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With the development of synchrotron radiation sources and high-frame-rate

detectors, the amount of experimental data collected at synchrotron radiation

beamlines has increased exponentially. As a result, data processing for

synchrotron radiation experiments has entered the era of big data. It is

becoming increasingly important for beamlines to have the capability to process

large-scale data in parallel to keep up with the rapid growth of data. Currently,

there is no set of data processing solutions based on the big data technology

framework for beamlines. Apache Hadoop is a widely used distributed system

architecture for solving the problem of massive data storage and computation.

This paper presents a set of distributed data processing schemes for beamlines

with experimental data using Hadoop. The Hadoop Distributed File System is

utilized as the distributed file storage system, and Hadoop YARN serves as

the resource scheduler for the distributed computing cluster. A distributed data

processing pipeline that can carry out massively parallel computation is

designed and developed using Hadoop Spark. The entire data processing plat-

form adopts a distributed microservice architecture, which makes the system

easy to expand, reduces module coupling and improves reliability.

1. Introduction

Synchrotron radiation facilities are some of the most powerful

tools in science and technology research. After over half a

century of development, the diffraction-limited storage ring

has become the most dominant trend, i.e. fourth-generation

light source. MAX IV (Tavares et al., 2016) in Sweden, ESRF-

EBS (Revol et al., 2021) in France and Sirius (Liu et al., 2021)

in Brazil are the first three constructed fourth-generation light

sources in the world, and there are more than ten laboratories

that plan to build a new facility or upgrade their recent third-

generation facilities (Li et al., 2022). In mainland China, HEPS

(Jiao et al., 2019) in Beijing and HALS (Yang et al., 2019) in

Hefei are under construction. The Wuhan Advanced Light

Source (WALS) phase I project is designed as a fourth-

generation light source (Li et al., 2021), consisting of a low-

energy storage ring (1.5 GeV), a LINAC working as a full-

energy injector and ten beamlines. Based on the hybrid-7BA

lattice structure, the low-energy storage ring reaches the soft

X-ray diffraction limit. By using a 3.5 T superB magnet, the

photon energy of the storage ring is extended to the hard

X-ray region. The fourth-generation light sources will exceed

the performance of previous sources by one or more orders

of magnitude in terms of the important parameters such as

brightness, coherence and shortness of pulse duration

(Grabowski et al., 2021). The high degree of coherence will

allow efficient focusing of the synchrotron beams to the

nanometre range. It will allow an effective application of
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coherence-based techniques such as coherent diffraction

imaging potentially reaching sub-nanometre resolution. It will

also extend photon correlation techniques into the regime of

nanoseconds (Khubbutdinov et al., 2019). The gain in coherent

flux brought by the fourth-generation light sources allows

experimental data to be obtained within a few seconds

(Westfahl et al., 2018). Along with the development of the light

source, high-frame-rate detectors are also widely used in

synchrotron radiation experiments on beamlines. Recent

advances in the fourth-generation synchrotron light sources

and innovative detector technology (e.g. higher acquisition

rates and larger area-detector dimensions) (Pithan et al., 2023)

lead to generating massive amounts of data in users’

synchrotron radiation experimental processes, and beamlines

need to have the ability to perform large-scale parallel data

processing to ensure that the processing speed of experimental

data matches the speed of data growth (Khan et al., 2018). At

the same time, a massive amount of data also provides a solid

foundation for big data technologies, such as machine

learning. The application of machine learning is expected to be

a significant trend in the development of data analysis tech-

nology for beamlines (Hill et al., 2020). There are a few

beamline stations that have applied machine learning algo-

rithms to accelerate data analysis (Vollmar et al., 2020), and

have even directly used machine learning algorithms for

autonomous experiments, greatly reducing human interven-

tion to pursue experimental efficiency (Noack et al., 2021).

Data processing on the beamline has entered the era of big

data. High performance computing (HPC), implemented with

the message passing interface (MPI) protocol (Walker &

Dongarra, 1996), developed and matured before the advent of

the big data era. As a result, the beamline typically relies on

HPC for parallel data processing. MPI is a parallel computing

framework based on message passing, which involves

numerous communication intricacies in the program, making

implementation challenging. With the increasing scale of

computing, the proportion of communication time also grows,

resulting in decreased program efficiency. MapReduce (Dean

& Ghemawat, 2008) in big data technology is a programming

model for parallel computing of large-scale datasets. It is easy

to program, highly scalable, and capable of solving ultra-large-

scale parallel computing problems efficiently. At the same

time, it is highly reliable and has a strong fault tolerance

ability. Therefore, MapReduce will be more advantageous

when applied to large-scale data-parallel computing. NSLS-II

has developed an extension module that enables MPI support

in the distributed big data processing engine Spark. This

allows HPC applications based on MPI to be executed on

Spark computing engines (Malitsky, 2016). However, there are

no set of beamline distributed data parallel processing

schemes based entirely on the big data technology framework.

Hadoop is an open-source Apache project for developing

software for reliable, scalable, distributed computing (He &

Lai, 2018; Zhang et al., 2017). The Apache Hadoop software

library is a framework that enables the distributed processing

of large datasets across clusters of computers using simple

programming models. It is designed to scale up from single

servers to thousands of machines, each offering local compu-

tation and storage. Hadoop is widely chosen as the preferred

framework for distributed big data solutions in companies or

organizations because of its high fault tolerance, reliability,

efficiency and low cost. This paper presents a distributed

processing scheme for beamline experimental data based on

the Hadoop big data architecture. It utilizes Hadoop HDFS

and HBase as distributed file storage systems and databases,

and adopts Hadoop YARN as the resource scheduler for the

distributed computing cluster. Additionally, a distributed data

automatic processing pipeline is designed and developed using

Hadoop Spark. In detail, the paper is organized as follows:

Section 2 provides an overview of the system architecture;

Section 3 introduces the construction of Hadoop clusters, as

well as the design, development and testing of distributed data

processing pipelines; Section 4 introduces the development of

the application layer based on the microservice architecture;

and finally Section 5 summarizes the entire paper.

2. Architecture

Hadoop, as an underlying transparent architecture, has three

core components (Ma et al., 2023):

HDFS (Hadoop Distributed File System) is a distributed file

system that serves as the foundation for data storage and

management in the Hadoop system. It is a highly fault-tolerant

system that can detect and respond to hardware failures.

HDFS simplifies the consistency model of files and provides

high-throughput application data access, making it suitable for

applications with large datasets.

YARN (Yet Another Resource Negotiator) is a new resource

manager for Hadoop. It is a universal resource management

system that provides unified resource management and sche-

duling for upper-level applications.

MapReduce is a programming framework for distributed

computing programs. It serves as the core framework for users

to develop Hadoop-based data analysis applications. The main

purpose of MapReduce is to combine user code and default

components into a comprehensive distributed computing

program that can be executed simultaneously on a Hadoop

cluster.

In addition, Hadoop uses the Hadoop Common module,

which provides fundamental support for the three above

components.

With the widespread application of Hadoop technology,

Hadoop has developed into an enormous ecosystem with

many related components. In addition to the basic core

components of Hadoop, they include the Distributed Coor-

dination Service – Zookeeper; the Distributed Column-

Storage Database – HBase; the Workflow Scheduling System –

Oozie; and the Data Warehouse – Hive. Moreover, there are

various distributed computing architectures, such as the data

batch processing framework Spark and the data stream

processing framework Storm (Ravichandran, 2017; Zhi et al.,

2022; Islam et al., 2012; Thusoo et al., 2009; Zaharia et al., 2012;

Cha & Wachowicz, 2015).
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This paper utilizes the Hadoop ecosystem (Fig. 1) to build a

distributed storage, management and processing big data

platform for the experimental data of synchrotron radiation

biological macromolecular crystallography. HDFS is used to

build a distributed file storage system for experimental crys-

tallography data. Distributed computing for the automatic

processing of crystallographic data is achieved by combining

the Hadoop distributed batch processing framework Spark

and cluster resource management system YARN. Finally, the

processed results are saved to the distributed database HBase.

The traditional monolithic application architecture cannot

flexibly respond to the increasing business needs of big data

platforms. In this case, the microservice architecture model

can be adopted, which divides traditional monolithic appli-

cations into a group of small services based on the concept of

divide and conquer. These services can communicate, coor-

dinate and cooperate with each other (Song et al., 2018).

The entire system architecture can be divided into a

Hadoop-based data storage/computing layer and a micro-

service architecture application layer, as shown in Fig. 2. In

Hadoop clusters, distributed automatic processing jobs in

YARN read experimental raw data from HDFS for calcula-

tion, and the result files and intermediate files generated

during the process are stored in HDFS. HBase extracts the

processing results from the result files and stores them in the

corresponding tables in the database. Information related

to data processing jobs is also stored in the database. In the

application layer, there are primarily microservices related to

Spark distributed automatic processing jobs and HBase data

table operations.

3. Distributed data processing

3.1. Construction of a Hadoop distributed cluster

In terms of software, HDFS, YARN and HBase in the

Hadoop ecosystem are chosen to build a distributed proces-

sing cluster in this paper.

HDFS is an important component used for massive data

storage and management in the Hadoop project; it is a

distributed file storage system based on Google’s GFS

(Ghemawat et al., 2003). HDFS is a typical master/slave

architecture distributed system, where an HDFS cluster

consists of a NameNode and some DataNodes (Wang et al.,

2012). The NameNode is mainly used to manage metadata

(file name, size, storage location, etc.) and process file access

requests, while the DataNode is specifically used for data

storage. Meanwhile, a SecondaryNameNode is added to the

cluster, which will generally be in the standby state. When a

NameNode fails, the SecondaryNameNode will take over its

role as the NameNode.

YARN (Liu et al., 2016; Yao et al., 2021) is a resource

management component proposed by Hadoop version 2.0.

The Hadoop YARN system consists of multiple work nodes

and resources, which are managed by a centralized Resource-

Manager and multiple distributed NodeManagers. The

ResourceManager owns all resource allocation decisions in

the system and is responsible for resource allocation of all

applications in the cluster. The NodeManager manages inde-

pendent compute nodes in the Hadoop cluster and is mainly

responsible for communicating with the ResourceManager.

HBase is an open-source implementation of Google

Bigtable (Chang et al., 2008), which utilizes HDFS as a file

storage system and Zookeeper as a collaborative service. In

the HBase cluster, the HBase Master coordinates multiple

RegionServers, detects the state of each RegionServer, and

balances the load between RegionServers. The RegionServer

manages the tables and implements read and write operations.

The client connects directly to the RegionServer and

communicates with it to obtain data from HBase.

In terms of hardware, the distributed cluster is built using

the infrastructure provided by the Advanced Light Source

Research Center of Wuhan University. The version of Hadoop

used is 3.3.4, and the version of HBase is 2.5.4. Two CentOS7.6

servers are used to build a two-node cluster, and the deploy-

ment of the Hadoop components is shown in Table 1.

The two nodes are named Hadoop-node1 and Hadoop-

node2. The directory structure in HDFS is almost identical to

the local file directory structure. Here, there are raw_data and

computer programs
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Figure 2
Architecture of the data processing platform.

Figure 1
Hadoop ecology.



processed subfolders under the single crystallographic data

directory, where the raw_data folder stores the experimental

raw data of the crystals, such as HDF5 files, and the processed

folder stores the intermediate files and processed result files

generated by the automatic processing pipeline. The resource

information of the cluster is given in Table 2.

3.2. Distributed automatic processing pipeline for

crystallography

3.2.1. Pipeline design. The design of the Hadoop Map-

Reduce framework is limited to the concept of Map and

Reduce, and it cannot adapt to the computation of all types of

data. As a result, various computing frameworks have

emerged to address the issue of processing different types of

data. Spark is one such framework.

Spark is a dominant distributed batch computing frame-

work in big data computing. It supports various types of

functionality, including offline batch processing, SQL-like

processing, machine learning, graph computation, and more.

The Spark architecture consists of a Cluster Manager and

multiple Worker nodes, as shown in Fig. 3. The Cluster

Manager is responsible for controlling the entire cluster and

monitoring Workers. The Driver is the main process that

executes the Spark Application, which contains the Spark-

Context corresponding to the application. A Worker node

is responsible for controlling computation and starts and

manages an Executor or Driver. An Executor is a process that

runs in a Worker node for a specific application.

When constructing the runtime environment for the appli-

cation, a SparkContext instance will be initialized. Spark-

Context requests the running resources of the Executor from

the Cluster Manager. SparkContext builds the execution code

into a DAG (Directed Acyclic Graph), which is decomposed

into several stages. Each stage is composed of a TaskSet, which

is then assigned to the requested Executor for execution on a

Spark Task basis. The Spark application is capable of multi-

node distributed parallel computing (Liao et al., 2018; You

et al., 2023). Spark abstracts data into an RDD (Resilient

Distributed Dataset), and all data processing in Spark is based

on RDD operations. The RDD is essentially a collection of

data, which is further divided into several partitions (Li et al.,

2023). A Spark Task is responsible for processing an RDD in

a single partition, so the number of Spark Tasks running in

distributed parallel is determined by the number of RDD

partitions.

The DIALS (Diffraction Integration for Advanced Light

Sources) project (DIALS, 2023) is a collaboration between

Diamond Light Source, Lawrence Berkeley National

Laboratory and CCP4 to develop a new software suite for the

analysis of crystallographic X-ray diffraction data. The core

aim of DIALS is to allow the development of a wide range

of algorithms within a single framework. The workflow of

DIALS is decomposed into a number of discrete tasks,

including spot finding, indexing, refinement, integration, etc.

These tasks exchange information via data files. This decom-

position also makes testing of the DIALS software more

straightforward and facilitates its inclusion within automated

data-analysis systems (Winter et al., 2018). After processing a

set of crystal diffraction data through this sequence of tasks,

information such as the cell parameters, space group,

completeness and resolution of the crystal can be obtained. In

the entire DIALS data processing workflow, the two steps of

spot-finding and integration involve multi-process parallel

processing of crystallographic data. This paper utilizes Spark

to transform spot-finding and integration in DIALS into tasks

that can perform multi-node parallel computing within a

computer cluster, and then integrates them with other tasks in

DIALS, following the order of the DIALS workflow. Thus, a

distributed Spark-DIALS pipeline capable of automatically

processing crystallographic data is designed. The key to the

transformation of the original DIALS is to convert the parallel

tasks into Spark Tasks so that the tasks can be distributed to

multiple nodes in the cluster for distributed computing. The

design of the Spark Task needs to confirm the partitioning

of the single-partition RDD and the corresponding RDD

operation. This paper references the design of single-process

data processing in the original DIALS spot-finding and inte-

gration source code. The single-process processing in the

original DIALS converts the data to be processed into a data

collection and then performs a traversal operation on the data

computer programs
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Table 2
Resource information of the Hadoop cluster.

Cluster
resource Information

CPU 108 vCores (YARN†), Intel Xeon Platinum 9242 at 2.3 GHz
Memory �286 GB (YARN†)

Storage �2 TB

† 1 YARN vCore = 2 physical cores.

Figure 3
Architecture of Hadoop Spark.

Table 1
Deployment of Hadoop components.

Node name HDFS YARN HBase

Hadoop-node1 NameNode, ResourceManager, RegionServer

DataNode NodeManager
Hadoop-node2 SecondaryNameNode, NodeManager Master,

DataNode RegionServer



collection. This data collection can be directly regarded as an

RDD in Spark, and we only need to partition it (which also

partitions the Spark Task). By encapsulating the operations

of data collection in the original DIALS loop into a unified

processing function, the function can be seen as an operation

on a single-partition RDD in each Spark Task. After passing

this function into the Spark RDD map operator, the single-

process traversal operation is converted into a distributed

computing Spark Task. Taking the original DIALS integration

as an example, a Manager class specifically for managing

parallel tasks is designed in the original DIALS. The Manager

can complete the partitioning of parallel tasks and generate a

task list. In the original DIALS, the code for executing parallel

tasks in a single-process loop is as follows:

In each iteration, a single task is retrieved from the list of tasks

in the instantiated manager object. The accumulate method of

the manager object is then called within the loop to accumu-

late the results of the calculation for each task. The original

DIALS is implemented in Python. The modification of the

original DIALS integration using PySpark (PySpark, 2024) is

as follows:

Parallel tasks distributed to the cluster nodes may disrupt the

original order of the tasks. Therefore, the original list of tasks

is converted to a list of tuples, where each tuple contains the

task serial number. This list can be treated as an RDD, which

is a collection type of data. To partition the tuple list,

the SparkContext instantiated object sc calls the parallelize

method. After partitioning, IntegrateRDD calls the map

operator, which passes in an anonymous lambda function that

defines operations on a single binary tuple in the RDD. This

lambda function returns a binary tuple containing the task

number and the calculation result of the corresponding task.

IntegrateRDD then calls the collect operator to gather the

calculation results from all partitions. Finally, a loop is used to

aggregate all the results into the manager.

After the completion of each task in the original DIALS,

the result in memory is saved as a file. Subsequent tasks will

then read the result file into memory for further operations. In

the design of Spark-DIALS, the reading and writing of files

between independent tasks is omitted. Tasks will directly

retrieve the results generated by their upstream tasks from

memory to continue processing. This connects each indepen-

dent task in DIALS into a continuous data processing

pipeline. At present, the Spark-DIALS pipeline primarily

incorporates dials.import, dials.find_spots, dials.index,

dials.refine, dials.integrate, dials.symmetry and dials.scale from

the original DIALS. The entire pipeline workflow is shown

in Fig. 4.

3.2.2. Pipeline testing. The raw experimental data used for

pipeline testing were an example dataset consisting of 1800

thaumatin diffraction patterns collected at the BioMAX

beamline, MAX IV (Finke & Nan, 2022). The size of the

entire dataset is 5.15 GB. The crystals of thaumatin were

computer programs
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Figure 4
Workflow of Spark-DIALS pipeline.



grown from solutions of thaumatin (20–50 mg ml� 1) in NaK

tartrate (1.0 M), HEPES pH 7 (100 mM) and 25% glycerol.

The experimental acquisition parameters for this dataset are

shown in Table 3.

The version of Spark used was 3.3.1, and the version of

DIALS used was 3.8. First, the Spark-DIALS pipeline job was

submitted to Hadoop YARN, and its multi-node distributed

computing functionality was verified. After a Spark distrib-

uted pipeline job is submitted to the Hadoop YARN cluster,

the YARN ResourceManager acts as the Cluster Manager for

Spark. This allows the Spark job to run smoothly on the

YARN cluster. Fig. 5 shows the running status of some of the

Executors in the cluster obtained from the HistoryServer of

Spark at a certain time during the DIALS integration phase of

the Spark-DIALS pipeline job. In the built Hadoop cluster,

the IP address of Hadoop-node1 is 172.1.10.118, and the IP

address of Hadoop-node2 is 172.1.11.222. It can be seen that

there are active Spark Tasks on both nodes simultaneously,

confirming that Spark-DIALS can indeed distribute the

divided parallel tasks to different nodes for distributed

computing.

Additionally, the Spark Driver in Spark-DIALS first uses

the Spark RDD map operator to distribute parallel tasks to

each Executor. All task calculations are completed, and the

Spark Driver collects all results using the Spark RDD collect

operator. Spark provides a comprehensive data serialization

mechanism for transmitting data between the Driver and the

Executor, ensuring the accuracy and completeness of the data.

At the same time, the data processing environment configured

in each node in the cluster is identical. Therefore, the data

processing results obtained by the Spark-DIALS pipeline are

the same as those of the original DIALS. xia2 (Xia2, 2024) is

an expert system for macromolecular crystallography data

reduction. It can utilize DIALS as a pipeline to complete the

data reduction process automatically. The test compared the

computer programs
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Figure 5
Executor status in the integration phase of the Spark-DIALS pipeline.

Table 3
Data collection parameters of the dataset.

Wavelength 0.9763 Å (12.7 keV)
Beamline BioMAX, MAX IV Laboratory
Detector DECTRIS EIGER 16M
File format HDF5 in EIGER Nexus format
Number of frames 1800

Oscillation per frame 0.1� (180� total)
Resolution at detector corners 2 Å
Estimated flux 1.68 � 1011 photons s� 1



results of the dataset processed by xia2(dials) and Spark-

DIALS. The analysis results obtained by the two treatments

were very similar, both determining that the space group

of the crystal is P41212. Other diffraction indices are shown

in Table 4.

As shown in Fig. 6, the data files acquired through the

Spark-DIALS pipeline are stored in the processed folder in

HDFS. This folder contains the result files generated by each

task of the original DIALS. Each independent task of the

original DIALS generates a log file containing the processing

results. Spark-DIALS outputs the contents of these files to

the running log file of the entire pipeline (spark_dials_pipe-

line.log).

Next, we compared the computational efficiency of Spark-

DIALS and the original DIALS. In addition to being

submitted to the computing cluster for running, Spark jobs can

be submitted to a single machine in local mode for parallel

processing of data. The running times of spot-finding and

integration in Spark-DIALS (Local), Spark-DIALS (YARN)

and the original DIALS were measured simultaneously, as

shown in Table 5.

In total, four sets of computational efficiency tests were

conducted using 30, 60, 90 and 120 CPU cores. Test data

indicate that when 30 CPU cores are invoked, Spark-DIALS

performs more than 1.5 times faster than the original DIALS

on the spot-finding task, and more than 2.5 times faster on the

integration task. The performance of Spark-DIALS is even

better in the other three test sets. Spark-DIALS processes

the spot-finding task more than twice as fast as the original

DIALS and the integration task more than three times as

fast. It is evident that the larger the computational volume,

the better the efficiency performance of Spark-DIALS. The

computational workload of the integration task is significantly

larger than that of the spot-finding task. Therefore, the

enhancement in computational efficiency of Spark-DIALS is

much more pronounced in the parallel processing of integra-

tion. In addition, when Spark-DIALS pipeline jobs are

submitted to YARN, the information transfer between nodes

takes some time when the Spark Driver distributes parallel

tasks and collects calculation results. Therefore, the overall

computational efficiency of Spark-DIALS (YARN) is lower

than that of Spark-DIALS (Local). However, the impact of

information transfer on the overall computational efficiency is

not significant, and this effect can be eliminated by increasing

the network bandwidth between cluster nodes. We compared

the overall operational efficiency of the Spark-DIALS pipe-

line and xia2(dials). It took xia2(dials) 13 min to process the

dataset, while Spark-DIALS took 5.5 min to process it when

90 CPU cores were invoked.

The test results indicate that Spark-DIALS, a distributed

data processing pipeline for crystallography modified with

Spark, is capable of parallel processing on a single machine

as well as multi-node distributed computation on a Hadoop

cluster. Spark-DIALS offers a substantial improvement in

computational efficiency compared with the original DIALS

on processing large diffraction datasets. This enhancement

enables Spark-DIALS to fully utilize the resources of

distributed computing clusters for parallel processing of large-

scale experimental datasets. Benefiting from Spark’s serial-

ization mechanism, the computational results of Spark-

DIALS are consistent with those of the original DIALS.
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Table 4
Comparison of analysis results.

Diffraction index Pipeline Overall Low High

High resolution limit xia2(dials) 1.47 4.00 1.47

Spark-dials 1.47 4.00 1.47
Low resolution limit xia2(dials) 54.15 54.18 1.50

Spark-dials 150.84 151.63 1.50
Completeness xia2(dials) 83.6 100.0 10.3

Spark-dials 83.7 100.0 9.3
Multiplicity xia2(dials) 9.3 12.1 1.2

Spark-dials 9.2 11.9 1.2

I/sigma xia2(dials) 9.2 30.4 0.2
Spark-dials 9.5 28.6 0.3

Rmerge(I) xia2(dials) 0.124 0.082 0.660
Spark-dials 0.123 0.094 0.536

Rmerge(I+/� ) xia2(dials) 0.121 0.081 0.456
Spark-dials 0.121 0.093 0.410

Rmeas(I) xia2(dials) 0.129 0.085 0.892
Spark-dials 0.129 0.098 0.735

Rmeas(I+/� ) xia2(dials) 0.131 0.087 0.640
Spark-dials 0.131 0.101 0.579

Rpim(I) xia2(dials) 0.037 0.024 0.595
Spark-dials 0.037 0.028 0.500

Rpim(I+/� ) xia2(dials) 0.050 0.032 0.450

Spark-dials 0.050 0.038 0.410
CC half xia2(dials) 0.997 0.996 0.422

Spark-dials 0.995 0.996 0.518
Anomalous completeness xia2(dials) 77.1 100.0 0.8

Spark-dials 77.2 100.0 0.7
Anomalous multiplicity xia2(dials) 5.1 7.2 1.1

Spark-dials 5.1 7.1 1.1
Anomalous correlation xia2(dials) � 0.363 � 0.448 0.000

Spark-dials � 0.437 � 0.621 0.000
Anomalous slope xia2(dials) 0.471

Spark-dials 0.513
dF/F xia2(dials) 0.071

Spark-dials 0.065

dI/s(dI) xia2(dials) 0.538
Spark-dials 0.509

Total observations xia2(dials) 345680 30482 269
Spark-dials 342370 30028 245

Total unique xia2(dials) 37358 2514 224
Spark-dials 37316 2516 203

Table 5
Running time of spot-finding and integration.

Job type
Find_Spots
time (s)

Integration
time (s)

CPU
cores

Original DIALS 135 322
30Spark-dials (Local) 86 116

Spark-dials (YARN) 90 125

Original DIALS 126 367
60Spark-dials (Local) 63 107

Spark-dials (YARN) 63 111

Original DIALS 123 366
90Spark-dials (Local) 56 115

Spark-dials (YARN) 62 114

Original DIALS 126 346

120Spark-dials (Local) 57 115
Spark-dials (YARN) 57 115



4. Microservice application

4.1. Distributed database

Microservices are autonomous, and a very important

feature of autonomy is independent deployment. The modi-

fication and deployment of one service should not affect other

services. Therefore, in the design of microservice databases,

the basic principle that each microservice has a separate

database will also be followed.

HBase stores data in the form of tables, as shown in Fig. 7.

The table consists of rows and columns, and columns are

divided into several column families. Each row of a table has

RowKey as the primary key to retrieve the records in the

table. Each column in an HBase table belongs to a column

family, which must be defined when the table is created.

Column names are prefixed with the column family. The real

data are stored in a unique unit cell determined by a row key

and a column name index. Each cell in HBase holds different

versions of the same data, which are distinguished by time-

stamps.

In this paper, the entire microservice application consists of

the Spark pipeline job module and data processing result

module, and the corresponding data tables need to be created

in HBase for both modules. In HDFS, a single dataset name is

used as the file name of the top-level directory, and the dataset

name is used as the RowKey in HBase. After each pipeline job

is submitted, the corresponding job information and job

execution status information need to be saved. The pipeline

job data table in HBase creates the column families job_ info

and status_ info. The unique ID number assigned by Spark to

each submitted pipeline job is saved in job_info, and the status

information of the job submission and execution is saved in

status_ info. After the data processing, information on the cell

parameters, space group, resolution and other diffraction

indices of the crystals is obtained. The data table of the data

processing results will use the obtained diffraction indices as

column families, and each column family will store the results

of the corresponding index, as shown in Fig. 8.

4.2. Microservice development and registration

This paper uses the high-performance lightweight frame-

work FastAPI (FastAPI, 2023) to develop the microservice

module functionality into a RESTful API. In the Spark

pipeline job module, two APIs, for job submission and job

computer programs
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Figure 6
The processed folder in HDFS stores distributed automated processing result files.

Figure 7
Schematic diagram of the HBase data table structure.



query, are provided. The route of the job submission API

needs to include the dataset name as a path parameter. After

sending an HTTP PUT request to this API, the backend will

submit the Spark job of the corresponding dataset to the

cluster and then wait for Spark’s HistoryServer to provide

the job ID and job submission status (success/failure) to the

frontend and save the results in the pipeline job data table.

The route of the job status query API also requires the dataset

name to be provided as a path parameter. After sending an

HTTP GET request to this API, the backend will first go to

HBase to obtain the status of the corresponding job submis-

sion and execution in the pipeline job data table. If there are

no results in the database, the backend will access Spark’s

HistoryServer to query the job status based on the ID number

saved in the data table. The results will be returned to the

frontend in JSON format and saved in HBase. The returned

data format is as follows:

The data processing result module only provides one

API. After sending an HTTP PUT request to the API, the

backend will extract the processing results from the log

file (spark_dials_pipeline.log described previously) in the

corresponding dataset folder of the HDFS into the processing

result data table in HBase. After sending an HTTP GET

request to the API, the backend will obtain all the results from

HBase and return them to the frontend in JSON format.

In the microservice architecture, each microservice of the

system is deployed on different servers, and the system needs

to maintain and manage the instance information of each

service through a registry. The registry consists of two parts:

the server and the client. The server maintains the information

of the services registered to itself while providing interfaces

for the services to obtain the information of other services.

The client registers its information on the server, making it

easy for other services to discover it. It obtains the information

of the other services on which it relies and completes inter-

service invocation.

Spring Cloud Netflix Eureka (Eureka, 2023) is a basic

component provided by Spring Cloud for service discovery

and registration. Eureka adopts a C/S (Client/Server) archi-

tecture, as shown in Fig. 9. Eureka includes two major

components: a Eureka Server and a Eureka Client. The

Eureka Server is a service registration center mainly used to

provide service registration functions. It maintains a list of

available services and stores information about all available

services registered with the Eureka Server. The Eureka Client

is a microservice system that includes various microservices,

which can be divided into service providers and service

consumers. The Eureka Server is deployed in a cluster

manner, with multiple Eureka Servers synchronously repli-

cating the information of each node in the microservice

cluster. The service provider provides services to other nodes

in the microservice cluster, and the service consumer initiates

remote calls by obtaining the registry information of the

Eureka Server. After the Eureka Client completes registra-

tion, the service registration center will display information

about the microservice applications. As shown in Fig. 10, the

two microservices in this paper can each obtain a unique

application name in the registry center – sparkapi_service and

hbaseapi_ service. After the microservice completes registra-

tion, the Eureka Client can invoke the microservice directly

through the application name.
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Figure 8
Design of the column families of the data processing result data table.

Figure 9
Architecture of Spring Cloud Netflix Eureka.



The entire application layer structure is shown in Fig. 11.

Each microservice in the application layer functions as an

independent module, with its own business logic and data that

do not interfere with one another. Each microservice can

operate independently and autonomously without affecting

the operation of other services, ensuring high system relia-

bility. A microservice focuses solely on a specific business

function, and its amount of code is small, making the devel-

opment and maintenance of a single microservice relatively

simple. The high cohesion and low coupling characteristics of

the microservice architecture make it easy to develop and

modify the functional modules in the application, and the

entire application is highly scalable.

5. Conclusion

The data processing of beamlines has entered the era of big

data. In response to the current situation, where there is no

large-scale data parallel processing solution based on big data

technology, this paper presents a case study on synchrotron

radiation biomolecular crystallography to illustrate a beamline

distributed data processing scheme based on the Hadoop

ecosystem. In this paper, we build a distributed file storage

system for experimental crystallography data based on

Hadoop HDFS. Additionally, we develop a resource sche-

duling system for the cluster using Hadoop YARN. Further-

more, we design and develop a distributed automated data

processing pipeline (Spark-DIALS) for crystallography by

combining Hadoop Spark and DIALS. The results obtained

from the Spark-DIALS pipeline are similar to those obtained

from the original DIALS. Additionally, Spark-DIALS is not

limited to parallel data processing on a single machine and

it can perform distributed parallel computing across nodes

within a computing cluster as well. The processing efficiency

of Spark-DIALS on large datasets is significantly improved

compared with the original DIALS, reducing the need for high

single machine performance. Compared with the original

DIALS, Spark-DIALS has enhanced functionality and

performance, enabling it to effectively utilize the resources of

all nodes in the computing cluster, thereby solving parallel

computing problems with large-scale data. Moreover, the

solution utilizes FastAPI and Spring Cloud Netflix Eureka to

deploy each functional module in a distributed microservice

architecture. In Hadoop HBase, data tables are designed for

each module to ensure the autonomy of microservices, thereby

improving the flexibility and reliability of the entire system.

Synchrotron radiation light sources are a comprehensive

research platform for multiple disciplines. Data processing for

the beamline requires not only CPU computing resources but

also GPU and FPGA resources, among others. In particular,

with the introduction of machine learning technologies such as

deep learning, GPUs have a significant advantage in parallel

computing for image processing compared with CPUs. The

integration of Hadoop distributed big data computing

frameworks, such as Spark, with GPU clusters will be a

direction for future research.

6. Data availability

The data that support the findings of this study are openly

available in GitHub at https://github.com/carbee24/

Spark-dials/tree/master.
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(2021). Proceedings of the 12th International Particle Accelerator
Conference (IPAC2021), 24–28 May 2021, Campinas, Brazil,
pp. 13–18. MOXA03.

Liu, Y., Zeng, Y. K. & Piao, X. F. (2016). Proceedings of the 2016
IEEE 22nd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 17–19 August
2016, Daegu, South Korea, pp. 238–247.

Ma, C., Zhao, M. & Zhao, Y. (2023). J. Traffic Transp. Eng. 10,
900–917.

Malitsky, N. (2016). Proceedings of the 2016 New York Scientific Data
Summit (NYSDS), 14–17 August 2016, New York, NY, USA,
pp. 1–8.

Noack, M. M., Zwart, P. H., Ushizima, D. M., Fukuto, M., Yager, K.
G., Elbert, K. C., Murray, C. B., Stein, A., Doerk, G. S., Tsai, E. H.
R., Li, R., Freychet, G., Zhernenkov, M., Holman, H. N., Lee, S.,
Chen, L., Rotenberg, E., Weber, T., Goc, Y. L., Boehm, M., Steffens,
P., Mutti, P. & Sethian, J. A. (2021). Nat. Rev. Phys. 3, 685–697.

PySpark (2024). PySpark Overview, https://spark.apache.org/docs/
latest/api/python/index.html (accessed 31 January 2024).

Ravichandran, G. (2017). Intl Res. Eng. J. Technol. 4, 448–451.

Revol, J. L., Berkvens, P., Bouteille, J. F., Carmignani, N., Carver,
L. R., Chaize, J. M., Chavanne, J., Ewald, F., Franchi, A., Hardy, L.,
Jacob, J., Jolly, L., Le Bec, G., Leconte, I., Liuzzo, S. M., Martin, D.,
Pasquaud, J., Perron, T. P., Qin, Q., Raimondi, P., Roche, B.,
Scheidt, K. B., Versteegen, R. & White, S. M. (2021). Proceedings of
the 12th International Particle Accelerator Conference (IPAC2021),
24–28 May 2021, Campinas, SP, Brazil, pp. 3929–3932. THPAB074.

Song, Y., Li, C., Xuan, K. & Liu, G. (2018). Nucl. Sci. Tech. 29, 129.

Tavares, P. F., Al-Dmour, E., Andersson, Å., Eriksson, M., Grabski,
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