the range of 32–25 W

per board, based on voltage and current sensor readout

(Alpha Data Board Control Interface; sum for 3.3 V and 12 V

rails), while power consumption per GPU was in the range of

30–40 W (nvidia-smi utility).

4. Conclusions and outlook

The Jungfraujoch system described in this article is a prime

example that task-specific computing architectures can be

short communications

J. Synchrotron Rad. (2023). 30, 227–234 Filip Leonarski et al. � Jungfraujoch 231

Table 1
Performance results for the Jungfraujoch FPGA and software show that
the system has a significant margin over 2 kHz and potentially can reach a
performance above 3 kHz.

Presented numbers are from test handling one million images generated with
the FPGA internal packet generator, corresponding in size to a 4M detector.

Compression
algorithm

Execution
time (s)

Throughput
(GB s�1)

Frame
rate (kHz)

Compression
factor

Bitshuffle/Zstandard
(Jungfraujoch
compressor)

273 31 3.6 5.1

Bitshuffle/LZ4
(standard
compressor)

320 26 3.1 5.7



successfully utilized for data acquisition with high-frame-rate

pixel-array detectors. Currently, the system can handle

30 GB s�1 data from JUNGFRAU detectors at the maximum

frame rate of 2 kHz and is a solid basis for the future devel-

opment, such as a higher-performing framework aimed at

10 kHz detectors.

One of the significant achievements of our design is the

compact size of the whole system. Main components, i.e. data

acquisition, compression and image analysis (e.g. spot finding),

are all packed into a single two-rack-unit server system. Such

design, inspired by the DECTRIS Detector Control Unit,

enables easy transport or system copy. This allowed us to test

and gain experience from operating the Jungfraujoch system

at three synchrotron beamlines: X06SA (SLS/PSI), BL-1A

(Photon Factory, Japan) and BioMAX (MAX IV Laboratory,

Sweden). The results of these beam times will be published

separately.

Maximizing the functionality within a single server was

possible thanks to the high power efficiency of task-specific

accelerators (FPGAs and GPGPUs). For example, the

throughput of a single FPGA board in converting JUNG-

FRAU images from raw to photon count representations

exceeds the performance of a four-socket CPU server used

by us in a previous work (Leonarski et al., 2020). This is a

30-times increase in power efficiency, given the server

consumption was above 1 kW and the FPGA board was

at 30 W.

Yet, the power efficiency would not be enough if

programming the accelerators required prohibitively high

effort. FPGA high-level synthesis and OpenCAPI inter-

connect are two technologies that have made the Jungfraujoch

system development feasible. At the initial stages of the

project, the benefits of using these features were the short-

ening of development time and the reduction of the entry

barrier for FPGAs software development. With the system’s

complexity growing over time, the simplicity and robustness

of design verification became advantageous. To increase the

accessibility of Jungfraujoch, we are currently working on a

PCI Express implementation. Given most parts of the current

design can be reused thanks to standard FPGA interfaces,

such as the Advanced Extensible Interface (AXI), we expect

the two flavors of the design to coexist. OpenCAPI design

would allow for rapid development, prototyping and handling

of more advanced scenarios, while PCI Express would

make deployment possible on a broader range of hardware

platforms.

Our results demonstrate the benefit of combining data

acquisition with real-time image analysis within a single server

system. If the calculations were performed on an external

system, this would increase image compression, transfer and

decompression overhead. It is especially the case for image-

analysis methods with a small performance footprint, like

radial integration or spot finding. The current implementation

can analyze only a subset of images in real time at the

maximum frame rate. While this is good enough for experi-

mental feedback, we aim to scale up analysis performance for

every image without affecting the frame rate for the next

iteration of the Jungfraujoch.

Task-specific FPGA and GPGPU architectures will develop

rapidly in the future, especially in the context of ongoing

advances in machine learning, given that these techniques

perform exceptionally well on dedicated accelerators. As it is

likely that future X-ray diffraction image analysis (Ke et al.,

2018) or compression (Roy et al., 2021) is going to be based

on neural networks, we also expect that the next version of

the Jungfraujoch system will be designed to accommodate

machine-learning algorithms as part of the pipeline.

APPENDIX A
Jungfraujoch technical details

A1. Hardware requirements

Jungfraujoch is designed to operate on an IBM IC922

system. The following configuration was used for tests at PSI:

two 20-core POWER9 CPUs (2.9–3.8 GHz), 256 GB RAM,

two Alpha Data 9H3 FPGA boards with Xilinx Virtex

Ultrascale+ HBM FPGA (first with XCVU33P, later with

XCVU35P chip), two Nvidia T4 GPGPUs and a single

Mellanox Connect-X 5 100 Gbit s�1 ethernet adapter.

Amphenol RSL74-0540-8 OpenCAPI cables (260 mm) were

used to coherently connect the FPGA boards to the POWER9

CPUs. Finisar FTLC9558REPM 100GBASE-SR4 transceivers

were used for the FPGA boards. For optimal performance,

count of threads per core (simultaneous multithreading) was

set to 2.

The configuration can be adapted based on experimental

needs. For example, memory capacity should be adjusted for

maximal length of burst operation, if uncompressed or poorly

compressed images are to be collected at the full frame rate.

The number of GPGPUs will affect frame rate for spot-finding

operation, while the number of FPGA boards can be reduced

to 1 if only small detectors are to be operated with the system.

A2. Software requirements

Building Jungfraujoch software necessitates C++17

compliant compiler (e.g. GCC 11.2), CMake 3.15 or newer,

HDF5 library 1.10 or newer, ZeroMQ library, Nvidia CUDA

environment 11.5, as well as gRPC.

Building the FPGA design requires Xilinx Vivado 2022.1

and Xilinx Vitis High-Level Synthesis 2022.1. To synthesize all

card features, license for the Alpha Data 9H3 reference design

is necessary. Cadence Xcelium simulator 20.09 is needed to

simulate the FPGA design.

A3. FPGA design details

The current FPGA design uses roughly a quarter of the

resources on the XCVU35P FPGA and half of its area (see

Table 2 and Fig. 4), leaving space for future extensions, such as

compression or on-the-fly analysis.

short communications

232 Filip Leonarski et al. � Jungfraujoch J. Synchrotron Rad. (2023). 30, 227–234



A4. Source code

The source is publicly available from PSI GitLab at

https://gitlab.psi.ch/jungfraujoch/jungfraujoch.

Software components are licensed under the GNU Public

License version 3 and hardware components are licensed

under the strongly reciprocal variant of CERN Open Hard-

ware License. Synthesized FPGA bitstream for the Alpha

Data 9H3 board is available from the authors upon request.

The code includes external libraries, specifically: OC-Accel,

OpenCAPI Simulation Engine, bitshuffle (pre-)compression

(Masui et al., 2015), Spdlog for logging, GEMMI (Wojdyr,

2022), tinycbor (Intel), C++ JSON parser (Lohmann, 2022),

SLS Detector Package, XGANDALF indexer (Gevorkov et

al., 2019), Xilinx High-Level Synthesis headers (arbitrary

precision numbers and AXImm burst) and Catch2 testing

framework. Links to the source code repository for the

libraries mentioned above can be found in the Jungfraujoch

source code.

A5. Design verification

A three-step procedure was developed to verify Jung-

fraujoch: two steps before deployment on the hardware plat-

form and the last step after deployment. The first step was

compiling high-level synthesis code with a standard C++

compiler and running a standard testing framework (Catch2),

making it possible to verify all routines quickly. The second

step was simulation with the help of the OpenCAPI Simula-

tion Engine and Cadence Xcelium. Here, the whole FPGA

design, in HDL and including the OpenCAPI interface, is

simulated together with software (CPU/GPU) code running a

short data collection. The speed of the hardware simulation is

slow: simulating three frames of a single-module system takes

roughly 2–3 h. These two tests were implemented with a

continuous integration pipeline (GitLab), ensuring that bugs

can be identified and fixed quickly. The last verification step,

after deployment, is an application to test the card behavior

and performance with FPGA hardware, but without a detector

connected, using the FPGA internal packet generator.

A6. JUNGFRAU detector

The JUNGFRAU detector is a pixel-array charge-inte-

grating detector with a pixel pitch of 75 mm, which can operate

up to a 2.2 kHz frame rate. JUNGFRAU is a modular

detector, where each module (512 � 1024 pixels ’ 500k

pixels) is equipped with independent control (copper;

100 MB s�1) and readout (fiberoptic; 2 � 10 Gbit s�1)

network connections. The JUNGFRAU pixel is always

encoded with 16 bits. The JUNGFRAU 4M detector was used

for testing Jungfraujoch. Further detector details can be found

in our prior publications (Mozzanica et al., 2018; Redford et

al., 2018a,b; Leonarski et al., 2018, 2020).

Acknowledgements

The authors acknowledge the staff of beamlines X06SA and

X06DA (SLS, PSI), BL-1A (Photon Factory, Japan), and

BioMAX (MAX IV Laboratory, Sweden) for opportunities to

test Jungfraujoch. FL acknowledges Professor Kay Diederichs

(Universitat Konstanz) for discussions on spot finding and

indexing, colleagues from DECTRIS for discussions on data

acquisition, Dr Lionel Clavien (Inno-Boost SA) for support of

POWER9 hardware, and the Xilinx University Program for a

donation of the Auto-Negotiation/Link Training license for

the Ultrascale+ 100 Gbit s�1 ethernet intellectual property

core. Conflict of interest: AC and BM are employees of IBM,

the manufacturer of the IC922 server.

Funding information

FL and MW acknowledge funding from the Swiss National

Science Foundation (grant number 182369).

References

Allan, D., Caswell, T., Campbell, S. & Rakitin, M. (2019). Synchrotron
Rad. News, 32(3), 19–22.

Basu, S., Olieric, V., Leonarski, F., Matsugaki, N., Kawano, Y.,
Takashi, T., Huang, C.-Y., Yamada, Y., Vera, L., Olieric, N.,

short communications

J. Synchrotron Rad. (2023). 30, 227–234 Filip Leonarski et al. � Jungfraujoch 233

Figure 4
This figure shows how functionalities of Jungfraujoch are placed on the
XCVU35P device by the FPGA synthesis tool: network stack (green),
host-memory interface including OpenCAPI (purple) and JUNGFRAU
specific conversion routines (yellow). The black region, mostly in the top
half of the FPGA, is not occupied, leaving space for further functionality.
The figure is produced by Xilinx Vivado 2022.1 after an implementation
run.

Table 2
FPGA resource utilization is relatively low for the XCVU35P chip,
allowing for more functionality to be implemented in the future.

Data from the Xilinx Vivado 2022.1 tool, after synthesis and implementation.

Resource Count used
Share of available

resources

Configurable logic block 40 654 37%
Look-up table 169 765 19%
Flip-flop register 294 165 17%
Digital signal processor 162 3%
Block RAM 1.2 MB 20%
Ultra RAM 6.2 MB 28%
HBM interface 12 37.5%

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB2


Basquin, J., Wojdyla, J. A., Bunk, O., Diederichs, K., Yamamoto, M.
& Wang, M. (2019). IUCrJ, 6, 373–386.

Bernstein, H. J., Förster, A., Bhowmick, A., Brewster, A. S.,
Brockhauser, S., Gelisio, L., Hall, D. R., Leonarski, F., Mariani,
V., Santoni, G., Vonrhein, C. & Winter, G. (2020). IUCrJ, 7,
784–792.

Broennimann, Ch., Eikenberry, E. F., Henrich, B., Horisberger, R.,
Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M.,
Tomizaki, T., Toyokawa, H. & Wagner, A. (2006). J. Synchrotron
Rad. 13, 120–130.

Casanas, A., Warshamanage, R., Finke, A. D., Panepucci, E., Olieric,
V., Nöll, A., Tampé, R., Brandstetter, S., Förster, A., Mueller, M.,
Schulze-Briese, C., Bunk, O. & Wang, M. (2016). Acta Cryst. D72,
1036–1048.

Collet, Y. & Kucherawy, M. (2021) Zstandard Compression and the
application/zstd Media Type, https://www.rfc-editor.org/rfc/rfc8878.

Denes, P. & Schmitt, B. (2014). J. Synchrotron Rad. 21, 1006–1010.
Diederichs, K. & Wang, M. (2017). Serial Synchrotron X-ray Cryst-

allography (SSX), pp. 239–272. New York: Springer New York.
Dinapoli, R., Bergamaschi, A., Henrich, B., Horisberger, R., Johnson,

I., Mozzanica, A., Schmid, E., Schmitt, B., Schreiber, A., Shi, X. &
Theidel, G. (2011). Nucl. Instrum. Methods Phys. Res. A, 650,
79–83.

Durante, P., Neufeld, N., Schwemmer, R., Marconi, U., Balbi, G. &
Lax, I. (2015). IEEE Trans. Nucl. Sci. 62, 1752–1757.

Förster, A., Brandstetter, S. & Schulze-Briese, C. (2019). Philos.
Trans. R. Soc. A, 377, 20180241.

Gevorkov, Y., Yefanov, O., Barty, A., White, T. A., Mariani, V.,
Brehm, W., Tolstikova, A., Grigat, R.-R. & Chapman, H. N. (2019).
Acta Cryst. A75, 694–704.

Gibbons, E. P., Heron, M. T. & Rees, N. P. (2011). Proceedings of the
13th International Conference on Accelerators and Large Experi-
mental Physics Control Systems (ICALEPCS2011), 10–14 October
2011, Grenoble, France, pp. 529–532. TUAAUST01.

Hauf, S., Heisen, B., Aplin, S., Beg, M., Bergemann, M., Bondar, V.,
Boukhelef, D., Danilevsky, C., Ehsan, W., Essenov, S., Fabbri, R.,
Flucke, G., Fulla Marsa, D., Göries, D., Giovanetti, G., Hickin, D.,
Jarosiewicz, T., Kamil, E., Khakhulin, D., Klimovskaia, A., Kluyver,
T., Kirienko, Y., Kuhn, M., Maia, L., Mamchyk, D., Mariani, V.,
Mekinda, L., Michelat, T., Münnich, A., Padee, A., Parenti, A.,
Santos, H., Silenzi, A., Teichmann, M., Weger, K., Wiggins, J.,
Wrona, K., Xu, C., Youngman, C., Zhu, J., Fangohr, H. &
Brockhauser, S. (2019). J. Synchrotron Rad. 26, 1448–1461.

Hennessy, J. L. & Patterson, D. A. (2019). Commun. ACM, 62, 48–60.
Hoozemans, J., Peltenburg, J., Nonnemacher, F., Hadnagy, A., Al-Ars,

Z. & Hofstee, H. P. (2021). IEEE Circuits Syst. Mag. 21, 30–47.
Kabsch, W. (2010). Acta Cryst. D66, 133–144.
Kaminski, J. W., Vera, L., Stegmann, D., Vering, J., Eris, D., Smith,

K. M. L., Huang, C.-Y., Meier, N., Steuber, J., Wang, M., Fritz, G.,
Wojdyla, J. A. & Sharpe, M. E. (2022). Acta Cryst. D78, 328–336.

Ke, T.-W., Brewster, A. S., Yu, S. X., Ushizima, D., Yang, C. & Sauter,
N. K. (2018). J. Synchrotron Rad. 25, 655–670.

Leonarski, F., Mozzanica, A., Brückner, M., Lopez-Cuenca, C.,
Redford, S., Sala, L., Babic, A., Billich, H., Bunk, O., Schmitt, B. &
Wang, M. (2020). Struct. Dyn. 7, 014305.

Leonarski, F., Redford, S., Mozzanica, A., Lopez-Cuenca, C.,
Panepucci, E., Nass, K., Ozerov, D., Vera, L., Olieric, V., Buntschu,
D., Schneider, R., Tinti, G., Froejdh, E., Diederichs, K., Bunk, O.,
Schmitt, B. & Wang, M. (2018). Nat. Methods, 15, 799–804.

Lohmann, N. (2022). JSON for Modern C++, https://github.com/
nlohmann/json.

Masui, K., Amiri, M., Connor, L., Deng, M., Fandino, M., Höfer, C.,
Halpern, M., Hanna, D., Hincks, A., Hinshaw, G., Parra, J.,
Newburgh, L., Shaw, J. & Vanderlinde, K. (2015). Astron. Comput.
12, 181–190.

Michel, V., Beteva, A., Coutinho, T. M., Dominguez, M. C., Guijarro,
M., Guilloud, C., Homs, A., Meyer, J. M., Papillon, E., Perez, M. &
Petitdemange, S. (2019). Proceedings of the 12th International

Workshop on Emerging Technologies and Scientific Facilities
Controls (PCaPAC’18), 16–19 October 2018, Hsinchu, Taiwan,
pp. 26–29. WEP02.

Mozzanica, A., Andrä, M., Barten, R., Bergamaschi, A., Chiriotti, S.,
Brückner, M., Dinapoli, R., Fröjdh, E., Greiffenberg, D., Leonarski,
F., Lopez-Cuenca, C., Mezza, D., Redford, S., Ruder, C., Schmitt,
B., Shi, X., Thattil, D., Tinti, G., Vetter, S. & Zhang, J. (2018).
Synchrotron Radiat. News, 31(6), 16–20.

Mueller, M., Wang, M. & Schulze-Briese, C. (2012). Acta Cryst. D68,
42–56.

Nakamura, H., Takayama, H., Yamaguchi, Y. & Boku, T. (2017).
Proceedings of the 2017 International Conference on ReConFigur-
able Computing and FPGAs (ReConFig), 4–6 December 2017,
Cancun, Mexico, pp. 1–6.

Oscarsson, M., Beteva, A., Flot, D., Gordon, E., Guijarro, M.,
Leonard, G., McSweeney, S., Monaco, S., Mueller-Dieckmann, C.,
Nanao, M., Nurizzo, D., Popov, A., von Stetten, D., Svensson, O.,
Rey-Bakaikoa, V., Chado, I., Chavas, L., Gadea, L., Gourhant, P.,
Isabet, T., Legrand, P., Savko, M., Sirigu, S., Shepard, W.,
Thompson, A., Mueller, U., Nan, J., Eguiraun, M., Bolmsten, F.,
Nardella, A., Milàn-Otero, A., Thunnissen, M., Hellmig, M.,
Kastner, A., Schmuckermaier, L., Gerlach, M., Feiler, C., Weiss,
M. S., Bowler, M. W., Gobbo, A., Papp, G., Sinoir, J., McCarthy, A.,
Karpics, I., Nikolova, M., Bourenkov, G., Schneider, T., Andreu, J.,
Cunı́, G., Juanhuix, J., Boer, R., Fogh, R., Keller, P., Flensburg, C.,
Paciorek, W., Vonrhein, C., Bricogne, G. & de Sanctis, D. (2019).
J. Synchrotron Rad. 26, 393–405.

Petitdemange, S., Claustre, L., Homs, A., Regojo, R. H., Papillon, E.,
Langlois, F., Mant, G. R. & Noureddine, A. (2014). Proceedings of
the 16th International Conference on Accelerator and Large
Experimental Physics Control Systems (ICALEPCS2017), 8–13
October 2017, Barcelona, Spain, pp. 886–890. TUPHA194.

Redford, S., Andrä, M., Barten, R., Bergamaschi, A., Brückner, M.,
Chiriotti, S., Dinapoli, R., Fröjdh, E., Greiffenberg, D., Leonarski,
F., Lopez-Cuenca, C., Mezza, D., Mozzanica, A., Ruder, C.,
Schmitt, B., Shi, X., Thattil, D., Tinti, G., Vetter, S. & Zhang, J.
(2018b). J. Instrum. 13, C11006.

Redford, S., Andrä, M., Barten, R., Bergamaschi, A., Brückner, M.,
Dinapoli, R., Fröjdh, E., Greiffenberg, D., Lopez-Cuenca, C.,
Mezza, D., Mozzanica, A., Ramilli, M., Ruat, M., Ruder, C.,
Schmitt, B., Shi, X., Thattil, D., Tinti, G., Vetter, S. & Zhang, J.
(2018a). J. Instrum. 13, C01027.

Roy, R., Sato, K., Bhattachrya, S., Fang, X., Joti, Y., Hatsui, T., Hiraki,
T. N., Guo, J. & Yu, W. (2021). 21st IEEE/ACM International
Symposium on Cluster, Cloud and Internet Computing (CCGrid
2021), 10–13 May 2021, Melbourne, Australia, pp. 41–50.

Ruiz, M., Sidler, D., Sutter, G., Alonso, G. & López-Buedo, S. (2019).
Proceedings of the 29th International Conference on Field-
Programmable Logic and Applications (FPL 2019), 9–13
September 2019, Barcelona, Spain, pp. 286–292.

Stuecheli, J., Starke, W. J., Irish, J. D., Arimilli, L. B., Dreps, D.,
Blaner, B., Wollbrink, C. & Allison, B. (2018). IBM J. Res. Dev. 62,
8:1–8:8.

Sutter, G., Ruiz, M., López-Buedo, S. & Alonso, G. (2018).
Proceedings of the 2018 International Conference on ReConFigur-
able Computing and FPGAs (ReConFig), 3–5 December 2018,
Cancun, Mexico.

Thomas, S. E., Collins, P., James, R. H., Mendes, V., Charoensutthi-
varakul, S., Radoux, C., Abell, C., Coyne, A. G., Floto, R. A., von
Delft, F. & Blundell, T. L. (2019). Philos. Trans. R. Soc. A, 377,
20180422.

Wang, Z., Huang, H., Zhang, J. & Alonso, G. (2020). Proceedings of
the 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 3–6 May
2020, Fayetteville, AR, USA, pp. 111–119.

Wojdyr M. (2022) J. Open Source Softw. 7, 4200.
Wojdyla, J. A., Kaminski, J. W., Panepucci, E., Ebner, S., Wang, X.,

Gabadinho, J. & Wang, M. (2018). J. Synchrotron Rad. 25, 293–303.

short communications

234 Filip Leonarski et al. � Jungfraujoch J. Synchrotron Rad. (2023). 30, 227–234

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB711
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB711
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB712
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yn5093&bbid=BB36

