Supplemental Materials

Mechanism for Controlling the Monomer-Dimer Conversion of SARS Coronavirus Main Protease

Cheng-Guo Wu¹, Shu-Chun Cheng², Shiang-Chuan Chen¹, Juo-Yan Li¹, Yi-Hsuan Fang¹, Yau-Hung Chen² and Chi-Yuan Chou¹*

¹Department of Life Sciences and Institute of Genome Sciences

National Yang-Ming University

Taipei 112, Taiwan

²Department of Chemistry

Tamkang University

Tamsui 251, Taiwan

Phone: +886-2-28267168, FAX: +886-2-28202449

E-mail: cychou@ym.edu.tw

Containing 1 supplement figure

^{*} Correspondence information for Chi-Yuan Chou

Supplemental Figure 1. AEC pattern of the N-strept tagged R298A mutant of SARS-CoV M^{pro}. The amount of protein used was 15 μ l (2 mg/ml), and the total volume of the cell was 330 μ l. A and B, show the trace of absorbance at 250 nm of the N-strept tagged R298A mutant during the experiments at phosphate buffer (pH 7.6) (A) and a substrate concentration of 200 μ M (B), respectively. C, shows the continuous c(s) distributions of the proteins from the best-fit analysis of the 250 nm results. Solid and dashed lines show the results in phosphate buffer (pH 7.6) and in the substrate concentration of 200 μ M, respectively. Two straight dotted lines indicate the positions of the monomer (M) and dimer (D). Insets show the residual bitmap of the raw data and the best-fit results.